MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2eqi Structured version   Visualization version   GIF version

Theorem ip2eqi 30086
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip2eqi.1 𝑋 = (BaseSet‘𝑈)
ip2eqi.7 𝑃 = (·𝑖OLD𝑈)
ip2eqi.u 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
ip2eqi ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃   𝑥,𝑈   𝑥,𝑋

Proof of Theorem ip2eqi
StepHypRef Expression
1 ip2eqi.u . . . . . 6 𝑈 ∈ CPreHilOLD
21phnvi 30046 . . . . 5 𝑈 ∈ NrmCVec
3 ip2eqi.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
4 eqid 2733 . . . . . 6 ( −𝑣𝑈) = ( −𝑣𝑈)
53, 4nvmcl 29876 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋)
62, 5mp3an1 1449 . . . 4 ((𝐴𝑋𝐵𝑋) → (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋)
7 oveq1 7410 . . . . . 6 (𝑥 = (𝐴( −𝑣𝑈)𝐵) → (𝑥𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴))
8 oveq1 7410 . . . . . 6 (𝑥 = (𝐴( −𝑣𝑈)𝐵) → (𝑥𝑃𝐵) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵))
97, 8eqeq12d 2749 . . . . 5 (𝑥 = (𝐴( −𝑣𝑈)𝐵) → ((𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
109rspcv 3607 . . . 4 ((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋 → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
116, 10syl 17 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
12 simpl 484 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → 𝐴𝑋)
13 simpr 486 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → 𝐵𝑋)
14 ip2eqi.7 . . . . . . . . 9 𝑃 = (·𝑖OLD𝑈)
153, 4, 14dipsubdi 30079 . . . . . . . 8 ((𝑈 ∈ CPreHilOLD ∧ ((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐴𝑋𝐵𝑋)) → ((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
161, 15mpan 689 . . . . . . 7 (((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
176, 12, 13, 16syl3anc 1372 . . . . . 6 ((𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
1817eqeq1d 2735 . . . . 5 ((𝐴𝑋𝐵𝑋) → (((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = 0 ↔ (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)) = 0))
19 eqid 2733 . . . . . . . 8 (0vec𝑈) = (0vec𝑈)
203, 19, 14ipz 29949 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋) → (((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣𝑈)𝐵) = (0vec𝑈)))
212, 20mpan 689 . . . . . 6 ((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋 → (((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣𝑈)𝐵) = (0vec𝑈)))
226, 21syl 17 . . . . 5 ((𝐴𝑋𝐵𝑋) → (((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣𝑈)𝐵) = (0vec𝑈)))
2318, 22bitr3d 281 . . . 4 ((𝐴𝑋𝐵𝑋) → ((((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)) = 0 ↔ (𝐴( −𝑣𝑈)𝐵) = (0vec𝑈)))
243, 14dipcl 29942 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐴𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) ∈ ℂ)
252, 24mp3an1 1449 . . . . . 6 (((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐴𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) ∈ ℂ)
266, 12, 25syl2anc 585 . . . . 5 ((𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) ∈ ℂ)
273, 14dipcl 29942 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵) ∈ ℂ)
282, 27mp3an1 1449 . . . . . 6 (((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵) ∈ ℂ)
296, 28sylancom 589 . . . . 5 ((𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵) ∈ ℂ)
3026, 29subeq0ad 11576 . . . 4 ((𝐴𝑋𝐵𝑋) → ((((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)) = 0 ↔ ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
313, 4, 19nvmeq0 29888 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵) = (0vec𝑈) ↔ 𝐴 = 𝐵))
322, 31mp3an1 1449 . . . 4 ((𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵) = (0vec𝑈) ↔ 𝐴 = 𝐵))
3323, 30, 323bitr3d 309 . . 3 ((𝐴𝑋𝐵𝑋) → (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵) ↔ 𝐴 = 𝐵))
3411, 33sylibd 238 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → 𝐴 = 𝐵))
35 oveq2 7411 . . 3 (𝐴 = 𝐵 → (𝑥𝑃𝐴) = (𝑥𝑃𝐵))
3635ralrimivw 3151 . 2 (𝐴 = 𝐵 → ∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵))
3734, 36impbid1 224 1 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  cfv 6539  (class class class)co 7403  cc 11103  0cc0 11105  cmin 11439  NrmCVeccnv 29814  BaseSetcba 29816  0veccn0v 29818  𝑣 cnsb 29819  ·𝑖OLDcdip 29930  CPreHilOLDccphlo 30042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184  ax-mulf 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-iin 4998  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-isom 6548  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8141  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-2o 8461  df-er 8698  df-map 8817  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-3 12271  df-4 12272  df-5 12273  df-6 12274  df-7 12275  df-8 12276  df-9 12277  df-n0 12468  df-z 12554  df-dec 12673  df-uz 12818  df-q 12928  df-rp 12970  df-xneg 13087  df-xadd 13088  df-xmul 13089  df-ioo 13323  df-icc 13326  df-fz 13480  df-fzo 13623  df-seq 13962  df-exp 14023  df-hash 14286  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15427  df-sum 15628  df-struct 17075  df-sets 17092  df-slot 17110  df-ndx 17122  df-base 17140  df-ress 17169  df-plusg 17205  df-mulr 17206  df-starv 17207  df-sca 17208  df-vsca 17209  df-ip 17210  df-tset 17211  df-ple 17212  df-ds 17214  df-unif 17215  df-hom 17216  df-cco 17217  df-rest 17363  df-topn 17364  df-0g 17382  df-gsum 17383  df-topgen 17384  df-pt 17385  df-prds 17388  df-xrs 17443  df-qtop 17448  df-imas 17449  df-xps 17451  df-mre 17525  df-mrc 17526  df-acs 17528  df-mgm 18556  df-sgrp 18605  df-mnd 18621  df-submnd 18667  df-mulg 18944  df-cntz 19174  df-cmn 19642  df-psmet 20920  df-xmet 20921  df-met 20922  df-bl 20923  df-mopn 20924  df-cnfld 20929  df-top 22377  df-topon 22394  df-topsp 22416  df-bases 22430  df-cld 22504  df-ntr 22505  df-cls 22506  df-cn 22712  df-cnp 22713  df-t1 22799  df-haus 22800  df-tx 23047  df-hmeo 23240  df-xms 23807  df-ms 23808  df-tms 23809  df-grpo 29723  df-gid 29724  df-ginv 29725  df-gdiv 29726  df-ablo 29775  df-vc 29789  df-nv 29822  df-va 29825  df-ba 29826  df-sm 29827  df-0v 29828  df-vs 29829  df-nmcv 29830  df-ims 29831  df-dip 29931  df-ph 30043
This theorem is referenced by:  phoeqi  30087
  Copyright terms: Public domain W3C validator