| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arwrid | Structured version Visualization version GIF version | ||
| Description: Right identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwlid.h | ⊢ 𝐻 = (Homa‘𝐶) |
| arwlid.o | ⊢ · = (compa‘𝐶) |
| arwlid.a | ⊢ 1 = (Ida‘𝐶) |
| arwlid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| arwrid | ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwlid.a | . . . . . 6 ⊢ 1 = (Ida‘𝐶) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | arwlid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 4 | arwlid.h | . . . . . . . 8 ⊢ 𝐻 = (Homa‘𝐶) | |
| 5 | 4 | homarcl 17932 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | eqid 2731 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 8 | 4, 2 | homarcl2 17939 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 10 | 9 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 11 | 1, 2, 6, 7, 10 | ida2 17963 | . . . . 5 ⊢ (𝜑 → (2nd ‘( 1 ‘𝑋)) = ((Id‘𝐶)‘𝑋)) |
| 12 | 11 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋))) = ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋))) |
| 13 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 14 | eqid 2731 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 15 | 9 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 16 | 4, 13 | homahom 17943 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 18 | 2, 13, 7, 6, 10, 14, 15, 17 | catrid 17587 | . . . 4 ⊢ (𝜑 → ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = (2nd ‘𝐹)) |
| 19 | 12, 18 | eqtrd 2766 | . . 3 ⊢ (𝜑 → ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋))) = (2nd ‘𝐹)) |
| 20 | 19 | oteq3d 4839 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌, ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋)))〉 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 21 | arwlid.o | . . 3 ⊢ · = (compa‘𝐶) | |
| 22 | 1, 2, 6, 10, 4 | idahom 17964 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| 23 | 21, 4, 22, 3, 14 | coaval 17972 | . 2 ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 〈𝑋, 𝑌, ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋)))〉) |
| 24 | 4 | homadmcd 17946 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 25 | 3, 24 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 26 | 20, 23, 25 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 〈cotp 4584 ‘cfv 6481 (class class class)co 7346 2nd c2nd 7920 Basecbs 17117 Hom chom 17169 compcco 17170 Catccat 17567 Idccid 17568 Homachoma 17927 Idacida 17957 compaccoa 17958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-cat 17571 df-cid 17572 df-doma 17928 df-coda 17929 df-homa 17930 df-arw 17931 df-ida 17959 df-coa 17960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |