MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2eqi Structured version   Visualization version   GIF version

Theorem ip2eqi 30875
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip2eqi.1 𝑋 = (BaseSet‘𝑈)
ip2eqi.7 𝑃 = (·𝑖OLD𝑈)
ip2eqi.u 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
ip2eqi ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃   𝑥,𝑈   𝑥,𝑋

Proof of Theorem ip2eqi
StepHypRef Expression
1 ip2eqi.u . . . . . 6 𝑈 ∈ CPreHilOLD
21phnvi 30835 . . . . 5 𝑈 ∈ NrmCVec
3 ip2eqi.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
4 eqid 2737 . . . . . 6 ( −𝑣𝑈) = ( −𝑣𝑈)
53, 4nvmcl 30665 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋)
62, 5mp3an1 1450 . . . 4 ((𝐴𝑋𝐵𝑋) → (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋)
7 oveq1 7438 . . . . . 6 (𝑥 = (𝐴( −𝑣𝑈)𝐵) → (𝑥𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴))
8 oveq1 7438 . . . . . 6 (𝑥 = (𝐴( −𝑣𝑈)𝐵) → (𝑥𝑃𝐵) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵))
97, 8eqeq12d 2753 . . . . 5 (𝑥 = (𝐴( −𝑣𝑈)𝐵) → ((𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
109rspcv 3618 . . . 4 ((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋 → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
116, 10syl 17 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
12 simpl 482 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → 𝐴𝑋)
13 simpr 484 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → 𝐵𝑋)
14 ip2eqi.7 . . . . . . . . 9 𝑃 = (·𝑖OLD𝑈)
153, 4, 14dipsubdi 30868 . . . . . . . 8 ((𝑈 ∈ CPreHilOLD ∧ ((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐴𝑋𝐵𝑋)) → ((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
161, 15mpan 690 . . . . . . 7 (((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
176, 12, 13, 16syl3anc 1373 . . . . . 6 ((𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
1817eqeq1d 2739 . . . . 5 ((𝐴𝑋𝐵𝑋) → (((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = 0 ↔ (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)) = 0))
19 eqid 2737 . . . . . . . 8 (0vec𝑈) = (0vec𝑈)
203, 19, 14ipz 30738 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋) → (((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣𝑈)𝐵) = (0vec𝑈)))
212, 20mpan 690 . . . . . 6 ((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋 → (((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣𝑈)𝐵) = (0vec𝑈)))
226, 21syl 17 . . . . 5 ((𝐴𝑋𝐵𝑋) → (((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣𝑈)𝐵) = (0vec𝑈)))
2318, 22bitr3d 281 . . . 4 ((𝐴𝑋𝐵𝑋) → ((((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)) = 0 ↔ (𝐴( −𝑣𝑈)𝐵) = (0vec𝑈)))
243, 14dipcl 30731 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐴𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) ∈ ℂ)
252, 24mp3an1 1450 . . . . . 6 (((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐴𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) ∈ ℂ)
266, 12, 25syl2anc 584 . . . . 5 ((𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) ∈ ℂ)
273, 14dipcl 30731 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵) ∈ ℂ)
282, 27mp3an1 1450 . . . . . 6 (((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵) ∈ ℂ)
296, 28sylancom 588 . . . . 5 ((𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵) ∈ ℂ)
3026, 29subeq0ad 11630 . . . 4 ((𝐴𝑋𝐵𝑋) → ((((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)) = 0 ↔ ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
313, 4, 19nvmeq0 30677 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵) = (0vec𝑈) ↔ 𝐴 = 𝐵))
322, 31mp3an1 1450 . . . 4 ((𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵) = (0vec𝑈) ↔ 𝐴 = 𝐵))
3323, 30, 323bitr3d 309 . . 3 ((𝐴𝑋𝐵𝑋) → (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵) ↔ 𝐴 = 𝐵))
3411, 33sylibd 239 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → 𝐴 = 𝐵))
35 oveq2 7439 . . 3 (𝐴 = 𝐵 → (𝑥𝑃𝐴) = (𝑥𝑃𝐵))
3635ralrimivw 3150 . 2 (𝐴 = 𝐵 → ∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵))
3734, 36impbid1 225 1 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  cmin 11492  NrmCVeccnv 30603  BaseSetcba 30605  0veccn0v 30607  𝑣 cnsb 30608  ·𝑖OLDcdip 30719  CPreHilOLDccphlo 30831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-cn 23235  df-cnp 23236  df-t1 23322  df-haus 23323  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-dip 30720  df-ph 30832
This theorem is referenced by:  phoeqi  30876
  Copyright terms: Public domain W3C validator