MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwass Structured version   Visualization version   GIF version

Theorem arwass 17789
Description: Associativity of composition in a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h 𝐻 = (Homa𝐶)
arwlid.o · = (compa𝐶)
arwlid.a 1 = (Ida𝐶)
arwlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
arwass.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
arwass.k (𝜑𝐾 ∈ (𝑍𝐻𝑊))
Assertion
Ref Expression
arwass (𝜑 → ((𝐾 · 𝐺) · 𝐹) = (𝐾 · (𝐺 · 𝐹)))

Proof of Theorem arwass
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2738 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2738 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 arwlid.f . . . . . 6 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
5 arwlid.h . . . . . . 7 𝐻 = (Homa𝐶)
65homarcl 17743 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
74, 6syl 17 . . . . 5 (𝜑𝐶 ∈ Cat)
85, 1homarcl2 17750 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
94, 8syl 17 . . . . . 6 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
109simpld 495 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
119simprd 496 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
12 arwass.k . . . . . . 7 (𝜑𝐾 ∈ (𝑍𝐻𝑊))
135, 1homarcl2 17750 . . . . . . 7 (𝐾 ∈ (𝑍𝐻𝑊) → (𝑍 ∈ (Base‘𝐶) ∧ 𝑊 ∈ (Base‘𝐶)))
1412, 13syl 17 . . . . . 6 (𝜑 → (𝑍 ∈ (Base‘𝐶) ∧ 𝑊 ∈ (Base‘𝐶)))
1514simpld 495 . . . . 5 (𝜑𝑍 ∈ (Base‘𝐶))
165, 2homahom 17754 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
174, 16syl 17 . . . . 5 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
18 arwass.g . . . . . 6 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
195, 2homahom 17754 . . . . . 6 (𝐺 ∈ (𝑌𝐻𝑍) → (2nd𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍))
2018, 19syl 17 . . . . 5 (𝜑 → (2nd𝐺) ∈ (𝑌(Hom ‘𝐶)𝑍))
2114simprd 496 . . . . 5 (𝜑𝑊 ∈ (Base‘𝐶))
225, 2homahom 17754 . . . . . 6 (𝐾 ∈ (𝑍𝐻𝑊) → (2nd𝐾) ∈ (𝑍(Hom ‘𝐶)𝑊))
2312, 22syl 17 . . . . 5 (𝜑 → (2nd𝐾) ∈ (𝑍(Hom ‘𝐶)𝑊))
241, 2, 3, 7, 10, 11, 15, 17, 20, 21, 23catass 17395 . . . 4 (𝜑 → (((2nd𝐾)(⟨𝑌, 𝑍⟩(comp‘𝐶)𝑊)(2nd𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹)) = ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹))))
25 arwlid.o . . . . . 6 · = (compa𝐶)
2625, 5, 18, 12, 3coa2 17784 . . . . 5 (𝜑 → (2nd ‘(𝐾 · 𝐺)) = ((2nd𝐾)(⟨𝑌, 𝑍⟩(comp‘𝐶)𝑊)(2nd𝐺)))
2726oveq1d 7290 . . . 4 (𝜑 → ((2nd ‘(𝐾 · 𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹)) = (((2nd𝐾)(⟨𝑌, 𝑍⟩(comp‘𝐶)𝑊)(2nd𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹)))
2825, 5, 4, 18, 3coa2 17784 . . . . 5 (𝜑 → (2nd ‘(𝐺 · 𝐹)) = ((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹)))
2928oveq2d 7291 . . . 4 (𝜑 → ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹))) = ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)((2nd𝐺)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑍)(2nd𝐹))))
3024, 27, 293eqtr4d 2788 . . 3 (𝜑 → ((2nd ‘(𝐾 · 𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹)) = ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹))))
3130oteq3d 4818 . 2 (𝜑 → ⟨𝑋, 𝑊, ((2nd ‘(𝐾 · 𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹))⟩ = ⟨𝑋, 𝑊, ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹)))⟩)
3225, 5, 18, 12coahom 17785 . . 3 (𝜑 → (𝐾 · 𝐺) ∈ (𝑌𝐻𝑊))
3325, 5, 4, 32, 3coaval 17783 . 2 (𝜑 → ((𝐾 · 𝐺) · 𝐹) = ⟨𝑋, 𝑊, ((2nd ‘(𝐾 · 𝐺))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)(2nd𝐹))⟩)
3425, 5, 4, 18coahom 17785 . . 3 (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍))
3525, 5, 34, 12, 3coaval 17783 . 2 (𝜑 → (𝐾 · (𝐺 · 𝐹)) = ⟨𝑋, 𝑊, ((2nd𝐾)(⟨𝑋, 𝑍⟩(comp‘𝐶)𝑊)(2nd ‘(𝐺 · 𝐹)))⟩)
3631, 33, 353eqtr4d 2788 1 (𝜑 → ((𝐾 · 𝐺) · 𝐹) = (𝐾 · (𝐺 · 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cop 4567  cotp 4569  cfv 6433  (class class class)co 7275  2nd c2nd 7830  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Homachoma 17738  Idacida 17768  compaccoa 17769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-cat 17377  df-doma 17739  df-coda 17740  df-homa 17741  df-arw 17742  df-coa 17771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator