| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ip2eqi | Structured version Visualization version GIF version | ||
| Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip2eqi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip2eqi.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip2eqi.u | ⊢ 𝑈 ∈ CPreHilOLD |
| Ref | Expression |
|---|---|
| ip2eqi | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2eqi.u | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
| 2 | 1 | phnvi 30760 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
| 3 | ip2eqi.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
| 5 | 3, 4 | nvmcl 30590 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋) |
| 6 | 2, 5 | mp3an1 1450 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋) |
| 7 | oveq1 7356 | . . . . . 6 ⊢ (𝑥 = (𝐴( −𝑣 ‘𝑈)𝐵) → (𝑥𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴)) | |
| 8 | oveq1 7356 | . . . . . 6 ⊢ (𝑥 = (𝐴( −𝑣 ‘𝑈)𝐵) → (𝑥𝑃𝐵) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) | |
| 9 | 7, 8 | eqeq12d 2745 | . . . . 5 ⊢ (𝑥 = (𝐴( −𝑣 ‘𝑈)𝐵) → ((𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
| 10 | 9 | rspcv 3573 | . . . 4 ⊢ ((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
| 11 | 6, 10 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
| 12 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 13 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
| 14 | ip2eqi.7 | . . . . . . . . 9 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 15 | 3, 4, 14 | dipsubdi 30793 | . . . . . . . 8 ⊢ ((𝑈 ∈ CPreHilOLD ∧ ((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
| 16 | 1, 15 | mpan 690 | . . . . . . 7 ⊢ (((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
| 17 | 6, 12, 13, 16 | syl3anc 1373 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
| 18 | 17 | eqeq1d 2731 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) = 0)) |
| 19 | eqid 2729 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 20 | 3, 19, 14 | ipz 30663 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
| 21 | 2, 20 | mpan 690 | . . . . . 6 ⊢ ((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
| 22 | 6, 21 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
| 23 | 18, 22 | bitr3d 281 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
| 24 | 3, 14 | dipcl 30656 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) ∈ ℂ) |
| 25 | 2, 24 | mp3an1 1450 | . . . . . 6 ⊢ (((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) ∈ ℂ) |
| 26 | 6, 12, 25 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) ∈ ℂ) |
| 27 | 3, 14 | dipcl 30656 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ∈ ℂ) |
| 28 | 2, 27 | mp3an1 1450 | . . . . . 6 ⊢ (((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ∈ ℂ) |
| 29 | 6, 28 | sylancom 588 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ∈ ℂ) |
| 30 | 26, 29 | subeq0ad 11485 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) = 0 ↔ ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
| 31 | 3, 4, 19 | nvmeq0 30602 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈) ↔ 𝐴 = 𝐵)) |
| 32 | 2, 31 | mp3an1 1450 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈) ↔ 𝐴 = 𝐵)) |
| 33 | 23, 30, 32 | 3bitr3d 309 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ↔ 𝐴 = 𝐵)) |
| 34 | 11, 33 | sylibd 239 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → 𝐴 = 𝐵)) |
| 35 | oveq2 7357 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥𝑃𝐴) = (𝑥𝑃𝐵)) | |
| 36 | 35 | ralrimivw 3125 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵)) |
| 37 | 34, 36 | impbid1 225 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 − cmin 11347 NrmCVeccnv 30528 BaseSetcba 30530 0veccn0v 30532 −𝑣 cnsb 30533 ·𝑖OLDcdip 30644 CPreHilOLDccphlo 30756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-cn 23112 df-cnp 23113 df-t1 23199 df-haus 23200 df-tx 23447 df-hmeo 23640 df-xms 24206 df-ms 24207 df-tms 24208 df-grpo 30437 df-gid 30438 df-ginv 30439 df-gdiv 30440 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-vs 30543 df-nmcv 30544 df-ims 30545 df-dip 30645 df-ph 30757 |
| This theorem is referenced by: phoeqi 30801 |
| Copyright terms: Public domain | W3C validator |