MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipblnfi Structured version   Visualization version   GIF version

Theorem ipblnfi 30897
Description: A function 𝐹 generated by varying the first argument of an inner product (with its second argument a fixed vector 𝐴) is a bounded linear functional, i.e. a bounded linear operator from the vector space to . (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipblnfi.1 𝑋 = (BaseSet‘𝑈)
ipblnfi.7 𝑃 = (·𝑖OLD𝑈)
ipblnfi.9 𝑈 ∈ CPreHilOLD
ipblnfi.c 𝐶 = ⟨⟨ + , · ⟩, abs⟩
ipblnfi.l 𝐵 = (𝑈 BLnOp 𝐶)
ipblnfi.f 𝐹 = (𝑥𝑋 ↦ (𝑥𝑃𝐴))
Assertion
Ref Expression
ipblnfi (𝐴𝑋𝐹𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑈   𝑥,𝑋   𝑥,𝑃
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem ipblnfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipblnfi.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
21phnvi 30858 . . . . . 6 𝑈 ∈ NrmCVec
3 ipblnfi.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 ipblnfi.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
53, 4dipcl 30754 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝐴𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
62, 5mp3an1 1448 . . . . 5 ((𝑥𝑋𝐴𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
76ancoms 458 . . . 4 ((𝐴𝑋𝑥𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
8 ipblnfi.f . . . 4 𝐹 = (𝑥𝑋 ↦ (𝑥𝑃𝐴))
97, 8fmptd 7138 . . 3 (𝐴𝑋𝐹:𝑋⟶ℂ)
10 eqid 2736 . . . . . . . . . . 11 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
113, 10nvscl 30668 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
122, 11mp3an1 1448 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
1312ad2ant2lr 748 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
14 simprr 773 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑤𝑋)
15 simpll 767 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝐴𝑋)
16 eqid 2736 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
173, 16, 4dipdir 30884 . . . . . . . . 9 ((𝑈 ∈ CPreHilOLD ∧ ((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋𝐴𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
181, 17mpan 690 . . . . . . . 8 (((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋𝐴𝑋) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
1913, 14, 15, 18syl3anc 1371 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
20 simplr 769 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑦 ∈ ℂ)
21 simprl 771 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
223, 16, 10, 4, 1ipassi 30883 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑧𝑋𝐴𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴)))
2320, 21, 15, 22syl3anc 1371 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴)))
2423oveq1d 7450 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
2519, 24eqtrd 2776 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
2612adantll 714 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
273, 16nvgcl 30662 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
282, 27mp3an1 1448 . . . . . . . . 9 (((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
2926, 28sylan 580 . . . . . . . 8 ((((𝐴𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
3029anasss 466 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
31 oveq1 7442 . . . . . . . 8 (𝑥 = ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) → (𝑥𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
32 ovex 7468 . . . . . . . 8 (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) ∈ V
3331, 8, 32fvmpt 7020 . . . . . . 7 (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋 → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
3430, 33syl 17 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
35 oveq1 7442 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝑃𝐴) = (𝑧𝑃𝐴))
36 ovex 7468 . . . . . . . . . 10 (𝑧𝑃𝐴) ∈ V
3735, 8, 36fvmpt 7020 . . . . . . . . 9 (𝑧𝑋 → (𝐹𝑧) = (𝑧𝑃𝐴))
3837ad2antrl 728 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑧𝑃𝐴))
3938oveq2d 7451 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦 · (𝐹𝑧)) = (𝑦 · (𝑧𝑃𝐴)))
40 oveq1 7442 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑃𝐴) = (𝑤𝑃𝐴))
41 ovex 7468 . . . . . . . . 9 (𝑤𝑃𝐴) ∈ V
4240, 8, 41fvmpt 7020 . . . . . . . 8 (𝑤𝑋 → (𝐹𝑤) = (𝑤𝑃𝐴))
4342ad2antll 729 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) = (𝑤𝑃𝐴))
4439, 43oveq12d 7453 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
4525, 34, 443eqtr4d 2786 . . . . 5 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
4645ralrimivva 3201 . . . 4 ((𝐴𝑋𝑦 ∈ ℂ) → ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
4746ralrimiva 3145 . . 3 (𝐴𝑋 → ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
48 ipblnfi.c . . . . 5 𝐶 = ⟨⟨ + , · ⟩, abs⟩
4948cnnv 30719 . . . 4 𝐶 ∈ NrmCVec
5048cnnvba 30721 . . . . 5 ℂ = (BaseSet‘𝐶)
5148cnnvg 30720 . . . . 5 + = ( +𝑣𝐶)
5248cnnvs 30722 . . . . 5 · = ( ·𝑠OLD𝐶)
53 eqid 2736 . . . . 5 (𝑈 LnOp 𝐶) = (𝑈 LnOp 𝐶)
543, 50, 16, 51, 10, 52, 53islno 30795 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ NrmCVec) → (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))))
552, 49, 54mp2an 692 . . 3 (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤))))
569, 47, 55sylanbrc 583 . 2 (𝐴𝑋𝐹 ∈ (𝑈 LnOp 𝐶))
57 eqid 2736 . . . 4 (normCV𝑈) = (normCV𝑈)
583, 57nvcl 30703 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘𝐴) ∈ ℝ)
592, 58mpan 690 . 2 (𝐴𝑋 → ((normCV𝑈)‘𝐴) ∈ ℝ)
603, 57, 4, 1sii 30896 . . . . 5 ((𝑧𝑋𝐴𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6160ancoms 458 . . . 4 ((𝐴𝑋𝑧𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6237adantl 481 . . . . 5 ((𝐴𝑋𝑧𝑋) → (𝐹𝑧) = (𝑧𝑃𝐴))
6362fveq2d 6915 . . . 4 ((𝐴𝑋𝑧𝑋) → (abs‘(𝐹𝑧)) = (abs‘(𝑧𝑃𝐴)))
6459recnd 11293 . . . . 5 (𝐴𝑋 → ((normCV𝑈)‘𝐴) ∈ ℂ)
653, 57nvcl 30703 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((normCV𝑈)‘𝑧) ∈ ℝ)
662, 65mpan 690 . . . . . 6 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℝ)
6766recnd 11293 . . . . 5 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℂ)
68 mulcom 11245 . . . . 5 ((((normCV𝑈)‘𝐴) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ∈ ℂ) → (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)) = (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6964, 67, 68syl2an 596 . . . 4 ((𝐴𝑋𝑧𝑋) → (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)) = (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
7061, 63, 693brtr4d 5181 . . 3 ((𝐴𝑋𝑧𝑋) → (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)))
7170ralrimiva 3145 . 2 (𝐴𝑋 → ∀𝑧𝑋 (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)))
7248cnnvnm 30723 . . 3 abs = (normCV𝐶)
73 ipblnfi.l . . 3 𝐵 = (𝑈 BLnOp 𝐶)
743, 57, 72, 53, 73, 2, 49blo3i 30844 . 2 ((𝐹 ∈ (𝑈 LnOp 𝐶) ∧ ((normCV𝑈)‘𝐴) ∈ ℝ ∧ ∀𝑧𝑋 (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧))) → 𝐹𝐵)
7556, 59, 71, 74syl3anc 1371 1 (𝐴𝑋𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1538  wcel 2107  wral 3060  cop 4638   class class class wbr 5149  cmpt 5232  wf 6562  cfv 6566  (class class class)co 7435  cc 11157  cr 11158   + caddc 11162   · cmul 11164  cle 11300  abscabs 15276  NrmCVeccnv 30626   +𝑣 cpv 30627  BaseSetcba 30628   ·𝑠OLD cns 30629  normCVcnmcv 30632  ·𝑖OLDcdip 30742   LnOp clno 30782   BLnOp cblo 30784  CPreHilOLDccphlo 30854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-inf2 9685  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237  ax-addf 11238  ax-mulf 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-se 5643  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-isom 6575  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-of 7701  df-om 7892  df-1st 8019  df-2nd 8020  df-supp 8191  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-2o 8512  df-er 8750  df-map 8873  df-ixp 8943  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-fsupp 9406  df-fi 9455  df-sup 9486  df-inf 9487  df-oi 9554  df-card 9983  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-7 12338  df-8 12339  df-9 12340  df-n0 12531  df-z 12618  df-dec 12738  df-uz 12883  df-q 12995  df-rp 13039  df-xneg 13158  df-xadd 13159  df-xmul 13160  df-ioo 13394  df-icc 13397  df-fz 13551  df-fzo 13698  df-seq 14046  df-exp 14106  df-hash 14373  df-cj 15141  df-re 15142  df-im 15143  df-sqrt 15277  df-abs 15278  df-clim 15527  df-sum 15726  df-struct 17187  df-sets 17204  df-slot 17222  df-ndx 17234  df-base 17252  df-ress 17281  df-plusg 17317  df-mulr 17318  df-starv 17319  df-sca 17320  df-vsca 17321  df-ip 17322  df-tset 17323  df-ple 17324  df-ds 17326  df-unif 17327  df-hom 17328  df-cco 17329  df-rest 17475  df-topn 17476  df-0g 17494  df-gsum 17495  df-topgen 17496  df-pt 17497  df-prds 17500  df-xrs 17555  df-qtop 17560  df-imas 17561  df-xps 17563  df-mre 17637  df-mrc 17638  df-acs 17640  df-mgm 18672  df-sgrp 18751  df-mnd 18767  df-submnd 18816  df-mulg 19105  df-cntz 19354  df-cmn 19821  df-psmet 21380  df-xmet 21381  df-met 21382  df-bl 21383  df-mopn 21384  df-cnfld 21389  df-top 22922  df-topon 22939  df-topsp 22961  df-bases 22975  df-cld 23049  df-ntr 23050  df-cls 23051  df-cn 23257  df-cnp 23258  df-t1 23344  df-haus 23345  df-tx 23592  df-hmeo 23785  df-xms 24352  df-ms 24353  df-tms 24354  df-grpo 30535  df-gid 30536  df-ginv 30537  df-gdiv 30538  df-ablo 30587  df-vc 30601  df-nv 30634  df-va 30637  df-ba 30638  df-sm 30639  df-0v 30640  df-vs 30641  df-nmcv 30642  df-ims 30643  df-dip 30743  df-lno 30786  df-nmoo 30787  df-blo 30788  df-0o 30789  df-ph 30855
This theorem is referenced by:  htthlem  30959
  Copyright terms: Public domain W3C validator