MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwass Structured version   Visualization version   GIF version

Theorem arwass 18036
Description: Associativity of composition in a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h 𝐻 = (Homa𝐶)
arwlid.o · = (compa𝐶)
arwlid.a 1 = (Ida𝐶)
arwlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
arwass.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
arwass.k (𝜑𝐾 ∈ (𝑍𝐻𝑊))
Assertion
Ref Expression
arwass (𝜑 → ((𝐾 · 𝐺) · 𝐹) = (𝐾 · (𝐺 · 𝐹)))

Proof of Theorem arwass
StepHypRef Expression
1 eqid 2729 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2729 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2729 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 arwlid.f . . . . . 6 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
5 arwlid.h . . . . . . 7 𝐻 = (Homa𝐶)
65homarcl 17990 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
74, 6syl 17 . . . . 5 (𝜑𝐶 ∈ Cat)
85, 1homarcl2 17997 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
94, 8syl 17 . . . . . 6 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
109simpld 494 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
119simprd 495 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
12 arwass.k . . . . . . 7 (𝜑𝐾 ∈ (𝑍𝐻𝑊))
135, 1homarcl2 17997 . . . . . . 7 (𝐾 ∈ (𝑍𝐻𝑊) → (𝑍 ∈ (Base‘𝐶) ∧ 𝑊 ∈ (Base‘𝐶)))
1412, 13syl 17 . . . . . 6 (𝜑 → (𝑍 ∈ (Base‘𝐶) ∧ 𝑊 ∈ (Base‘𝐶)))
1514simpld 494 . . . . 5 (𝜑𝑍 ∈ (Base‘𝐶))
165, 2homahom 18001 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
174, 16syl 17 . . . . 5 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
18 arwass.g . . . . . 6 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
195, 2homahom 18001 . . . . . 6 (𝐺 ∈ (𝑌𝐻𝑍) → (2nd𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍))
2018, 19syl 17 . . . . 5 (𝜑 → (2nd𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍))
2114simprd 495 . . . . 5 (𝜑𝑊 ∈ (Base‘𝐶))
225, 2homahom 18001 . . . . . 6 (𝐾 ∈ (𝑍𝐻𝑊) → (2nd𝐾) ∈ (𝑍(Hom ‘𝐶)𝑊))
2312, 22syl 17 . . . . 5 (𝜑 → (2nd𝐾) ∈ (𝑍(Hom ‘𝐶)𝑊))
241, 2, 3, 7, 10, 11, 15, 17, 20, 21, 23catass 17647 . . . 4 (𝜑 → (((2nd𝐾)(⟨𝑌, 𝑍⟩(comp‘𝐶)𝑊)(2nd𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹)) = ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹))))
25 arwlid.o . . . . . 6 · = (compa𝐶)
2625, 5, 18, 12, 3coa2 18031 . . . . 5 (𝜑 → (2nd ‘(𝐾 · 𝐺)) = ((2nd𝐾)(⟨𝑌, 𝑍⟩(comp‘𝐶)𝑊)(2nd𝐺)))
2726oveq1d 7402 . . . 4 (𝜑 → ((2nd ‘(𝐾 · 𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹)) = (((2nd𝐾)(⟨𝑌, 𝑍⟩(comp‘𝐶)𝑊)(2nd𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹)))
2825, 5, 4, 18, 3coa2 18031 . . . . 5 (𝜑 → (2nd ‘(𝐺 · 𝐹)) = ((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹)))
2928oveq2d 7403 . . . 4 (𝜑 → ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹))) = ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹))))
3024, 27, 293eqtr4d 2774 . . 3 (𝜑 → ((2nd ‘(𝐾 · 𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹)) = ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹))))
3130oteq3d 4851 . 2 (𝜑 → ⟨𝑋, 𝑊, ((2nd ‘(𝐾 · 𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹))⟩ = ⟨𝑋, 𝑊, ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹)))⟩)
3225, 5, 18, 12coahom 18032 . . 3 (𝜑 → (𝐾 · 𝐺) ∈ (𝑌𝐻𝑊))
3325, 5, 4, 32, 3coaval 18030 . 2 (𝜑 → ((𝐾 · 𝐺) · 𝐹) = ⟨𝑋, 𝑊, ((2nd ‘(𝐾 · 𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹))⟩)
3425, 5, 4, 18coahom 18032 . . 3 (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍))
3525, 5, 34, 12, 3coaval 18030 . 2 (𝜑 → (𝐾 · (𝐺 · 𝐹)) = ⟨𝑋, 𝑊, ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹)))⟩)
3631, 33, 353eqtr4d 2774 1 (𝜑 → ((𝐾 · 𝐺) · 𝐹) = (𝐾 · (𝐺 · 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4595  cotp 4597  cfv 6511  (class class class)co 7387  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Homachoma 17985  Idacida 18015  compaccoa 18016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-cat 17629  df-doma 17986  df-coda 17987  df-homa 17988  df-arw 17989  df-coa 18018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator