Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > arwrid | Structured version Visualization version GIF version |
Description: Right identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwlid.h | ⊢ 𝐻 = (Homa‘𝐶) |
arwlid.o | ⊢ · = (compa‘𝐶) |
arwlid.a | ⊢ 1 = (Ida‘𝐶) |
arwlid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
arwrid | ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwlid.a | . . . . . 6 ⊢ 1 = (Ida‘𝐶) | |
2 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | arwlid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
4 | arwlid.h | . . . . . . . 8 ⊢ 𝐻 = (Homa‘𝐶) | |
5 | 4 | homarcl 17659 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | eqid 2738 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
8 | 4, 2 | homarcl2 17666 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
10 | 9 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
11 | 1, 2, 6, 7, 10 | ida2 17690 | . . . . 5 ⊢ (𝜑 → (2nd ‘( 1 ‘𝑋)) = ((Id‘𝐶)‘𝑋)) |
12 | 11 | oveq2d 7271 | . . . 4 ⊢ (𝜑 → ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋))) = ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋))) |
13 | eqid 2738 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
14 | eqid 2738 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
15 | 9 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
16 | 4, 13 | homahom 17670 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
18 | 2, 13, 7, 6, 10, 14, 15, 17 | catrid 17310 | . . . 4 ⊢ (𝜑 → ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = (2nd ‘𝐹)) |
19 | 12, 18 | eqtrd 2778 | . . 3 ⊢ (𝜑 → ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋))) = (2nd ‘𝐹)) |
20 | 19 | oteq3d 4815 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌, ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋)))〉 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
21 | arwlid.o | . . 3 ⊢ · = (compa‘𝐶) | |
22 | 1, 2, 6, 10, 4 | idahom 17691 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
23 | 21, 4, 22, 3, 14 | coaval 17699 | . 2 ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 〈𝑋, 𝑌, ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋)))〉) |
24 | 4 | homadmcd 17673 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
25 | 3, 24 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
26 | 20, 23, 25 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 〈cotp 4566 ‘cfv 6418 (class class class)co 7255 2nd c2nd 7803 Basecbs 16840 Hom chom 16899 compcco 16900 Catccat 17290 Idccid 17291 Homachoma 17654 Idacida 17684 compaccoa 17685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-ot 4567 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-cat 17294 df-cid 17295 df-doma 17655 df-coda 17656 df-homa 17657 df-arw 17658 df-ida 17686 df-coa 17687 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |