MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipblnfi Structured version   Visualization version   GIF version

Theorem ipblnfi 30801
Description: A function 𝐹 generated by varying the first argument of an inner product (with its second argument a fixed vector 𝐴) is a bounded linear functional, i.e. a bounded linear operator from the vector space to . (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipblnfi.1 𝑋 = (BaseSet‘𝑈)
ipblnfi.7 𝑃 = (·𝑖OLD𝑈)
ipblnfi.9 𝑈 ∈ CPreHilOLD
ipblnfi.c 𝐶 = ⟨⟨ + , · ⟩, abs⟩
ipblnfi.l 𝐵 = (𝑈 BLnOp 𝐶)
ipblnfi.f 𝐹 = (𝑥𝑋 ↦ (𝑥𝑃𝐴))
Assertion
Ref Expression
ipblnfi (𝐴𝑋𝐹𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑈   𝑥,𝑋   𝑥,𝑃
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem ipblnfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipblnfi.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
21phnvi 30762 . . . . . 6 𝑈 ∈ NrmCVec
3 ipblnfi.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 ipblnfi.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
53, 4dipcl 30658 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝐴𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
62, 5mp3an1 1449 . . . . 5 ((𝑥𝑋𝐴𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
76ancoms 458 . . . 4 ((𝐴𝑋𝑥𝑋) → (𝑥𝑃𝐴) ∈ ℂ)
8 ipblnfi.f . . . 4 𝐹 = (𝑥𝑋 ↦ (𝑥𝑃𝐴))
97, 8fmptd 7113 . . 3 (𝐴𝑋𝐹:𝑋⟶ℂ)
10 eqid 2734 . . . . . . . . . . 11 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
113, 10nvscl 30572 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
122, 11mp3an1 1449 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
1312ad2ant2lr 748 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
14 simprr 772 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑤𝑋)
15 simpll 766 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝐴𝑋)
16 eqid 2734 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
173, 16, 4dipdir 30788 . . . . . . . . 9 ((𝑈 ∈ CPreHilOLD ∧ ((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋𝐴𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
181, 17mpan 690 . . . . . . . 8 (((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋𝐴𝑋) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
1913, 14, 15, 18syl3anc 1372 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)))
20 simplr 768 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑦 ∈ ℂ)
21 simprl 770 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → 𝑧𝑋)
223, 16, 10, 4, 1ipassi 30787 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑧𝑋𝐴𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴)))
2320, 21, 15, 22syl3anc 1372 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴)))
2423oveq1d 7427 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
2519, 24eqtrd 2769 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
2612adantll 714 . . . . . . . . 9 (((𝐴𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) → (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
273, 16nvgcl 30566 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
282, 27mp3an1 1449 . . . . . . . . 9 (((𝑦( ·𝑠OLD𝑈)𝑧) ∈ 𝑋𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
2926, 28sylan 580 . . . . . . . 8 ((((𝐴𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) ∧ 𝑤𝑋) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
3029anasss 466 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋)
31 oveq1 7419 . . . . . . . 8 (𝑥 = ((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) → (𝑥𝑃𝐴) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
32 ovex 7445 . . . . . . . 8 (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴) ∈ V
3331, 8, 32fvmpt 6995 . . . . . . 7 (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤) ∈ 𝑋 → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
3430, 33syl 17 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = (((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)𝑃𝐴))
35 oveq1 7419 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝑃𝐴) = (𝑧𝑃𝐴))
36 ovex 7445 . . . . . . . . . 10 (𝑧𝑃𝐴) ∈ V
3735, 8, 36fvmpt 6995 . . . . . . . . 9 (𝑧𝑋 → (𝐹𝑧) = (𝑧𝑃𝐴))
3837ad2antrl 728 . . . . . . . 8 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑧) = (𝑧𝑃𝐴))
3938oveq2d 7428 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝑦 · (𝐹𝑧)) = (𝑦 · (𝑧𝑃𝐴)))
40 oveq1 7419 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑃𝐴) = (𝑤𝑃𝐴))
41 ovex 7445 . . . . . . . . 9 (𝑤𝑃𝐴) ∈ V
4240, 8, 41fvmpt 6995 . . . . . . . 8 (𝑤𝑋 → (𝐹𝑤) = (𝑤𝑃𝐴))
4342ad2antll 729 . . . . . . 7 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹𝑤) = (𝑤𝑃𝐴))
4439, 43oveq12d 7430 . . . . . 6 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴)))
