MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwass Structured version   Visualization version   GIF version

Theorem arwass 18063
Description: Associativity of composition in a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h 𝐻 = (Homa𝐶)
arwlid.o · = (compa𝐶)
arwlid.a 1 = (Ida𝐶)
arwlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
arwass.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
arwass.k (𝜑𝐾 ∈ (𝑍𝐻𝑊))
Assertion
Ref Expression
arwass (𝜑 → ((𝐾 · 𝐺) · 𝐹) = (𝐾 · (𝐺 · 𝐹)))

Proof of Theorem arwass
StepHypRef Expression
1 eqid 2728 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2728 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2728 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 arwlid.f . . . . . 6 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
5 arwlid.h . . . . . . 7 𝐻 = (Homa𝐶)
65homarcl 18017 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
74, 6syl 17 . . . . 5 (𝜑𝐶 ∈ Cat)
85, 1homarcl2 18024 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
94, 8syl 17 . . . . . 6 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
109simpld 494 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
119simprd 495 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
12 arwass.k . . . . . . 7 (𝜑𝐾 ∈ (𝑍𝐻𝑊))
135, 1homarcl2 18024 . . . . . . 7 (𝐾 ∈ (𝑍𝐻𝑊) → (𝑍 ∈ (Base‘𝐶) ∧ 𝑊 ∈ (Base‘𝐶)))
1412, 13syl 17 . . . . . 6 (𝜑 → (𝑍 ∈ (Base‘𝐶) ∧ 𝑊 ∈ (Base‘𝐶)))
1514simpld 494 . . . . 5 (𝜑𝑍 ∈ (Base‘𝐶))
165, 2homahom 18028 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
174, 16syl 17 . . . . 5 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
18 arwass.g . . . . . 6 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
195, 2homahom 18028 . . . . . 6 (𝐺 ∈ (𝑌𝐻𝑍) → (2nd𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍))
2018, 19syl 17 . . . . 5 (𝜑 → (2nd𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍))
2114simprd 495 . . . . 5 (𝜑𝑊 ∈ (Base‘𝐶))
225, 2homahom 18028 . . . . . 6 (𝐾 ∈ (𝑍𝐻𝑊) → (2nd𝐾) ∈ (𝑍(Hom ‘𝐶)𝑊))
2312, 22syl 17 . . . . 5 (𝜑 → (2nd𝐾) ∈ (𝑍(Hom ‘𝐶)𝑊))
241, 2, 3, 7, 10, 11, 15, 17, 20, 21, 23catass 17666 . . . 4 (𝜑 → (((2nd𝐾)(⟨𝑌, 𝑍⟩(comp‘𝐶)𝑊)(2nd𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹)) = ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹))))
25 arwlid.o . . . . . 6 · = (compa𝐶)
2625, 5, 18, 12, 3coa2 18058 . . . . 5 (𝜑 → (2nd ‘(𝐾 · 𝐺)) = ((2nd𝐾)(⟨𝑌, 𝑍⟩(comp‘𝐶)𝑊)(2nd𝐺)))
2726oveq1d 7435 . . . 4 (𝜑 → ((2nd ‘(𝐾 · 𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹)) = (((2nd𝐾)(⟨𝑌, 𝑍⟩(comp‘𝐶)𝑊)(2nd𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹)))
2825, 5, 4, 18, 3coa2 18058 . . . . 5 (𝜑 → (2nd ‘(𝐺 · 𝐹)) = ((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹)))
2928oveq2d 7436 . . . 4 (𝜑 → ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹))) = ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹))))
3024, 27, 293eqtr4d 2778 . . 3 (𝜑 → ((2nd ‘(𝐾 · 𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹)) = ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹))))
3130oteq3d 4888 . 2 (𝜑 → ⟨𝑋, 𝑊, ((2nd ‘(𝐾 · 𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹))⟩ = ⟨𝑋, 𝑊, ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹)))⟩)
3225, 5, 18, 12coahom 18059 . . 3 (𝜑 → (𝐾 · 𝐺) ∈ (𝑌𝐻𝑊))
3325, 5, 4, 32, 3coaval 18057 . 2 (𝜑 → ((𝐾 · 𝐺) · 𝐹) = ⟨𝑋, 𝑊, ((2nd ‘(𝐾 · 𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹))⟩)
3425, 5, 4, 18coahom 18059 . . 3 (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍))
3525, 5, 34, 12, 3coaval 18057 . 2 (𝜑 → (𝐾 · (𝐺 · 𝐹)) = ⟨𝑋, 𝑊, ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹)))⟩)
3631, 33, 353eqtr4d 2778 1 (𝜑 → ((𝐾 · 𝐺) · 𝐹) = (𝐾 · (𝐺 · 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cop 4635  cotp 4637  cfv 6548  (class class class)co 7420  2nd c2nd 7992  Basecbs 17180  Hom chom 17244  compcco 17245  Catccat 17644  Homachoma 18012  Idacida 18042  compaccoa 18043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-cat 17648  df-doma 18013  df-coda 18014  df-homa 18015  df-arw 18016  df-coa 18045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator