| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipasslem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for ipassi 30821. By ipasslem5 30815, 𝐹 is 0 for all ℚ; since it is continuous and ℚ is dense in ℝ by qdensere2 24712, we conclude 𝐹 is 0 for all ℝ. (Contributed by NM, 24-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
| ipasslem7.a | ⊢ 𝐴 ∈ 𝑋 |
| ipasslem7.b | ⊢ 𝐵 ∈ 𝑋 |
| ipasslem7.f | ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) |
| Ref | Expression |
|---|---|
| ipasslem8 | ⊢ 𝐹:ℝ⟶{0} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11104 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | qre 12851 | . . . . . 6 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
| 3 | oveq1 7353 | . . . . . . . . 9 ⊢ (𝑤 = 𝑥 → (𝑤𝑆𝐴) = (𝑥𝑆𝐴)) | |
| 4 | 3 | oveq1d 7361 | . . . . . . . 8 ⊢ (𝑤 = 𝑥 → ((𝑤𝑆𝐴)𝑃𝐵) = ((𝑥𝑆𝐴)𝑃𝐵)) |
| 5 | oveq1 7353 | . . . . . . . 8 ⊢ (𝑤 = 𝑥 → (𝑤 · (𝐴𝑃𝐵)) = (𝑥 · (𝐴𝑃𝐵))) | |
| 6 | 4, 5 | oveq12d 7364 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵)))) |
| 7 | ipasslem7.f | . . . . . . 7 ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) | |
| 8 | ovex 7379 | . . . . . . 7 ⊢ (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6929 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵)))) |
| 10 | 2, 9 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ ℚ → (𝐹‘𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵)))) |
| 11 | ipasslem7.a | . . . . . 6 ⊢ 𝐴 ∈ 𝑋 | |
| 12 | qcn 12861 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℂ) | |
| 13 | ip1i.9 | . . . . . . . . . . 11 ⊢ 𝑈 ∈ CPreHilOLD | |
| 14 | 13 | phnvi 30796 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
| 15 | ip1i.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 16 | ip1i.4 | . . . . . . . . . . 11 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 17 | 15, 16 | nvscl 30606 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (𝑥𝑆𝐴) ∈ 𝑋) |
| 18 | 14, 17 | mp3an1 1450 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (𝑥𝑆𝐴) ∈ 𝑋) |
| 19 | 12, 18 | sylan 580 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → (𝑥𝑆𝐴) ∈ 𝑋) |
| 20 | ipasslem7.b | . . . . . . . . 9 ⊢ 𝐵 ∈ 𝑋 | |
| 21 | ip1i.7 | . . . . . . . . . 10 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 22 | 15, 21 | dipcl 30692 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥𝑆𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ) |
| 23 | 14, 20, 22 | mp3an13 1454 | . . . . . . . 8 ⊢ ((𝑥𝑆𝐴) ∈ 𝑋 → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ) |
| 24 | 19, 23 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ) |
| 25 | ip1i.2 | . . . . . . . 8 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 26 | 15, 25, 16, 21, 13, 20 | ipasslem5 30815 | . . . . . . 7 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) = (𝑥 · (𝐴𝑃𝐵))) |
| 27 | 24, 26 | subeq0bd 11543 | . . . . . 6 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0) |
| 28 | 11, 27 | mpan2 691 | . . . . 5 ⊢ (𝑥 ∈ ℚ → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0) |
| 29 | 10, 28 | eqtrd 2766 | . . . 4 ⊢ (𝑥 ∈ ℚ → (𝐹‘𝑥) = 0) |
| 30 | 29 | rgen 3049 | . . 3 ⊢ ∀𝑥 ∈ ℚ (𝐹‘𝑥) = 0 |
| 31 | 7 | funmpt2 6520 | . . . 4 ⊢ Fun 𝐹 |
| 32 | qssre 12857 | . . . . 5 ⊢ ℚ ⊆ ℝ | |
| 33 | ovex 7379 | . . . . . 6 ⊢ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) ∈ V | |
| 34 | 33, 7 | dmmpti 6625 | . . . . 5 ⊢ dom 𝐹 = ℝ |
| 35 | 32, 34 | sseqtrri 3979 | . . . 4 ⊢ ℚ ⊆ dom 𝐹 |
| 36 | funconstss 6989 | . . . 4 ⊢ ((Fun 𝐹 ∧ ℚ ⊆ dom 𝐹) → (∀𝑥 ∈ ℚ (𝐹‘𝑥) = 0 ↔ ℚ ⊆ (◡𝐹 “ {0}))) | |
| 37 | 31, 35, 36 | mp2an 692 | . . 3 ⊢ (∀𝑥 ∈ ℚ (𝐹‘𝑥) = 0 ↔ ℚ ⊆ (◡𝐹 “ {0})) |
| 38 | 30, 37 | mpbi 230 | . 2 ⊢ ℚ ⊆ (◡𝐹 “ {0}) |
| 39 | qdensere 24684 | . 2 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | |
| 40 | eqid 2731 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 41 | 40 | cnfldhaus 24699 | . . . 4 ⊢ (TopOpen‘ℂfld) ∈ Haus |
| 42 | haust1 23267 | . . . 4 ⊢ ((TopOpen‘ℂfld) ∈ Haus → (TopOpen‘ℂfld) ∈ Fre) | |
| 43 | 41, 42 | ax-mp 5 | . . 3 ⊢ (TopOpen‘ℂfld) ∈ Fre |
| 44 | eqid 2731 | . . . 4 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
| 45 | 15, 25, 16, 21, 13, 11, 20, 7, 44, 40 | ipasslem7 30816 | . . 3 ⊢ 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) |
| 46 | uniretop 24677 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 47 | 40 | cnfldtopon 24697 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 48 | 47 | toponunii 22831 | . . . 4 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
| 49 | 46, 48 | dnsconst 23293 | . . 3 ⊢ ((((TopOpen‘ℂfld) ∈ Fre ∧ 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))) ∧ (0 ∈ ℂ ∧ ℚ ⊆ (◡𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ)) → 𝐹:ℝ⟶{0}) |
| 50 | 43, 45, 49 | mpanl12 702 | . 2 ⊢ ((0 ∈ ℂ ∧ ℚ ⊆ (◡𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ) → 𝐹:ℝ⟶{0}) |
| 51 | 1, 38, 39, 50 | mp3an 1463 | 1 ⊢ 𝐹:ℝ⟶{0} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 {csn 4573 ↦ cmpt 5170 ◡ccnv 5613 dom cdm 5614 ran crn 5615 “ cima 5617 Fun wfun 6475 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 · cmul 11011 − cmin 11344 ℚcq 12846 (,)cioo 13245 TopOpenctopn 17325 topGenctg 17341 ℂfldccnfld 21291 clsccl 22933 Cn ccn 23139 Frect1 23222 Hauscha 23223 NrmCVeccnv 30564 +𝑣 cpv 30565 BaseSetcba 30566 ·𝑠OLD cns 30567 ·𝑖OLDcdip 30680 CPreHilOLDccphlo 30792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-cn 23142 df-cnp 23143 df-t1 23229 df-haus 23230 df-tx 23477 df-hmeo 23670 df-xms 24235 df-ms 24236 df-tms 24237 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-vs 30579 df-nmcv 30580 df-ims 30581 df-dip 30681 df-ph 30793 |
| This theorem is referenced by: ipasslem9 30818 |
| Copyright terms: Public domain | W3C validator |