MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwrid Structured version   Visualization version   GIF version

Theorem arwrid 18118
Description: Right identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h 𝐻 = (Homa𝐶)
arwlid.o · = (compa𝐶)
arwlid.a 1 = (Ida𝐶)
arwlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
arwrid (𝜑 → (𝐹 · ( 1𝑋)) = 𝐹)

Proof of Theorem arwrid
StepHypRef Expression
1 arwlid.a . . . . . 6 1 = (Ida𝐶)
2 eqid 2737 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 arwlid.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 arwlid.h . . . . . . . 8 𝐻 = (Homa𝐶)
54homarcl 18073 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
63, 5syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
7 eqid 2737 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
84, 2homarcl2 18080 . . . . . . . 8 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
93, 8syl 17 . . . . . . 7 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
109simpld 494 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐶))
111, 2, 6, 7, 10ida2 18104 . . . . 5 (𝜑 → (2nd ‘( 1𝑋)) = ((Id‘𝐶)‘𝑋))
1211oveq2d 7447 . . . 4 (𝜑 → ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋))) = ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
13 eqid 2737 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
14 eqid 2737 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
159simprd 495 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
164, 13homahom 18084 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
173, 16syl 17 . . . . 5 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
182, 13, 7, 6, 10, 14, 15, 17catrid 17727 . . . 4 (𝜑 → ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = (2nd𝐹))
1912, 18eqtrd 2777 . . 3 (𝜑 → ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋))) = (2nd𝐹))
2019oteq3d 4887 . 2 (𝜑 → ⟨𝑋, 𝑌, ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋)))⟩ = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
21 arwlid.o . . 3 · = (compa𝐶)
221, 2, 6, 10, 4idahom 18105 . . 3 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
2321, 4, 22, 3, 14coaval 18113 . 2 (𝜑 → (𝐹 · ( 1𝑋)) = ⟨𝑋, 𝑌, ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋)))⟩)
244homadmcd 18087 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
253, 24syl 17 . 2 (𝜑𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
2620, 23, 253eqtr4d 2787 1 (𝜑 → (𝐹 · ( 1𝑋)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4632  cotp 4634  cfv 6561  (class class class)co 7431  2nd c2nd 8013  Basecbs 17247  Hom chom 17308  compcco 17309  Catccat 17707  Idccid 17708  Homachoma 18068  Idacida 18098  compaccoa 18099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-ot 4635  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-cat 17711  df-cid 17712  df-doma 18069  df-coda 18070  df-homa 18071  df-arw 18072  df-ida 18100  df-coa 18101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator