| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipasslem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for ipassi 30820. By ipasslem5 30814, 𝐹 is 0 for all ℚ; since it is continuous and ℚ is dense in ℝ by qdensere2 24718, we conclude 𝐹 is 0 for all ℝ. (Contributed by NM, 24-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
| ipasslem7.a | ⊢ 𝐴 ∈ 𝑋 |
| ipasslem7.b | ⊢ 𝐵 ∈ 𝑋 |
| ipasslem7.f | ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) |
| Ref | Expression |
|---|---|
| ipasslem8 | ⊢ 𝐹:ℝ⟶{0} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11142 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | qre 12888 | . . . . . 6 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
| 3 | oveq1 7376 | . . . . . . . . 9 ⊢ (𝑤 = 𝑥 → (𝑤𝑆𝐴) = (𝑥𝑆𝐴)) | |
| 4 | 3 | oveq1d 7384 | . . . . . . . 8 ⊢ (𝑤 = 𝑥 → ((𝑤𝑆𝐴)𝑃𝐵) = ((𝑥𝑆𝐴)𝑃𝐵)) |
| 5 | oveq1 7376 | . . . . . . . 8 ⊢ (𝑤 = 𝑥 → (𝑤 · (𝐴𝑃𝐵)) = (𝑥 · (𝐴𝑃𝐵))) | |
| 6 | 4, 5 | oveq12d 7387 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵)))) |
| 7 | ipasslem7.f | . . . . . . 7 ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) | |
| 8 | ovex 7402 | . . . . . . 7 ⊢ (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6950 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵)))) |
| 10 | 2, 9 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ ℚ → (𝐹‘𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵)))) |
| 11 | ipasslem7.a | . . . . . 6 ⊢ 𝐴 ∈ 𝑋 | |
| 12 | qcn 12898 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℂ) | |
| 13 | ip1i.9 | . . . . . . . . . . 11 ⊢ 𝑈 ∈ CPreHilOLD | |
| 14 | 13 | phnvi 30795 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
| 15 | ip1i.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 16 | ip1i.4 | . . . . . . . . . . 11 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 17 | 15, 16 | nvscl 30605 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (𝑥𝑆𝐴) ∈ 𝑋) |
| 18 | 14, 17 | mp3an1 1450 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (𝑥𝑆𝐴) ∈ 𝑋) |
| 19 | 12, 18 | sylan 580 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → (𝑥𝑆𝐴) ∈ 𝑋) |
| 20 | ipasslem7.b | . . . . . . . . 9 ⊢ 𝐵 ∈ 𝑋 | |
| 21 | ip1i.7 | . . . . . . . . . 10 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 22 | 15, 21 | dipcl 30691 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥𝑆𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ) |
| 23 | 14, 20, 22 | mp3an13 1454 | . . . . . . . 8 ⊢ ((𝑥𝑆𝐴) ∈ 𝑋 → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ) |
| 24 | 19, 23 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ) |
| 25 | ip1i.2 | . . . . . . . 8 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 26 | 15, 25, 16, 21, 13, 20 | ipasslem5 30814 | . . . . . . 7 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) = (𝑥 · (𝐴𝑃𝐵))) |
| 27 | 24, 26 | subeq0bd 11580 | . . . . . 6 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0) |
| 28 | 11, 27 | mpan2 691 | . . . . 5 ⊢ (𝑥 ∈ ℚ → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0) |
| 29 | 10, 28 | eqtrd 2764 | . . . 4 ⊢ (𝑥 ∈ ℚ → (𝐹‘𝑥) = 0) |
| 30 | 29 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ ℚ (𝐹‘𝑥) = 0 |
| 31 | 7 | funmpt2 6539 | . . . 4 ⊢ Fun 𝐹 |
| 32 | qssre 12894 | . . . . 5 ⊢ ℚ ⊆ ℝ | |
| 33 | ovex 7402 | . . . . . 6 ⊢ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) ∈ V | |
| 34 | 33, 7 | dmmpti 6644 | . . . . 5 ⊢ dom 𝐹 = ℝ |
| 35 | 32, 34 | sseqtrri 3993 | . . . 4 ⊢ ℚ ⊆ dom 𝐹 |
| 36 | funconstss 7010 | . . . 4 ⊢ ((Fun 𝐹 ∧ ℚ ⊆ dom 𝐹) → (∀𝑥 ∈ ℚ (𝐹‘𝑥) = 0 ↔ ℚ ⊆ (◡𝐹 “ {0}))) | |
| 37 | 31, 35, 36 | mp2an 692 | . . 3 ⊢ (∀𝑥 ∈ ℚ (𝐹‘𝑥) = 0 ↔ ℚ ⊆ (◡𝐹 “ {0})) |
| 38 | 30, 37 | mpbi 230 | . 2 ⊢ ℚ ⊆ (◡𝐹 “ {0}) |
| 39 | qdensere 24690 | . 2 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | |
| 40 | eqid 2729 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 41 | 40 | cnfldhaus 24705 | . . . 4 ⊢ (TopOpen‘ℂfld) ∈ Haus |
| 42 | haust1 23272 | . . . 4 ⊢ ((TopOpen‘ℂfld) ∈ Haus → (TopOpen‘ℂfld) ∈ Fre) | |
| 43 | 41, 42 | ax-mp 5 | . . 3 ⊢ (TopOpen‘ℂfld) ∈ Fre |
| 44 | eqid 2729 | . . . 4 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
| 45 | 15, 25, 16, 21, 13, 11, 20, 7, 44, 40 | ipasslem7 30815 | . . 3 ⊢ 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) |
| 46 | uniretop 24683 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 47 | 40 | cnfldtopon 24703 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 48 | 47 | toponunii 22836 | . . . 4 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
| 49 | 46, 48 | dnsconst 23298 | . . 3 ⊢ ((((TopOpen‘ℂfld) ∈ Fre ∧ 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))) ∧ (0 ∈ ℂ ∧ ℚ ⊆ (◡𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ)) → 𝐹:ℝ⟶{0}) |
| 50 | 43, 45, 49 | mpanl12 702 | . 2 ⊢ ((0 ∈ ℂ ∧ ℚ ⊆ (◡𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ) → 𝐹:ℝ⟶{0}) |
| 51 | 1, 38, 39, 50 | mp3an 1463 | 1 ⊢ 𝐹:ℝ⟶{0} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 {csn 4585 ↦ cmpt 5183 ◡ccnv 5630 dom cdm 5631 ran crn 5632 “ cima 5634 Fun wfun 6493 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 · cmul 11049 − cmin 11381 ℚcq 12883 (,)cioo 13282 TopOpenctopn 17360 topGenctg 17376 ℂfldccnfld 21296 clsccl 22938 Cn ccn 23144 Frect1 23227 Hauscha 23228 NrmCVeccnv 30563 +𝑣 cpv 30564 BaseSetcba 30565 ·𝑠OLD cns 30566 ·𝑖OLDcdip 30679 CPreHilOLDccphlo 30791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-cn 23147 df-cnp 23148 df-t1 23234 df-haus 23235 df-tx 23482 df-hmeo 23675 df-xms 24241 df-ms 24242 df-tms 24243 df-grpo 30472 df-gid 30473 df-ginv 30474 df-gdiv 30475 df-ablo 30524 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-vs 30578 df-nmcv 30579 df-ims 30580 df-dip 30680 df-ph 30792 |
| This theorem is referenced by: ipasslem9 30817 |
| Copyright terms: Public domain | W3C validator |