Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipasslem8 | Structured version Visualization version GIF version |
Description: Lemma for ipassi 29203. By ipasslem5 29197, 𝐹 is 0 for all ℚ; since it is continuous and ℚ is dense in ℝ by qdensere2 23960, we conclude 𝐹 is 0 for all ℝ. (Contributed by NM, 24-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ipasslem7.a | ⊢ 𝐴 ∈ 𝑋 |
ipasslem7.b | ⊢ 𝐵 ∈ 𝑋 |
ipasslem7.f | ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) |
Ref | Expression |
---|---|
ipasslem8 | ⊢ 𝐹:ℝ⟶{0} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10967 | . 2 ⊢ 0 ∈ ℂ | |
2 | qre 12693 | . . . . . 6 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
3 | oveq1 7282 | . . . . . . . . 9 ⊢ (𝑤 = 𝑥 → (𝑤𝑆𝐴) = (𝑥𝑆𝐴)) | |
4 | 3 | oveq1d 7290 | . . . . . . . 8 ⊢ (𝑤 = 𝑥 → ((𝑤𝑆𝐴)𝑃𝐵) = ((𝑥𝑆𝐴)𝑃𝐵)) |
5 | oveq1 7282 | . . . . . . . 8 ⊢ (𝑤 = 𝑥 → (𝑤 · (𝐴𝑃𝐵)) = (𝑥 · (𝐴𝑃𝐵))) | |
6 | 4, 5 | oveq12d 7293 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵)))) |
7 | ipasslem7.f | . . . . . . 7 ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) | |
8 | ovex 7308 | . . . . . . 7 ⊢ (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) ∈ V | |
9 | 6, 7, 8 | fvmpt 6875 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵)))) |
10 | 2, 9 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ ℚ → (𝐹‘𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵)))) |
11 | ipasslem7.a | . . . . . 6 ⊢ 𝐴 ∈ 𝑋 | |
12 | qcn 12703 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℂ) | |
13 | ip1i.9 | . . . . . . . . . . 11 ⊢ 𝑈 ∈ CPreHilOLD | |
14 | 13 | phnvi 29178 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
15 | ip1i.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (BaseSet‘𝑈) | |
16 | ip1i.4 | . . . . . . . . . . 11 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
17 | 15, 16 | nvscl 28988 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (𝑥𝑆𝐴) ∈ 𝑋) |
18 | 14, 17 | mp3an1 1447 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (𝑥𝑆𝐴) ∈ 𝑋) |
19 | 12, 18 | sylan 580 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → (𝑥𝑆𝐴) ∈ 𝑋) |
20 | ipasslem7.b | . . . . . . . . 9 ⊢ 𝐵 ∈ 𝑋 | |
21 | ip1i.7 | . . . . . . . . . 10 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
22 | 15, 21 | dipcl 29074 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥𝑆𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ) |
23 | 14, 20, 22 | mp3an13 1451 | . . . . . . . 8 ⊢ ((𝑥𝑆𝐴) ∈ 𝑋 → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ) |
24 | 19, 23 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ) |
25 | ip1i.2 | . . . . . . . 8 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
26 | 15, 25, 16, 21, 13, 20 | ipasslem5 29197 | . . . . . . 7 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) = (𝑥 · (𝐴𝑃𝐵))) |
27 | 24, 26 | subeq0bd 11401 | . . . . . 6 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0) |
28 | 11, 27 | mpan2 688 | . . . . 5 ⊢ (𝑥 ∈ ℚ → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0) |
29 | 10, 28 | eqtrd 2778 | . . . 4 ⊢ (𝑥 ∈ ℚ → (𝐹‘𝑥) = 0) |
30 | 29 | rgen 3074 | . . 3 ⊢ ∀𝑥 ∈ ℚ (𝐹‘𝑥) = 0 |
31 | 7 | funmpt2 6473 | . . . 4 ⊢ Fun 𝐹 |
32 | qssre 12699 | . . . . 5 ⊢ ℚ ⊆ ℝ | |
33 | ovex 7308 | . . . . . 6 ⊢ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) ∈ V | |
34 | 33, 7 | dmmpti 6577 | . . . . 5 ⊢ dom 𝐹 = ℝ |
35 | 32, 34 | sseqtrri 3958 | . . . 4 ⊢ ℚ ⊆ dom 𝐹 |
36 | funconstss 6933 | . . . 4 ⊢ ((Fun 𝐹 ∧ ℚ ⊆ dom 𝐹) → (∀𝑥 ∈ ℚ (𝐹‘𝑥) = 0 ↔ ℚ ⊆ (◡𝐹 “ {0}))) | |
37 | 31, 35, 36 | mp2an 689 | . . 3 ⊢ (∀𝑥 ∈ ℚ (𝐹‘𝑥) = 0 ↔ ℚ ⊆ (◡𝐹 “ {0})) |
38 | 30, 37 | mpbi 229 | . 2 ⊢ ℚ ⊆ (◡𝐹 “ {0}) |
39 | qdensere 23933 | . 2 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | |
40 | eqid 2738 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
41 | 40 | cnfldhaus 23948 | . . . 4 ⊢ (TopOpen‘ℂfld) ∈ Haus |
42 | haust1 22503 | . . . 4 ⊢ ((TopOpen‘ℂfld) ∈ Haus → (TopOpen‘ℂfld) ∈ Fre) | |
43 | 41, 42 | ax-mp 5 | . . 3 ⊢ (TopOpen‘ℂfld) ∈ Fre |
44 | eqid 2738 | . . . 4 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
45 | 15, 25, 16, 21, 13, 11, 20, 7, 44, 40 | ipasslem7 29198 | . . 3 ⊢ 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) |
46 | uniretop 23926 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
47 | 40 | cnfldtopon 23946 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
48 | 47 | toponunii 22065 | . . . 4 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
49 | 46, 48 | dnsconst 22529 | . . 3 ⊢ ((((TopOpen‘ℂfld) ∈ Fre ∧ 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))) ∧ (0 ∈ ℂ ∧ ℚ ⊆ (◡𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ)) → 𝐹:ℝ⟶{0}) |
50 | 43, 45, 49 | mpanl12 699 | . 2 ⊢ ((0 ∈ ℂ ∧ ℚ ⊆ (◡𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ) → 𝐹:ℝ⟶{0}) |
51 | 1, 38, 39, 50 | mp3an 1460 | 1 ⊢ 𝐹:ℝ⟶{0} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 {csn 4561 ↦ cmpt 5157 ◡ccnv 5588 dom cdm 5589 ran crn 5590 “ cima 5592 Fun wfun 6427 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 · cmul 10876 − cmin 11205 ℚcq 12688 (,)cioo 13079 TopOpenctopn 17132 topGenctg 17148 ℂfldccnfld 20597 clsccl 22169 Cn ccn 22375 Frect1 22458 Hauscha 22459 NrmCVeccnv 28946 +𝑣 cpv 28947 BaseSetcba 28948 ·𝑠OLD cns 28949 ·𝑖OLDcdip 29062 CPreHilOLDccphlo 29174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-cn 22378 df-cnp 22379 df-t1 22465 df-haus 22466 df-tx 22713 df-hmeo 22906 df-xms 23473 df-ms 23474 df-tms 23475 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-ims 28963 df-dip 29063 df-ph 29175 |
This theorem is referenced by: ipasslem9 29200 |
Copyright terms: Public domain | W3C validator |