MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipblnfi Structured version   Visualization version   GIF version

Theorem ipblnfi 28638
Description: A function 𝐹 generated by varying the first argument of an inner product (with its second argument a fixed vector 𝐴) is a bounded linear functional, i.e. a bounded linear operator from the vector space to . (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipblnfi.1 𝑋 = (BaseSet‘𝑈)
ipblnfi.7 𝑃 = (·𝑖OLD𝑈)
ipblnfi.9 𝑈 ∈ CPreHilOLD
ipblnfi.c 𝐶 = ⟨⟨ + , · ⟩, abs⟩
ipblnfi.l 𝐵 = (𝑈 BLnOp 𝐶)
ipblnfi.f 𝐹 = (𝑥𝑋 ↦ (𝑥𝑃𝐴))
Assertion
Ref Expression
ipblnfi (𝐴𝑋𝐹𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑈   𝑥,𝑋   𝑥,𝑃
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem ipblnfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipblnfi.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
21phnvi 28599 . . . . . 6 𝑈 ∈ NrmCVec
3 ipblnfi.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 ipblnfi.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
53, 4dipcl 28495 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝐴𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
62, 5mp3an1 1445 . . . . 5 ((𝑥𝑋𝐴𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
76ancoms 462 . . . 4 ((𝐴𝑋𝑥𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
8 ipblnfi.f . . . 4 𝐹 = (𝑥𝑋 ↦ (𝑥𝑃𝐴))
97, 8fmptd 6855 . . 3 (𝐴𝑋𝐹:𝑋⟶ℂ)
10 eqid 2798 . . . . . . . . . . 11 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
113, 10nvscl 28409 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
122, 11mp3an1 1445 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
1312ad2ant2lr 747 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
14 simprr 772 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑤𝑋)
15 simpll 766 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝐴𝑋)
16 eqid 2798 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
173, 16, 4dipdir 28625 . . . . . . . . 9 ((𝑈 ∈ CPreHilOLD ∧ ((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋𝐴𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
181, 17mpan 689 . . . . . . . 8 (((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋𝐴𝑋) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
1913, 14, 15, 18syl3anc 1368 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
20 simplr 768 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑦 ∈ ℂ)
21 simprl 770 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
223, 16, 10, 4, 1ipassi 28624 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑧𝑋𝐴𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴)))
2320, 21, 15, 22syl3anc 1368 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴)))
2423oveq1d 7150 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
2519, 24eqtrd 2833 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
2612adantll 713 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
273, 16nvgcl 28403 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
282, 27mp3an1 1445 . . . . . . . . 9 (((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
2926, 28sylan 583 . . . . . . . 8 ((((𝐴𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
3029anasss 470 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
31 oveq1 7142 . . . . . . . 8 (𝑥 = ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) → (𝑥𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
32 ovex 7168 . . . . . . . 8 (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) ∈ V
3331, 8, 32fvmpt 6745 . . . . . . 7 (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋 → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
3430, 33syl 17 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
35 oveq1 7142 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝑃𝐴) = (𝑧𝑃𝐴))
36 ovex 7168 . . . . . . . . . 10 (𝑧𝑃𝐴) ∈ V
