| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arwrid | Structured version Visualization version GIF version | ||
| Description: Right identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwlid.h | ⊢ 𝐻 = (Homa‘𝐶) |
| arwlid.o | ⊢ · = (compa‘𝐶) |
| arwlid.a | ⊢ 1 = (Ida‘𝐶) |
| arwlid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| arwrid | ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwlid.a | . . . . . 6 ⊢ 1 = (Ida‘𝐶) | |
| 2 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | arwlid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 4 | arwlid.h | . . . . . . . 8 ⊢ 𝐻 = (Homa‘𝐶) | |
| 5 | 4 | homarcl 18046 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | eqid 2736 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 8 | 4, 2 | homarcl2 18053 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 10 | 9 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 11 | 1, 2, 6, 7, 10 | ida2 18077 | . . . . 5 ⊢ (𝜑 → (2nd ‘( 1 ‘𝑋)) = ((Id‘𝐶)‘𝑋)) |
| 12 | 11 | oveq2d 7426 | . . . 4 ⊢ (𝜑 → ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋))) = ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋))) |
| 13 | eqid 2736 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 14 | eqid 2736 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 15 | 9 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 16 | 4, 13 | homahom 18057 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 18 | 2, 13, 7, 6, 10, 14, 15, 17 | catrid 17701 | . . . 4 ⊢ (𝜑 → ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = (2nd ‘𝐹)) |
| 19 | 12, 18 | eqtrd 2771 | . . 3 ⊢ (𝜑 → ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋))) = (2nd ‘𝐹)) |
| 20 | 19 | oteq3d 4868 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌, ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋)))〉 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 21 | arwlid.o | . . 3 ⊢ · = (compa‘𝐶) | |
| 22 | 1, 2, 6, 10, 4 | idahom 18078 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| 23 | 21, 4, 22, 3, 14 | coaval 18086 | . 2 ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 〈𝑋, 𝑌, ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋)))〉) |
| 24 | 4 | homadmcd 18060 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 25 | 3, 24 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 26 | 20, 23, 25 | 3eqtr4d 2781 | 1 ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4612 〈cotp 4614 ‘cfv 6536 (class class class)co 7410 2nd c2nd 7992 Basecbs 17233 Hom chom 17287 compcco 17288 Catccat 17681 Idccid 17682 Homachoma 18041 Idacida 18071 compaccoa 18072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-ot 4615 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-cat 17685 df-cid 17686 df-doma 18042 df-coda 18043 df-homa 18044 df-arw 18045 df-ida 18073 df-coa 18074 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |