![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ip2eqi | Structured version Visualization version GIF version |
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip2eqi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip2eqi.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip2eqi.u | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
ip2eqi | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip2eqi.u | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | 1 | phnvi 30046 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
3 | ip2eqi.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | eqid 2733 | . . . . . 6 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
5 | 3, 4 | nvmcl 29876 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋) |
6 | 2, 5 | mp3an1 1449 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋) |
7 | oveq1 7410 | . . . . . 6 ⊢ (𝑥 = (𝐴( −𝑣 ‘𝑈)𝐵) → (𝑥𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴)) | |
8 | oveq1 7410 | . . . . . 6 ⊢ (𝑥 = (𝐴( −𝑣 ‘𝑈)𝐵) → (𝑥𝑃𝐵) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) | |
9 | 7, 8 | eqeq12d 2749 | . . . . 5 ⊢ (𝑥 = (𝐴( −𝑣 ‘𝑈)𝐵) → ((𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
10 | 9 | rspcv 3607 | . . . 4 ⊢ ((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
11 | 6, 10 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
12 | simpl 484 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
13 | simpr 486 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
14 | ip2eqi.7 | . . . . . . . . 9 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
15 | 3, 4, 14 | dipsubdi 30079 | . . . . . . . 8 ⊢ ((𝑈 ∈ CPreHilOLD ∧ ((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
16 | 1, 15 | mpan 689 | . . . . . . 7 ⊢ (((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
17 | 6, 12, 13, 16 | syl3anc 1372 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
18 | 17 | eqeq1d 2735 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) = 0)) |
19 | eqid 2733 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
20 | 3, 19, 14 | ipz 29949 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
21 | 2, 20 | mpan 689 | . . . . . 6 ⊢ ((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
22 | 6, 21 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
23 | 18, 22 | bitr3d 281 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
24 | 3, 14 | dipcl 29942 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) ∈ ℂ) |
25 | 2, 24 | mp3an1 1449 | . . . . . 6 ⊢ (((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) ∈ ℂ) |
26 | 6, 12, 25 | syl2anc 585 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) ∈ ℂ) |
27 | 3, 14 | dipcl 29942 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ∈ ℂ) |
28 | 2, 27 | mp3an1 1449 | . . . . . 6 ⊢ (((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ∈ ℂ) |
29 | 6, 28 | sylancom 589 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ∈ ℂ) |
30 | 26, 29 | subeq0ad 11576 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) = 0 ↔ ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
31 | 3, 4, 19 | nvmeq0 29888 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈) ↔ 𝐴 = 𝐵)) |
32 | 2, 31 | mp3an1 1449 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈) ↔ 𝐴 = 𝐵)) |
33 | 23, 30, 32 | 3bitr3d 309 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ↔ 𝐴 = 𝐵)) |
34 | 11, 33 | sylibd 238 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → 𝐴 = 𝐵)) |
35 | oveq2 7411 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥𝑃𝐴) = (𝑥𝑃𝐵)) | |
36 | 35 | ralrimivw 3151 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵)) |
37 | 34, 36 | impbid1 224 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ‘cfv 6539 (class class class)co 7403 ℂcc 11103 0cc0 11105 − cmin 11439 NrmCVeccnv 29814 BaseSetcba 29816 0veccn0v 29818 −𝑣 cnsb 29819 ·𝑖OLDcdip 29930 CPreHilOLDccphlo 30042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 ax-mulf 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4907 df-int 4949 df-iun 4997 df-iin 4998 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-isom 6548 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8141 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-2o 8461 df-er 8698 df-map 8817 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-fi 9401 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-div 11867 df-nn 12208 df-2 12270 df-3 12271 df-4 12272 df-5 12273 df-6 12274 df-7 12275 df-8 12276 df-9 12277 df-n0 12468 df-z 12554 df-dec 12673 df-uz 12818 df-q 12928 df-rp 12970 df-xneg 13087 df-xadd 13088 df-xmul 13089 df-ioo 13323 df-icc 13326 df-fz 13480 df-fzo 13623 df-seq 13962 df-exp 14023 df-hash 14286 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15427 df-sum 15628 df-struct 17075 df-sets 17092 df-slot 17110 df-ndx 17122 df-base 17140 df-ress 17169 df-plusg 17205 df-mulr 17206 df-starv 17207 df-sca 17208 df-vsca 17209 df-ip 17210 df-tset 17211 df-ple 17212 df-ds 17214 df-unif 17215 df-hom 17216 df-cco 17217 df-rest 17363 df-topn 17364 df-0g 17382 df-gsum 17383 df-topgen 17384 df-pt 17385 df-prds 17388 df-xrs 17443 df-qtop 17448 df-imas 17449 df-xps 17451 df-mre 17525 df-mrc 17526 df-acs 17528 df-mgm 18556 df-sgrp 18605 df-mnd 18621 df-submnd 18667 df-mulg 18944 df-cntz 19174 df-cmn 19642 df-psmet 20920 df-xmet 20921 df-met 20922 df-bl 20923 df-mopn 20924 df-cnfld 20929 df-top 22377 df-topon 22394 df-topsp 22416 df-bases 22430 df-cld 22504 df-ntr 22505 df-cls 22506 df-cn 22712 df-cnp 22713 df-t1 22799 df-haus 22800 df-tx 23047 df-hmeo 23240 df-xms 23807 df-ms 23808 df-tms 23809 df-grpo 29723 df-gid 29724 df-ginv 29725 df-gdiv 29726 df-ablo 29775 df-vc 29789 df-nv 29822 df-va 29825 df-ba 29826 df-sm 29827 df-0v 29828 df-vs 29829 df-nmcv 29830 df-ims 29831 df-dip 29931 df-ph 30043 |
This theorem is referenced by: phoeqi 30087 |
Copyright terms: Public domain | W3C validator |