MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem8 Structured version   Visualization version   GIF version

Theorem ipasslem8 28617
Description: Lemma for ipassi 28621. By ipasslem5 28615, 𝐹 is 0 for all ; since it is continuous and is dense in by qdensere2 23408, we conclude 𝐹 is 0 for all . (Contributed by NM, 24-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem7.a 𝐴𝑋
ipasslem7.b 𝐵𝑋
ipasslem7.f 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
Assertion
Ref Expression
ipasslem8 𝐹:ℝ⟶{0}
Distinct variable groups:   𝑤,𝐵   𝑤,𝑃   𝑤,𝑆   𝑤,𝑈   𝑤,𝑋   𝑤,𝐴
Allowed substitution hints:   𝐹(𝑤)   𝐺(𝑤)

Proof of Theorem ipasslem8
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0cn 10636 . 2 0 ∈ ℂ
2 qre 12356 . . . . . 6 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
3 oveq1 7166 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤𝑆𝐴) = (𝑥𝑆𝐴))
43oveq1d 7174 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤𝑆𝐴)𝑃𝐵) = ((𝑥𝑆𝐴)𝑃𝐵))
5 oveq1 7166 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 · (𝐴𝑃𝐵)) = (𝑥 · (𝐴𝑃𝐵)))
64, 5oveq12d 7177 . . . . . . 7 (𝑤 = 𝑥 → (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))))
7 ipasslem7.f . . . . . . 7 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
8 ovex 7192 . . . . . . 7 (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) ∈ V
96, 7, 8fvmpt 6771 . . . . . 6 (𝑥 ∈ ℝ → (𝐹𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))))
102, 9syl 17 . . . . 5 (𝑥 ∈ ℚ → (𝐹𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))))
11 ipasslem7.a . . . . . 6 𝐴𝑋
12 qcn 12365 . . . . . . . . 9 (𝑥 ∈ ℚ → 𝑥 ∈ ℂ)
13 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
1413phnvi 28596 . . . . . . . . . 10 𝑈 ∈ NrmCVec
15 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
16 ip1i.4 . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
1715, 16nvscl 28406 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
1814, 17mp3an1 1444 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
1912, 18sylan 582 . . . . . . . 8 ((𝑥 ∈ ℚ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
20 ipasslem7.b . . . . . . . . 9 𝐵𝑋
21 ip1i.7 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
2215, 21dipcl 28492 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ)
2314, 20, 22mp3an13 1448 . . . . . . . 8 ((𝑥𝑆𝐴) ∈ 𝑋 → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ)
2419, 23syl 17 . . . . . . 7 ((𝑥 ∈ ℚ ∧ 𝐴𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ)
25 ip1i.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
2615, 25, 16, 21, 13, 20ipasslem5 28615 . . . . . . 7 ((𝑥 ∈ ℚ ∧ 𝐴𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) = (𝑥 · (𝐴𝑃𝐵)))
2724, 26subeq0bd 11069 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝐴𝑋) → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0)
2811, 27mpan2 689 . . . . 5 (𝑥 ∈ ℚ → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0)
2910, 28eqtrd 2859 . . . 4 (𝑥 ∈ ℚ → (𝐹𝑥) = 0)
3029rgen 3151 . . 3 𝑥 ∈ ℚ (𝐹𝑥) = 0
317funmpt2 6397 . . . 4 Fun 𝐹
32 qssre 12361 . . . . 5 ℚ ⊆ ℝ
33 ovex 7192 . . . . . 6 (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) ∈ V
3433, 7dmmpti 6495 . . . . 5 dom 𝐹 = ℝ
3532, 34sseqtrri 4007 . . . 4 ℚ ⊆ dom 𝐹
36 funconstss 6829 . . . 4 ((Fun 𝐹 ∧ ℚ ⊆ dom 𝐹) → (∀𝑥 ∈ ℚ (𝐹𝑥) = 0 ↔ ℚ ⊆ (𝐹 “ {0})))
3731, 35, 36mp2an 690 . . 3 (∀𝑥 ∈ ℚ (𝐹𝑥) = 0 ↔ ℚ ⊆ (𝐹 “ {0}))
3830, 37mpbi 232 . 2 ℚ ⊆ (𝐹 “ {0})
39 qdensere 23381 . 2 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
40 eqid 2824 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4140cnfldhaus 23396 . . . 4 (TopOpen‘ℂfld) ∈ Haus
42 haust1 21963 . . . 4 ((TopOpen‘ℂfld) ∈ Haus → (TopOpen‘ℂfld) ∈ Fre)
4341, 42ax-mp 5 . . 3 (TopOpen‘ℂfld) ∈ Fre
44 eqid 2824 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
4515, 25, 16, 21, 13, 11, 20, 7, 44, 40ipasslem7 28616 . . 3 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
46 uniretop 23374 . . . 4 ℝ = (topGen‘ran (,))
4740cnfldtopon 23394 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4847toponunii 21527 . . . 4 ℂ = (TopOpen‘ℂfld)
4946, 48dnsconst 21989 . . 3 ((((TopOpen‘ℂfld) ∈ Fre ∧ 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))) ∧ (0 ∈ ℂ ∧ ℚ ⊆ (𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ)) → 𝐹:ℝ⟶{0})
5043, 45, 49mpanl12 700 . 2 ((0 ∈ ℂ ∧ ℚ ⊆ (𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ) → 𝐹:ℝ⟶{0})
511, 38, 39, 50mp3an 1457 1 𝐹:ℝ⟶{0}
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wss 3939  {csn 4570  cmpt 5149  ccnv 5557  dom cdm 5558  ran crn 5559  cima 5561  Fun wfun 6352  wf 6354  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540   · cmul 10545  cmin 10873  cq 12351  (,)cioo 12741  TopOpenctopn 16698  topGenctg 16714  fldccnfld 20548  clsccl 21629   Cn ccn 21835  Frect1 21918  Hauscha 21919  NrmCVeccnv 28364   +𝑣 cpv 28365  BaseSetcba 28366   ·𝑠OLD cns 28367  ·𝑖OLDcdip 28480  CPreHilOLDccphlo 28592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-cn 21838  df-cnp 21839  df-t1 21925  df-haus 21926  df-tx 22173  df-hmeo 22366  df-xms 22933  df-ms 22934  df-tms 22935  df-grpo 28273  df-gid 28274  df-ginv 28275  df-gdiv 28276  df-ablo 28325  df-vc 28339  df-nv 28372  df-va 28375  df-ba 28376  df-sm 28377  df-0v 28378  df-vs 28379  df-nmcv 28380  df-ims 28381  df-dip 28481  df-ph 28593
This theorem is referenced by:  ipasslem9  28618
  Copyright terms: Public domain W3C validator