MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwrid Structured version   Visualization version   GIF version

Theorem arwrid 17998
Description: Right identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h 𝐻 = (Homa𝐶)
arwlid.o · = (compa𝐶)
arwlid.a 1 = (Ida𝐶)
arwlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
arwrid (𝜑 → (𝐹 · ( 1𝑋)) = 𝐹)

Proof of Theorem arwrid
StepHypRef Expression
1 arwlid.a . . . . . 6 1 = (Ida𝐶)
2 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 arwlid.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 arwlid.h . . . . . . . 8 𝐻 = (Homa𝐶)
54homarcl 17953 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
63, 5syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
7 eqid 2729 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
84, 2homarcl2 17960 . . . . . . . 8 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
93, 8syl 17 . . . . . . 7 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
109simpld 494 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐶))
111, 2, 6, 7, 10ida2 17984 . . . . 5 (𝜑 → (2nd ‘( 1𝑋)) = ((Id‘𝐶)‘𝑋))
1211oveq2d 7369 . . . 4 (𝜑 → ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋))) = ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
13 eqid 2729 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
14 eqid 2729 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
159simprd 495 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
164, 13homahom 17964 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
173, 16syl 17 . . . . 5 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
182, 13, 7, 6, 10, 14, 15, 17catrid 17608 . . . 4 (𝜑 → ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = (2nd𝐹))
1912, 18eqtrd 2764 . . 3 (𝜑 → ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋))) = (2nd𝐹))
2019oteq3d 4841 . 2 (𝜑 → ⟨𝑋, 𝑌, ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋)))⟩ = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
21 arwlid.o . . 3 · = (compa𝐶)
221, 2, 6, 10, 4idahom 17985 . . 3 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
2321, 4, 22, 3, 14coaval 17993 . 2 (𝜑 → (𝐹 · ( 1𝑋)) = ⟨𝑋, 𝑌, ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋)))⟩)
244homadmcd 17967 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
253, 24syl 17 . 2 (𝜑𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
2620, 23, 253eqtr4d 2774 1 (𝜑 → (𝐹 · ( 1𝑋)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4585  cotp 4587  cfv 6486  (class class class)co 7353  2nd c2nd 7930  Basecbs 17138  Hom chom 17190  compcco 17191  Catccat 17588  Idccid 17589  Homachoma 17948  Idacida 17978  compaccoa 17979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-ot 4588  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-cat 17592  df-cid 17593  df-doma 17949  df-coda 17950  df-homa 17951  df-arw 17952  df-ida 17980  df-coa 17981
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator