Step | Hyp | Ref
| Expression |
1 | | ipblnfi.9 |
. . . . . . 7
⊢ 𝑈 ∈
CPreHilOLD |
2 | 1 | phnvi 29178 |
. . . . . 6
⊢ 𝑈 ∈ NrmCVec |
3 | | ipblnfi.1 |
. . . . . . 7
⊢ 𝑋 = (BaseSet‘𝑈) |
4 | | ipblnfi.7 |
. . . . . . 7
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
5 | 3, 4 | dipcl 29074 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑥𝑃𝐴) ∈ ℂ) |
6 | 2, 5 | mp3an1 1447 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑥𝑃𝐴) ∈ ℂ) |
7 | 6 | ancoms 459 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥𝑃𝐴) ∈ ℂ) |
8 | | ipblnfi.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑥𝑃𝐴)) |
9 | 7, 8 | fmptd 6988 |
. . 3
⊢ (𝐴 ∈ 𝑋 → 𝐹:𝑋⟶ℂ) |
10 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
11 | 3, 10 | nvscl 28988 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋) → (𝑦( ·𝑠OLD
‘𝑈)𝑧) ∈ 𝑋) |
12 | 2, 11 | mp3an1 1447 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋) → (𝑦( ·𝑠OLD
‘𝑈)𝑧) ∈ 𝑋) |
13 | 12 | ad2ant2lr 745 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝑦( ·𝑠OLD
‘𝑈)𝑧) ∈ 𝑋) |
14 | | simprr 770 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝑋) |
15 | | simpll 764 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
16 | | eqid 2738 |
. . . . . . . . . 10
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
17 | 3, 16, 4 | dipdir 29204 |
. . . . . . . . 9
⊢ ((𝑈 ∈ CPreHilOLD
∧ ((𝑦(
·𝑠OLD ‘𝑈)𝑧) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD
‘𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴))) |
18 | 1, 17 | mpan 687 |
. . . . . . . 8
⊢ (((𝑦(
·𝑠OLD ‘𝑈)𝑧) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD
‘𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴))) |
19 | 13, 14, 15, 18 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD
‘𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴))) |
20 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝑦 ∈ ℂ) |
21 | | simprl 768 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
22 | 3, 16, 10, 4, 1 | ipassi 29203 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑦( ·𝑠OLD
‘𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴))) |
23 | 20, 21, 15, 22 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑦( ·𝑠OLD
‘𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴))) |
24 | 23 | oveq1d 7290 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (((𝑦( ·𝑠OLD
‘𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴))) |
25 | 19, 24 | eqtrd 2778 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴))) |
26 | 12 | adantll 711 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ 𝑧 ∈ 𝑋) → (𝑦( ·𝑠OLD
‘𝑈)𝑧) ∈ 𝑋) |
27 | 3, 16 | nvgcl 28982 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑦(
·𝑠OLD ‘𝑈)𝑧) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤) ∈ 𝑋) |
28 | 2, 27 | mp3an1 1447 |
. . . . . . . . 9
⊢ (((𝑦(
·𝑠OLD ‘𝑈)𝑧) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤) ∈ 𝑋) |
29 | 26, 28 | sylan 580 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → ((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤) ∈ 𝑋) |
30 | 29 | anasss 467 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤) ∈ 𝑋) |
31 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑥 = ((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤) → (𝑥𝑃𝐴) = (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴)) |
32 | | ovex 7308 |
. . . . . . . 8
⊢ (((𝑦(
·𝑠OLD ‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴) ∈ V |
33 | 31, 8, 32 | fvmpt 6875 |
. . . . . . 7
⊢ (((𝑦(
·𝑠OLD ‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤) ∈ 𝑋 → (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴)) |
34 | 30, 33 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴)) |
35 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥𝑃𝐴) = (𝑧𝑃𝐴)) |
36 | | ovex 7308 |
. . . . . . . . . 10
⊢ (𝑧𝑃𝐴) ∈ V |
37 | 35, 8, 36 | fvmpt 6875 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑋 → (𝐹‘𝑧) = (𝑧𝑃𝐴)) |
38 | 37 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑧) = (𝑧𝑃𝐴)) |
39 | 38 | oveq2d 7291 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝑦 · (𝐹‘𝑧)) = (𝑦 · (𝑧𝑃𝐴))) |
40 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑥𝑃𝐴) = (𝑤𝑃𝐴)) |
41 | | ovex 7308 |
. . . . . . . . 9
⊢ (𝑤𝑃𝐴) ∈ V |
42 | 40, 8, 41 | fvmpt 6875 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑋 → (𝐹‘𝑤) = (𝑤𝑃𝐴)) |
43 | 42 | ad2antll 726 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) = (𝑤𝑃𝐴)) |
44 | 39, 43 | oveq12d 7293 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑦 · (𝐹‘𝑧)) + (𝐹‘𝑤)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴))) |
45 | 25, 34, 44 | 3eqtr4d 2788 |
. . . . 5
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = ((𝑦 · (𝐹‘𝑧)) + (𝐹‘𝑤))) |
46 | 45 | ralrimivva 3123 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) → ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = ((𝑦 · (𝐹‘𝑧)) + (𝐹‘𝑤))) |
47 | 46 | ralrimiva 3103 |
. . 3
⊢ (𝐴 ∈ 𝑋 → ∀𝑦 ∈ ℂ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = ((𝑦 · (𝐹‘𝑧)) + (𝐹‘𝑤))) |
48 | | ipblnfi.c |
. . . . 5
⊢ 𝐶 = 〈〈 + , ·
〉, abs〉 |
49 | 48 | cnnv 29039 |
. . . 4
⊢ 𝐶 ∈ NrmCVec |
50 | 48 | cnnvba 29041 |
. . . . 5
⊢ ℂ =
(BaseSet‘𝐶) |
51 | 48 | cnnvg 29040 |
. . . . 5
⊢ + = (
+𝑣 ‘𝐶) |
52 | 48 | cnnvs 29042 |
. . . . 5
⊢ ·
= ( ·𝑠OLD ‘𝐶) |
53 | | eqid 2738 |
. . . . 5
⊢ (𝑈 LnOp 𝐶) = (𝑈 LnOp 𝐶) |
54 | 3, 50, 16, 51, 10, 52, 53 | islno 29115 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ NrmCVec) → (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = ((𝑦 · (𝐹‘𝑧)) + (𝐹‘𝑤))))) |
55 | 2, 49, 54 | mp2an 689 |
. . 3
⊢ (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = ((𝑦 · (𝐹‘𝑧)) + (𝐹‘𝑤)))) |
56 | 9, 47, 55 | sylanbrc 583 |
. 2
⊢ (𝐴 ∈ 𝑋 → 𝐹 ∈ (𝑈 LnOp 𝐶)) |
57 | | eqid 2738 |
. . . 4
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
58 | 3, 57 | nvcl 29023 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((normCV‘𝑈)‘𝐴) ∈ ℝ) |
59 | 2, 58 | mpan 687 |
. 2
⊢ (𝐴 ∈ 𝑋 → ((normCV‘𝑈)‘𝐴) ∈ ℝ) |
60 | 3, 57, 4, 1 | sii 29216 |
. . . . 5
⊢ ((𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV‘𝑈)‘𝑧) · ((normCV‘𝑈)‘𝐴))) |
61 | 60 | ancoms 459 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV‘𝑈)‘𝑧) · ((normCV‘𝑈)‘𝐴))) |
62 | 37 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) = (𝑧𝑃𝐴)) |
63 | 62 | fveq2d 6778 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (abs‘(𝐹‘𝑧)) = (abs‘(𝑧𝑃𝐴))) |
64 | 59 | recnd 11003 |
. . . . 5
⊢ (𝐴 ∈ 𝑋 → ((normCV‘𝑈)‘𝐴) ∈ ℂ) |
65 | 3, 57 | nvcl 29023 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋) → ((normCV‘𝑈)‘𝑧) ∈ ℝ) |
66 | 2, 65 | mpan 687 |
. . . . . 6
⊢ (𝑧 ∈ 𝑋 → ((normCV‘𝑈)‘𝑧) ∈ ℝ) |
67 | 66 | recnd 11003 |
. . . . 5
⊢ (𝑧 ∈ 𝑋 → ((normCV‘𝑈)‘𝑧) ∈ ℂ) |
68 | | mulcom 10957 |
. . . . 5
⊢
((((normCV‘𝑈)‘𝐴) ∈ ℂ ∧
((normCV‘𝑈)‘𝑧) ∈ ℂ) →
(((normCV‘𝑈)‘𝐴) · ((normCV‘𝑈)‘𝑧)) = (((normCV‘𝑈)‘𝑧) · ((normCV‘𝑈)‘𝐴))) |
69 | 64, 67, 68 | syl2an 596 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (((normCV‘𝑈)‘𝐴) · ((normCV‘𝑈)‘𝑧)) = (((normCV‘𝑈)‘𝑧) · ((normCV‘𝑈)‘𝐴))) |
70 | 61, 63, 69 | 3brtr4d 5106 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (abs‘(𝐹‘𝑧)) ≤ (((normCV‘𝑈)‘𝐴) · ((normCV‘𝑈)‘𝑧))) |
71 | 70 | ralrimiva 3103 |
. 2
⊢ (𝐴 ∈ 𝑋 → ∀𝑧 ∈ 𝑋 (abs‘(𝐹‘𝑧)) ≤ (((normCV‘𝑈)‘𝐴) · ((normCV‘𝑈)‘𝑧))) |
72 | 48 | cnnvnm 29043 |
. . 3
⊢ abs =
(normCV‘𝐶) |
73 | | ipblnfi.l |
. . 3
⊢ 𝐵 = (𝑈 BLnOp 𝐶) |
74 | 3, 57, 72, 53, 73, 2, 49 | blo3i 29164 |
. 2
⊢ ((𝐹 ∈ (𝑈 LnOp 𝐶) ∧ ((normCV‘𝑈)‘𝐴) ∈ ℝ ∧ ∀𝑧 ∈ 𝑋 (abs‘(𝐹‘𝑧)) ≤ (((normCV‘𝑈)‘𝐴) · ((normCV‘𝑈)‘𝑧))) → 𝐹 ∈ 𝐵) |
75 | 56, 59, 71, 74 | syl3anc 1370 |
1
⊢ (𝐴 ∈ 𝑋 → 𝐹 ∈ 𝐵) |