MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem8 Structured version   Visualization version   GIF version

Theorem ipasslem8 30866
Description: Lemma for ipassi 30870. By ipasslem5 30864, 𝐹 is 0 for all ; since it is continuous and is dense in by qdensere2 24833, we conclude 𝐹 is 0 for all . (Contributed by NM, 24-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem7.a 𝐴𝑋
ipasslem7.b 𝐵𝑋
ipasslem7.f 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
Assertion
Ref Expression
ipasslem8 𝐹:ℝ⟶{0}
Distinct variable groups:   𝑤,𝐵   𝑤,𝑃   𝑤,𝑆   𝑤,𝑈   𝑤,𝑋   𝑤,𝐴
Allowed substitution hints:   𝐹(𝑤)   𝐺(𝑤)

Proof of Theorem ipasslem8
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0cn 11251 . 2 0 ∈ ℂ
2 qre 12993 . . . . . 6 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
3 oveq1 7438 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤𝑆𝐴) = (𝑥𝑆𝐴))
43oveq1d 7446 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤𝑆𝐴)𝑃𝐵) = ((𝑥𝑆𝐴)𝑃𝐵))
5 oveq1 7438 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 · (𝐴𝑃𝐵)) = (𝑥 · (𝐴𝑃𝐵)))
64, 5oveq12d 7449 . . . . . . 7 (𝑤 = 𝑥 → (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))))
7 ipasslem7.f . . . . . . 7 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
8 ovex 7464 . . . . . . 7 (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) ∈ V
96, 7, 8fvmpt 7016 . . . . . 6 (𝑥 ∈ ℝ → (𝐹𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))))
102, 9syl 17 . . . . 5 (𝑥 ∈ ℚ → (𝐹𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))))
11 ipasslem7.a . . . . . 6 𝐴𝑋
12 qcn 13003 . . . . . . . . 9 (𝑥 ∈ ℚ → 𝑥 ∈ ℂ)
13 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
1413phnvi 30845 . . . . . . . . . 10 𝑈 ∈ NrmCVec
15 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
16 ip1i.4 . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
1715, 16nvscl 30655 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
1814, 17mp3an1 1447 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
1912, 18sylan 580 . . . . . . . 8 ((𝑥 ∈ ℚ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
20 ipasslem7.b . . . . . . . . 9 𝐵𝑋
21 ip1i.7 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
2215, 21dipcl 30741 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ)
2314, 20, 22mp3an13 1451 . . . . . . . 8 ((𝑥𝑆𝐴) ∈ 𝑋 → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ)
2419, 23syl 17 . . . . . . 7 ((𝑥 ∈ ℚ ∧ 𝐴𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ)
25 ip1i.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
2615, 25, 16, 21, 13, 20ipasslem5 30864 . . . . . . 7 ((𝑥 ∈ ℚ ∧ 𝐴𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) = (𝑥 · (𝐴𝑃𝐵)))
2724, 26subeq0bd 11687 . . . . . 6 ((𝑥 ∈ ℚ ∧ 𝐴𝑋) → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0)
2811, 27mpan2 691 . . . . 5 (𝑥 ∈ ℚ → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0)
2910, 28eqtrd 2775 . . . 4 (𝑥 ∈ ℚ → (𝐹𝑥) = 0)
3029rgen 3061 . . 3 𝑥 ∈ ℚ (𝐹𝑥) = 0
317funmpt2 6607 . . . 4 Fun 𝐹
32 qssre 12999 . . . . 5 ℚ ⊆ ℝ
33 ovex 7464 . . . . . 6 (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) ∈ V
3433, 7dmmpti 6713 . . . . 5 dom 𝐹 = ℝ
3532, 34sseqtrri 4033 . . . 4 ℚ ⊆ dom 𝐹
36 funconstss 7076 . . . 4 ((Fun 𝐹 ∧ ℚ ⊆ dom 𝐹) → (∀𝑥 ∈ ℚ (𝐹𝑥) = 0 ↔ ℚ ⊆ (𝐹 “ {0})))
3731, 35, 36mp2an 692 . . 3 (∀𝑥 ∈ ℚ (𝐹𝑥) = 0 ↔ ℚ ⊆ (𝐹 “ {0}))
3830, 37mpbi 230 . 2 ℚ ⊆ (𝐹 “ {0})
39 qdensere 24806 . 2 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
40 eqid 2735 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4140cnfldhaus 24821 . . . 4 (TopOpen‘ℂfld) ∈ Haus
42 haust1 23376 . . . 4 ((TopOpen‘ℂfld) ∈ Haus → (TopOpen‘ℂfld) ∈ Fre)
4341, 42ax-mp 5 . . 3 (TopOpen‘ℂfld) ∈ Fre
44 eqid 2735 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
4515, 25, 16, 21, 13, 11, 20, 7, 44, 40ipasslem7 30865 . . 3 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
46 uniretop 24799 . . . 4 ℝ = (topGen‘ran (,))
4740cnfldtopon 24819 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4847toponunii 22938 . . . 4 ℂ = (TopOpen‘ℂfld)
4946, 48dnsconst 23402 . . 3 ((((TopOpen‘ℂfld) ∈ Fre ∧ 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))) ∧ (0 ∈ ℂ ∧ ℚ ⊆ (𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ)) → 𝐹:ℝ⟶{0})
5043, 45, 49mpanl12 702 . 2 ((0 ∈ ℂ ∧ ℚ ⊆ (𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ) → 𝐹:ℝ⟶{0})
511, 38, 39, 50mp3an 1460 1 𝐹:ℝ⟶{0}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963  {csn 4631  cmpt 5231  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153   · cmul 11158  cmin 11490  cq 12988  (,)cioo 13384  TopOpenctopn 17468  topGenctg 17484  fldccnfld 21382  clsccl 23042   Cn ccn 23248  Frect1 23331  Hauscha 23332  NrmCVeccnv 30613   +𝑣 cpv 30614  BaseSetcba 30615   ·𝑠OLD cns 30616  ·𝑖OLDcdip 30729  CPreHilOLDccphlo 30841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-cn 23251  df-cnp 23252  df-t1 23338  df-haus 23339  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629  df-ims 30630  df-dip 30730  df-ph 30842
This theorem is referenced by:  ipasslem9  30867
  Copyright terms: Public domain W3C validator