3735, 8, 36fvmpt 6745 . . . . . . . . 9 (𝑧𝑋 → (𝐹𝑧) = (𝑧𝑃𝐴))
3837ad2antrl 727 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑧𝑃𝐴))
3938oveq2d 7151 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦 · (𝐹𝑧)) = (𝑦 · (𝑧𝑃𝐴)))
40 oveq1 7142 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑃𝐴) = (𝑤𝑃𝐴))
41 ovex 7168 . . . . . . . . 9 (𝑤𝑃𝐴) ∈ V
4240, 8, 41fvmpt 6745 . . . . . . . 8 (𝑤𝑋 → (𝐹𝑤) = (𝑤𝑃𝐴))
4342ad2antll 728 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) = (𝑤𝑃𝐴))
4439, 43oveq12d 7153 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
4525, 34, 443eqtr4d 2843 . . . . 5 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
4645ralrimivva 3156 . . . 4 ((𝐴𝑋𝑦 ∈ ℂ) → ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
4746ralrimiva 3149 . . 3 (𝐴𝑋 → ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
48 ipblnfi.c . . . . 5 𝐶 = ⟨⟨ + , · ⟩, abs⟩
4948cnnv 28460 . . . 4 𝐶 ∈ NrmCVec
5048cnnvba 28462 . . . . 5 ℂ = (BaseSet‘𝐶)
5148cnnvg 28461 . . . . 5 + = ( +𝑣𝐶)
5248cnnvs 28463 . . . . 5 · = ( ·𝑠OLD𝐶)
53 eqid 2798 . . . . 5 (𝑈 LnOp 𝐶) = (𝑈 LnOp 𝐶)
543, 50, 16, 51, 10, 52, 53islno 28536 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ NrmCVec) → (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))))
552, 49, 54mp2an 691 . . 3 (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤))))
569, 47, 55sylanbrc 586 . 2 (𝐴𝑋𝐹 ∈ (𝑈 LnOp 𝐶))
57 eqid 2798 . . . 4 (normCV𝑈) = (normCV𝑈)
583, 57nvcl 28444 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘𝐴) ∈ ℝ)
592, 58mpan 689 . 2 (𝐴𝑋 → ((normCV𝑈)‘𝐴) ∈ ℝ)
603, 57, 4, 1sii 28637 . . . . 5 ((𝑧𝑋𝐴𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6160ancoms 462 . . . 4 ((𝐴𝑋𝑧𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6237adantl 485 . . . . 5 ((𝐴𝑋𝑧𝑋) → (𝐹𝑧) = (𝑧𝑃𝐴))
6362fveq2d 6649 . . . 4 ((𝐴𝑋𝑧𝑋) → (abs‘(𝐹𝑧)) = (abs‘(𝑧𝑃𝐴)))
6459recnd 10658 . . . . 5 (𝐴𝑋 → ((normCV𝑈)‘𝐴) ∈ ℂ)
653, 57nvcl 28444 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((normCV𝑈)‘𝑧) ∈ ℝ)
662, 65mpan 689 . . . . . 6 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℝ)
6766recnd 10658 . . . . 5 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℂ)
68 mulcom 10612 . . . . 5 ((((normCV𝑈)‘𝐴) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ∈ ℂ) → (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)) = (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6964, 67, 68syl2an 598 . . . 4 ((𝐴𝑋𝑧𝑋) → (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)) = (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
7061, 63, 693brtr4d 5062 . . 3 ((𝐴𝑋𝑧𝑋) → (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)))
7170ralrimiva 3149 . 2 (𝐴𝑋 → ∀𝑧𝑋 (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)))
7248cnnvnm 28464 . . 3 abs = (normCV𝐶)
73 ipblnfi.l . . 3 𝐵 = (𝑈 BLnOp 𝐶)
743, 57, 72, 53, 73, 2, 49blo3i 28585 . 2 ((𝐹 ∈ (𝑈 LnOp 𝐶) ∧ ((normCV𝑈)‘𝐴) ∈ ℝ ∧ ∀𝑧𝑋 (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧))) → 𝐹𝐵)
7556, 59, 71, 74syl3anc 1368 1 (𝐴𝑋𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cop 4531   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525   + caddc 10529   · cmul 10531  cle 10665  abscabs 14585  NrmCVeccnv 28367   +𝑣 cpv 28368  BaseSetcba 28369   ·𝑠OLD cns 28370  normCVcnmcv 28373  ·𝑖OLDcdip 28483   LnOp clno 28523   BLnOp cblo 28525  CPreHilOLDccphlo 28595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-cn 21832  df-cnp 21833  df-t1 21919  df-haus 21920  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-grpo 28276  df-gid 28277  df-ginv 28278  df-gdiv 28279  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-vs 28382  df-nmcv 28383  df-ims 28384  df-dip 28484  df-lno 28527  df-nmoo 28528  df-blo 28529  df-0o 28530  df-ph 28596
This theorem is referenced by:  htthlem  28700
  Copyright terms: Public domain W3C validator