MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwrid Structured version   Visualization version   GIF version

Theorem arwrid 17704
Description: Right identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h 𝐻 = (Homa𝐶)
arwlid.o · = (compa𝐶)
arwlid.a 1 = (Ida𝐶)
arwlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
arwrid (𝜑 → (𝐹 · ( 1𝑋)) = 𝐹)

Proof of Theorem arwrid
StepHypRef Expression
1 arwlid.a . . . . . 6 1 = (Ida𝐶)
2 eqid 2738 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 arwlid.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 arwlid.h . . . . . . . 8 𝐻 = (Homa𝐶)
54homarcl 17659 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
63, 5syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
7 eqid 2738 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
84, 2homarcl2 17666 . . . . . . . 8 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
93, 8syl 17 . . . . . . 7 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
109simpld 494 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐶))
111, 2, 6, 7, 10ida2 17690 . . . . 5 (𝜑 → (2nd ‘( 1𝑋)) = ((Id‘𝐶)‘𝑋))
1211oveq2d 7271 . . . 4 (𝜑 → ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋))) = ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
13 eqid 2738 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
14 eqid 2738 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
159simprd 495 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
164, 13homahom 17670 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
173, 16syl 17 . . . . 5 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
182, 13, 7, 6, 10, 14, 15, 17catrid 17310 . . . 4 (𝜑 → ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = (2nd𝐹))
1912, 18eqtrd 2778 . . 3 (𝜑 → ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋))) = (2nd𝐹))
2019oteq3d 4815 . 2 (𝜑 → ⟨𝑋, 𝑌, ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋)))⟩ = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
21 arwlid.o . . 3 · = (compa𝐶)
221, 2, 6, 10, 4idahom 17691 . . 3 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
2321, 4, 22, 3, 14coaval 17699 . 2 (𝜑 → (𝐹 · ( 1𝑋)) = ⟨𝑋, 𝑌, ((2nd𝐹)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(2nd ‘( 1𝑋)))⟩)
244homadmcd 17673 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
253, 24syl 17 . 2 (𝜑𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
2620, 23, 253eqtr4d 2788 1 (𝜑 → (𝐹 · ( 1𝑋)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4564  cotp 4566  cfv 6418  (class class class)co 7255  2nd c2nd 7803  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291  Homachoma 17654  Idacida 17684  compaccoa 17685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-cat 17294  df-cid 17295  df-doma 17655  df-coda 17656  df-homa 17657  df-arw 17658  df-ida 17686  df-coa 17687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator