Proof of Theorem arwass
Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) |
2 | | eqid 2758 |
. . . . 5
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
3 | | eqid 2758 |
. . . . 5
⊢
(comp‘𝐶) =
(comp‘𝐶) |
4 | | arwlid.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
5 | | arwlid.h |
. . . . . . 7
⊢ 𝐻 =
(Homa‘𝐶) |
6 | 5 | homarcl 17359 |
. . . . . 6
⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
7 | 4, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | 5, 1 | homarcl2 17366 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
9 | 4, 8 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
10 | 9 | simpld 498 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
11 | 9 | simprd 499 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
12 | | arwass.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (𝑍𝐻𝑊)) |
13 | 5, 1 | homarcl2 17366 |
. . . . . . 7
⊢ (𝐾 ∈ (𝑍𝐻𝑊) → (𝑍 ∈ (Base‘𝐶) ∧ 𝑊 ∈ (Base‘𝐶))) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑍 ∈ (Base‘𝐶) ∧ 𝑊 ∈ (Base‘𝐶))) |
15 | 14 | simpld 498 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
16 | 5, 2 | homahom 17370 |
. . . . . 6
⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
17 | 4, 16 | syl 17 |
. . . . 5
⊢ (𝜑 → (2nd
‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
18 | | arwass.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
19 | 5, 2 | homahom 17370 |
. . . . . 6
⊢ (𝐺 ∈ (𝑌𝐻𝑍) → (2nd ‘𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍)) |
20 | 18, 19 | syl 17 |
. . . . 5
⊢ (𝜑 → (2nd
‘𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍)) |
21 | 14 | simprd 499 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ (Base‘𝐶)) |
22 | 5, 2 | homahom 17370 |
. . . . . 6
⊢ (𝐾 ∈ (𝑍𝐻𝑊) → (2nd ‘𝐾) ∈ (𝑍(Hom ‘𝐶)𝑊)) |
23 | 12, 22 | syl 17 |
. . . . 5
⊢ (𝜑 → (2nd
‘𝐾) ∈ (𝑍(Hom ‘𝐶)𝑊)) |
24 | 1, 2, 3, 7, 10, 11, 15, 17, 20, 21, 23 | catass 17020 |
. . . 4
⊢ (𝜑 → (((2nd
‘𝐾)(〈𝑌, 𝑍〉(comp‘𝐶)𝑊)(2nd ‘𝐺))(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)(2nd ‘𝐹)) = ((2nd ‘𝐾)(〈𝑋, 𝑍〉(comp‘𝐶)𝑊)((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹)))) |
25 | | arwlid.o |
. . . . . 6
⊢ · =
(compa‘𝐶) |
26 | 25, 5, 18, 12, 3 | coa2 17400 |
. . . . 5
⊢ (𝜑 → (2nd
‘(𝐾 · 𝐺)) = ((2nd
‘𝐾)(〈𝑌, 𝑍〉(comp‘𝐶)𝑊)(2nd ‘𝐺))) |
27 | 26 | oveq1d 7170 |
. . . 4
⊢ (𝜑 → ((2nd
‘(𝐾 · 𝐺))(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)(2nd ‘𝐹)) = (((2nd ‘𝐾)(〈𝑌, 𝑍〉(comp‘𝐶)𝑊)(2nd ‘𝐺))(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)(2nd ‘𝐹))) |
28 | 25, 5, 4, 18, 3 | coa2 17400 |
. . . . 5
⊢ (𝜑 → (2nd
‘(𝐺 · 𝐹)) = ((2nd
‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹))) |
29 | 28 | oveq2d 7171 |
. . . 4
⊢ (𝜑 → ((2nd
‘𝐾)(〈𝑋, 𝑍〉(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹))) = ((2nd ‘𝐾)(〈𝑋, 𝑍〉(comp‘𝐶)𝑊)((2nd ‘𝐺)(〈𝑋, 𝑌〉(comp‘𝐶)𝑍)(2nd ‘𝐹)))) |
30 | 24, 27, 29 | 3eqtr4d 2803 |
. . 3
⊢ (𝜑 → ((2nd
‘(𝐾 · 𝐺))(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)(2nd ‘𝐹)) = ((2nd ‘𝐾)(〈𝑋, 𝑍〉(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹)))) |
31 | 30 | oteq3d 4780 |
. 2
⊢ (𝜑 → 〈𝑋, 𝑊, ((2nd ‘(𝐾 · 𝐺))(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)(2nd ‘𝐹))〉 = 〈𝑋, 𝑊, ((2nd ‘𝐾)(〈𝑋, 𝑍〉(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹)))〉) |
32 | 25, 5, 18, 12 | coahom 17401 |
. . 3
⊢ (𝜑 → (𝐾 · 𝐺) ∈ (𝑌𝐻𝑊)) |
33 | 25, 5, 4, 32, 3 | coaval 17399 |
. 2
⊢ (𝜑 → ((𝐾 · 𝐺) · 𝐹) = 〈𝑋, 𝑊, ((2nd ‘(𝐾 · 𝐺))(〈𝑋, 𝑌〉(comp‘𝐶)𝑊)(2nd ‘𝐹))〉) |
34 | 25, 5, 4, 18 | coahom 17401 |
. . 3
⊢ (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍)) |
35 | 25, 5, 34, 12, 3 | coaval 17399 |
. 2
⊢ (𝜑 → (𝐾 · (𝐺 · 𝐹)) = 〈𝑋, 𝑊, ((2nd ‘𝐾)(〈𝑋, 𝑍〉(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹)))〉) |
36 | 31, 33, 35 | 3eqtr4d 2803 |
1
⊢ (𝜑 → ((𝐾 · 𝐺) · 𝐹) = (𝐾 · (𝐺 · 𝐹))) |