4525, 34, 443eqtr4d 2779 . . . . 5 (((𝐴𝑋𝑦 ∈ ℂ) ∧ (𝑧𝑋𝑤𝑋)) → (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
4645ralrimivva 3189 . . . 4 ((𝐴𝑋𝑦 ∈ ℂ) → ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
4746ralrimiva 3133 . . 3 (𝐴𝑋 → ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))
48 ipblnfi.c . . . . 5 𝐶 = ⟨⟨ + , · ⟩, abs⟩
4948cnnv 30623 . . . 4 𝐶 ∈ NrmCVec
5048cnnvba 30625 . . . . 5 ℂ = (BaseSet‘𝐶)
5148cnnvg 30624 . . . . 5 + = ( +𝑣𝐶)
5248cnnvs 30626 . . . . 5 · = ( ·𝑠OLD𝐶)
53 eqid 2734 . . . . 5 (𝑈 LnOp 𝐶) = (𝑈 LnOp 𝐶)
543, 50, 16, 51, 10, 52, 53islno 30699 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ NrmCVec) → (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤)))))
552, 49, 54mp2an 692 . . 3 (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧𝑋𝑤𝑋 (𝐹‘((𝑦( ·𝑠OLD𝑈)𝑧)( +𝑣𝑈)𝑤)) = ((𝑦 · (𝐹𝑧)) + (𝐹𝑤))))
569, 47, 55sylanbrc 583 . 2 (𝐴𝑋𝐹 ∈ (𝑈 LnOp 𝐶))
57 eqid 2734 . . . 4 (normCV𝑈) = (normCV𝑈)
583, 57nvcl 30607 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘𝐴) ∈ ℝ)
592, 58mpan 690 . 2 (𝐴𝑋 → ((normCV𝑈)‘𝐴) ∈ ℝ)
603, 57, 4, 1sii 30800 . . . . 5 ((𝑧𝑋𝐴𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6160ancoms 458 . . . 4 ((𝐴𝑋𝑧𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6237adantl 481 . . . . 5 ((𝐴𝑋𝑧𝑋) → (𝐹𝑧) = (𝑧𝑃𝐴))
6362fveq2d 6889 . . . 4 ((𝐴𝑋𝑧𝑋) → (abs‘(𝐹𝑧)) = (abs‘(𝑧𝑃𝐴)))
6459recnd 11270 . . . . 5 (𝐴𝑋 → ((normCV𝑈)‘𝐴) ∈ ℂ)
653, 57nvcl 30607 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((normCV𝑈)‘𝑧) ∈ ℝ)
662, 65mpan 690 . . . . . 6 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℝ)
6766recnd 11270 . . . . 5 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℂ)
68 mulcom 11222 . . . . 5 ((((normCV𝑈)‘𝐴) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ∈ ℂ) → (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)) = (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
6964, 67, 68syl2an 596 . . . 4 ((𝐴𝑋𝑧𝑋) → (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)) = (((normCV𝑈)‘𝑧) · ((normCV𝑈)‘𝐴)))
7061, 63, 693brtr4d 5155 . . 3 ((𝐴𝑋𝑧𝑋) → (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)))
7170ralrimiva 3133 . 2 (𝐴𝑋 → ∀𝑧𝑋 (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧)))
7248cnnvnm 30627 . . 3 abs = (normCV𝐶)
73 ipblnfi.l . . 3 𝐵 = (𝑈 BLnOp 𝐶)
743, 57, 72, 53, 73, 2, 49blo3i 30748 . 2 ((𝐹 ∈ (𝑈 LnOp 𝐶) ∧ ((normCV𝑈)‘𝐴) ∈ ℝ ∧ ∀𝑧𝑋 (abs‘(𝐹𝑧)) ≤ (((normCV𝑈)‘𝐴) · ((normCV𝑈)‘𝑧))) → 𝐹𝐵)
7556, 59, 71, 74syl3anc 1372 1 (𝐴𝑋𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  cop 4612   class class class wbr 5123  cmpt 5205  wf 6536  cfv 6540  (class class class)co 7412  cc 11134  cr 11135   + caddc 11139   · cmul 11141  cle 11277  abscabs 15254  NrmCVeccnv 30530   +𝑣 cpv 30531  BaseSetcba 30532   ·𝑠OLD cns 30533  normCVcnmcv 30536  ·𝑖OLDcdip 30646   LnOp clno 30686   BLnOp cblo 30688  CPreHilOLDccphlo 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214  ax-addf 11215  ax-mulf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7678  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8726  df-map 8849  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9383  df-fi 9432  df-sup 9463  df-inf 9464  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-3 12311  df-4 12312  df-5 12313  df-6 12314  df-7 12315  df-8 12316  df-9 12317  df-n0 12509  df-z 12596  df-dec 12716  df-uz 12860  df-q 12972  df-rp 13016  df-xneg 13135  df-xadd 13136  df-xmul 13137  df-ioo 13372  df-icc 13375  df-fz 13529  df-fzo 13676  df-seq 14024  df-exp 14084  df-hash 14351  df-cj 15119  df-re 15120  df-im 15121  df-sqrt 15255  df-abs 15256  df-clim 15505  df-sum 15704  df-struct 17165  df-sets 17182  df-slot 17200  df-ndx 17212  df-base 17229  df-ress 17252  df-plusg 17285  df-mulr 17286  df-starv 17287  df-sca 17288  df-vsca 17289  df-ip 17290  df-tset 17291  df-ple 17292  df-ds 17294  df-unif 17295  df-hom 17296  df-cco 17297  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18621  df-sgrp 18700  df-mnd 18716  df-submnd 18765  df-mulg 19054  df-cntz 19303  df-cmn 19767  df-psmet 21317  df-xmet 21318  df-met 21319  df-bl 21320  df-mopn 21321  df-cnfld 21326  df-top 22847  df-topon 22864  df-topsp 22886  df-bases 22899  df-cld 22972  df-ntr 22973  df-cls 22974  df-cn 23180  df-cnp 23181  df-t1 23267  df-haus 23268  df-tx 23515  df-hmeo 23708  df-xms 24274  df-ms 24275  df-tms 24276  df-grpo 30439  df-gid 30440  df-ginv 30441  df-gdiv 30442  df-ablo 30491  df-vc 30505  df-nv 30538  df-va 30541  df-ba 30542  df-sm 30543  df-0v 30544  df-vs 30545  df-nmcv 30546  df-ims 30547  df-dip 30647  df-lno 30690  df-nmoo 30691  df-blo 30692  df-0o 30693  df-ph 30759
This theorem is referenced by:  htthlem  30863
  Copyright terms: Public domain W3C validator