MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2eqi Structured version   Visualization version   GIF version

Theorem ip2eqi 30758
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip2eqi.1 𝑋 = (BaseSet‘𝑈)
ip2eqi.7 𝑃 = (·𝑖OLD𝑈)
ip2eqi.u 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
ip2eqi ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃   𝑥,𝑈   𝑥,𝑋

Proof of Theorem ip2eqi
StepHypRef Expression
1 ip2eqi.u . . . . . 6 𝑈 ∈ CPreHilOLD
21phnvi 30718 . . . . 5 𝑈 ∈ NrmCVec
3 ip2eqi.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
4 eqid 2729 . . . . . 6 ( −𝑣𝑈) = ( −𝑣𝑈)
53, 4nvmcl 30548 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋)
62, 5mp3an1 1450 . . . 4 ((𝐴𝑋𝐵𝑋) → (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋)
7 oveq1 7376 . . . . . 6 (𝑥 = (𝐴( −𝑣𝑈)𝐵) → (𝑥𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴))
8 oveq1 7376 . . . . . 6 (𝑥 = (𝐴( −𝑣𝑈)𝐵) → (𝑥𝑃𝐵) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵))
97, 8eqeq12d 2745 . . . . 5 (𝑥 = (𝐴( −𝑣𝑈)𝐵) → ((𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
109rspcv 3581 . . . 4 ((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋 → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
116, 10syl 17 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
12 simpl 482 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → 𝐴𝑋)
13 simpr 484 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → 𝐵𝑋)
14 ip2eqi.7 . . . . . . . . 9 𝑃 = (·𝑖OLD𝑈)
153, 4, 14dipsubdi 30751 . . . . . . . 8 ((𝑈 ∈ CPreHilOLD ∧ ((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐴𝑋𝐵𝑋)) → ((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
161, 15mpan 690 . . . . . . 7 (((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
176, 12, 13, 16syl3anc 1373 . . . . . 6 ((𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
1817eqeq1d 2731 . . . . 5 ((𝐴𝑋𝐵𝑋) → (((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = 0 ↔ (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)) = 0))
19 eqid 2729 . . . . . . . 8 (0vec𝑈) = (0vec𝑈)
203, 19, 14ipz 30621 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋) → (((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣𝑈)𝐵) = (0vec𝑈)))
212, 20mpan 690 . . . . . 6 ((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋 → (((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣𝑈)𝐵) = (0vec𝑈)))
226, 21syl 17 . . . . 5 ((𝐴𝑋𝐵𝑋) → (((𝐴( −𝑣𝑈)𝐵)𝑃(𝐴( −𝑣𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣𝑈)𝐵) = (0vec𝑈)))
2318, 22bitr3d 281 . . . 4 ((𝐴𝑋𝐵𝑋) → ((((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)) = 0 ↔ (𝐴( −𝑣𝑈)𝐵) = (0vec𝑈)))
243, 14dipcl 30614 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐴𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) ∈ ℂ)
252, 24mp3an1 1450 . . . . . 6 (((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐴𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) ∈ ℂ)
266, 12, 25syl2anc 584 . . . . 5 ((𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) ∈ ℂ)
273, 14dipcl 30614 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵) ∈ ℂ)
282, 27mp3an1 1450 . . . . . 6 (((𝐴( −𝑣𝑈)𝐵) ∈ 𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵) ∈ ℂ)
296, 28sylancom 588 . . . . 5 ((𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵) ∈ ℂ)
3026, 29subeq0ad 11519 . . . 4 ((𝐴𝑋𝐵𝑋) → ((((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)) = 0 ↔ ((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵)))
313, 4, 19nvmeq0 30560 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵) = (0vec𝑈) ↔ 𝐴 = 𝐵))
322, 31mp3an1 1450 . . . 4 ((𝐴𝑋𝐵𝑋) → ((𝐴( −𝑣𝑈)𝐵) = (0vec𝑈) ↔ 𝐴 = 𝐵))
3323, 30, 323bitr3d 309 . . 3 ((𝐴𝑋𝐵𝑋) → (((𝐴( −𝑣𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣𝑈)𝐵)𝑃𝐵) ↔ 𝐴 = 𝐵))
3411, 33sylibd 239 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → 𝐴 = 𝐵))
35 oveq2 7377 . . 3 (𝐴 = 𝐵 → (𝑥𝑃𝐴) = (𝑥𝑃𝐵))
3635ralrimivw 3129 . 2 (𝐴 = 𝐵 → ∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵))
3734, 36impbid1 225 1 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  cmin 11381  NrmCVeccnv 30486  BaseSetcba 30488  0veccn0v 30490  𝑣 cnsb 30491  ·𝑖OLDcdip 30602  CPreHilOLDccphlo 30714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-cn 23090  df-cnp 23091  df-t1 23177  df-haus 23178  df-tx 23425  df-hmeo 23618  df-xms 24184  df-ms 24185  df-tms 24186  df-grpo 30395  df-gid 30396  df-ginv 30397  df-gdiv 30398  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-vs 30501  df-nmcv 30502  df-ims 30503  df-dip 30603  df-ph 30715
This theorem is referenced by:  phoeqi  30759
  Copyright terms: Public domain W3C validator