| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipasslem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for ipassi 30789. By ipasslem5 30783, 𝐹 is 0 for all ℚ; since it is continuous and ℚ is dense in ℝ by qdensere2 24683, we conclude 𝐹 is 0 for all ℝ. (Contributed by NM, 24-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
| ipasslem7.a | ⊢ 𝐴 ∈ 𝑋 |
| ipasslem7.b | ⊢ 𝐵 ∈ 𝑋 |
| ipasslem7.f | ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) |
| Ref | Expression |
|---|---|
| ipasslem8 | ⊢ 𝐹:ℝ⟶{0} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11107 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | qre 12854 | . . . . . 6 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
| 3 | oveq1 7356 | . . . . . . . . 9 ⊢ (𝑤 = 𝑥 → (𝑤𝑆𝐴) = (𝑥𝑆𝐴)) | |
| 4 | 3 | oveq1d 7364 | . . . . . . . 8 ⊢ (𝑤 = 𝑥 → ((𝑤𝑆𝐴)𝑃𝐵) = ((𝑥𝑆𝐴)𝑃𝐵)) |
| 5 | oveq1 7356 | . . . . . . . 8 ⊢ (𝑤 = 𝑥 → (𝑤 · (𝐴𝑃𝐵)) = (𝑥 · (𝐴𝑃𝐵))) | |
| 6 | 4, 5 | oveq12d 7367 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵)))) |
| 7 | ipasslem7.f | . . . . . . 7 ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) | |
| 8 | ovex 7382 | . . . . . . 7 ⊢ (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6930 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵)))) |
| 10 | 2, 9 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ ℚ → (𝐹‘𝑥) = (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵)))) |
| 11 | ipasslem7.a | . . . . . 6 ⊢ 𝐴 ∈ 𝑋 | |
| 12 | qcn 12864 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℂ) | |
| 13 | ip1i.9 | . . . . . . . . . . 11 ⊢ 𝑈 ∈ CPreHilOLD | |
| 14 | 13 | phnvi 30764 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
| 15 | ip1i.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 16 | ip1i.4 | . . . . . . . . . . 11 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 17 | 15, 16 | nvscl 30574 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (𝑥𝑆𝐴) ∈ 𝑋) |
| 18 | 14, 17 | mp3an1 1450 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (𝑥𝑆𝐴) ∈ 𝑋) |
| 19 | 12, 18 | sylan 580 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → (𝑥𝑆𝐴) ∈ 𝑋) |
| 20 | ipasslem7.b | . . . . . . . . 9 ⊢ 𝐵 ∈ 𝑋 | |
| 21 | ip1i.7 | . . . . . . . . . 10 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 22 | 15, 21 | dipcl 30660 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥𝑆𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ) |
| 23 | 14, 20, 22 | mp3an13 1454 | . . . . . . . 8 ⊢ ((𝑥𝑆𝐴) ∈ 𝑋 → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ) |
| 24 | 19, 23 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) ∈ ℂ) |
| 25 | ip1i.2 | . . . . . . . 8 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 26 | 15, 25, 16, 21, 13, 20 | ipasslem5 30783 | . . . . . . 7 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → ((𝑥𝑆𝐴)𝑃𝐵) = (𝑥 · (𝐴𝑃𝐵))) |
| 27 | 24, 26 | subeq0bd 11546 | . . . . . 6 ⊢ ((𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0) |
| 28 | 11, 27 | mpan2 691 | . . . . 5 ⊢ (𝑥 ∈ ℚ → (((𝑥𝑆𝐴)𝑃𝐵) − (𝑥 · (𝐴𝑃𝐵))) = 0) |
| 29 | 10, 28 | eqtrd 2764 | . . . 4 ⊢ (𝑥 ∈ ℚ → (𝐹‘𝑥) = 0) |
| 30 | 29 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ ℚ (𝐹‘𝑥) = 0 |
| 31 | 7 | funmpt2 6521 | . . . 4 ⊢ Fun 𝐹 |
| 32 | qssre 12860 | . . . . 5 ⊢ ℚ ⊆ ℝ | |
| 33 | ovex 7382 | . . . . . 6 ⊢ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) ∈ V | |
| 34 | 33, 7 | dmmpti 6626 | . . . . 5 ⊢ dom 𝐹 = ℝ |
| 35 | 32, 34 | sseqtrri 3985 | . . . 4 ⊢ ℚ ⊆ dom 𝐹 |
| 36 | funconstss 6990 | . . . 4 ⊢ ((Fun 𝐹 ∧ ℚ ⊆ dom 𝐹) → (∀𝑥 ∈ ℚ (𝐹‘𝑥) = 0 ↔ ℚ ⊆ (◡𝐹 “ {0}))) | |
| 37 | 31, 35, 36 | mp2an 692 | . . 3 ⊢ (∀𝑥 ∈ ℚ (𝐹‘𝑥) = 0 ↔ ℚ ⊆ (◡𝐹 “ {0})) |
| 38 | 30, 37 | mpbi 230 | . 2 ⊢ ℚ ⊆ (◡𝐹 “ {0}) |
| 39 | qdensere 24655 | . 2 ⊢ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ | |
| 40 | eqid 2729 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 41 | 40 | cnfldhaus 24670 | . . . 4 ⊢ (TopOpen‘ℂfld) ∈ Haus |
| 42 | haust1 23237 | . . . 4 ⊢ ((TopOpen‘ℂfld) ∈ Haus → (TopOpen‘ℂfld) ∈ Fre) | |
| 43 | 41, 42 | ax-mp 5 | . . 3 ⊢ (TopOpen‘ℂfld) ∈ Fre |
| 44 | eqid 2729 | . . . 4 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
| 45 | 15, 25, 16, 21, 13, 11, 20, 7, 44, 40 | ipasslem7 30784 | . . 3 ⊢ 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) |
| 46 | uniretop 24648 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 47 | 40 | cnfldtopon 24668 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 48 | 47 | toponunii 22801 | . . . 4 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
| 49 | 46, 48 | dnsconst 23263 | . . 3 ⊢ ((((TopOpen‘ℂfld) ∈ Fre ∧ 𝐹 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))) ∧ (0 ∈ ℂ ∧ ℚ ⊆ (◡𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ)) → 𝐹:ℝ⟶{0}) |
| 50 | 43, 45, 49 | mpanl12 702 | . 2 ⊢ ((0 ∈ ℂ ∧ ℚ ⊆ (◡𝐹 “ {0}) ∧ ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ) → 𝐹:ℝ⟶{0}) |
| 51 | 1, 38, 39, 50 | mp3an 1463 | 1 ⊢ 𝐹:ℝ⟶{0} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 {csn 4577 ↦ cmpt 5173 ◡ccnv 5618 dom cdm 5619 ran crn 5620 “ cima 5622 Fun wfun 6476 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 0cc0 11009 · cmul 11014 − cmin 11347 ℚcq 12849 (,)cioo 13248 TopOpenctopn 17325 topGenctg 17341 ℂfldccnfld 21261 clsccl 22903 Cn ccn 23109 Frect1 23192 Hauscha 23193 NrmCVeccnv 30532 +𝑣 cpv 30533 BaseSetcba 30534 ·𝑠OLD cns 30535 ·𝑖OLDcdip 30648 CPreHilOLDccphlo 30760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-cn 23112 df-cnp 23113 df-t1 23199 df-haus 23200 df-tx 23447 df-hmeo 23640 df-xms 24206 df-ms 24207 df-tms 24208 df-grpo 30441 df-gid 30442 df-ginv 30443 df-gdiv 30444 df-ablo 30493 df-vc 30507 df-nv 30540 df-va 30543 df-ba 30544 df-sm 30545 df-0v 30546 df-vs 30547 df-nmcv 30548 df-ims 30549 df-dip 30649 df-ph 30761 |
| This theorem is referenced by: ipasslem9 30786 |
| Copyright terms: Public domain | W3C validator |