![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ip2eqi | Structured version Visualization version GIF version |
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip2eqi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip2eqi.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip2eqi.u | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
ip2eqi | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip2eqi.u | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | 1 | phnvi 28247 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
3 | ip2eqi.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | eqid 2778 | . . . . . 6 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
5 | 3, 4 | nvmcl 28077 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋) |
6 | 2, 5 | mp3an1 1521 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋) |
7 | oveq1 6931 | . . . . . 6 ⊢ (𝑥 = (𝐴( −𝑣 ‘𝑈)𝐵) → (𝑥𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴)) | |
8 | oveq1 6931 | . . . . . 6 ⊢ (𝑥 = (𝐴( −𝑣 ‘𝑈)𝐵) → (𝑥𝑃𝐵) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) | |
9 | 7, 8 | eqeq12d 2793 | . . . . 5 ⊢ (𝑥 = (𝐴( −𝑣 ‘𝑈)𝐵) → ((𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
10 | 9 | rspcv 3507 | . . . 4 ⊢ ((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
11 | 6, 10 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
12 | simpl 476 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
13 | simpr 479 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
14 | ip2eqi.7 | . . . . . . . . 9 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
15 | 3, 4, 14 | dipsubdi 28280 | . . . . . . . 8 ⊢ ((𝑈 ∈ CPreHilOLD ∧ ((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
16 | 1, 15 | mpan 680 | . . . . . . 7 ⊢ (((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
17 | 6, 12, 13, 16 | syl3anc 1439 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
18 | 17 | eqeq1d 2780 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) = 0)) |
19 | eqid 2778 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
20 | 3, 19, 14 | ipz 28150 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
21 | 2, 20 | mpan 680 | . . . . . 6 ⊢ ((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
22 | 6, 21 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃(𝐴( −𝑣 ‘𝑈)𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
23 | 18, 22 | bitr3d 273 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) = 0 ↔ (𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈))) |
24 | 3, 14 | dipcl 28143 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) ∈ ℂ) |
25 | 2, 24 | mp3an1 1521 | . . . . . 6 ⊢ (((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) ∈ ℂ) |
26 | 6, 12, 25 | syl2anc 579 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) ∈ ℂ) |
27 | 3, 14 | dipcl 28143 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ∈ ℂ) |
28 | 2, 27 | mp3an1 1521 | . . . . . 6 ⊢ (((𝐴( −𝑣 ‘𝑈)𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ∈ ℂ) |
29 | 6, 28 | sylancom 582 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ∈ ℂ) |
30 | 26, 29 | subeq0ad 10746 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) − ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵)) = 0 ↔ ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵))) |
31 | 3, 4, 19 | nvmeq0 28089 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈) ↔ 𝐴 = 𝐵)) |
32 | 2, 31 | mp3an1 1521 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴( −𝑣 ‘𝑈)𝐵) = (0vec‘𝑈) ↔ 𝐴 = 𝐵)) |
33 | 23, 30, 32 | 3bitr3d 301 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐴) = ((𝐴( −𝑣 ‘𝑈)𝐵)𝑃𝐵) ↔ 𝐴 = 𝐵)) |
34 | 11, 33 | sylibd 231 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) → 𝐴 = 𝐵)) |
35 | oveq2 6932 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥𝑃𝐴) = (𝑥𝑃𝐵)) | |
36 | 35 | ralrimivw 3149 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵)) |
37 | 34, 36 | impbid1 217 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ‘cfv 6137 (class class class)co 6924 ℂcc 10272 0cc0 10274 − cmin 10608 NrmCVeccnv 28015 BaseSetcba 28017 0veccn0v 28019 −𝑣 cnsb 28020 ·𝑖OLDcdip 28131 CPreHilOLDccphlo 28243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-fi 8607 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-z 11733 df-dec 11850 df-uz 11997 df-q 12100 df-rp 12142 df-xneg 12261 df-xadd 12262 df-xmul 12263 df-ioo 12495 df-icc 12498 df-fz 12648 df-fzo 12789 df-seq 13124 df-exp 13183 df-hash 13440 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 df-clim 14631 df-sum 14829 df-struct 16261 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ress 16267 df-plusg 16355 df-mulr 16356 df-starv 16357 df-sca 16358 df-vsca 16359 df-ip 16360 df-tset 16361 df-ple 16362 df-ds 16364 df-unif 16365 df-hom 16366 df-cco 16367 df-rest 16473 df-topn 16474 df-0g 16492 df-gsum 16493 df-topgen 16494 df-pt 16495 df-prds 16498 df-xrs 16552 df-qtop 16557 df-imas 16558 df-xps 16560 df-mre 16636 df-mrc 16637 df-acs 16639 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-submnd 17726 df-mulg 17932 df-cntz 18137 df-cmn 18585 df-psmet 20138 df-xmet 20139 df-met 20140 df-bl 20141 df-mopn 20142 df-cnfld 20147 df-top 21110 df-topon 21127 df-topsp 21149 df-bases 21162 df-cld 21235 df-ntr 21236 df-cls 21237 df-cn 21443 df-cnp 21444 df-t1 21530 df-haus 21531 df-tx 21778 df-hmeo 21971 df-xms 22537 df-ms 22538 df-tms 22539 df-grpo 27924 df-gid 27925 df-ginv 27926 df-gdiv 27927 df-ablo 27976 df-vc 27990 df-nv 28023 df-va 28026 df-ba 28027 df-sm 28028 df-0v 28029 df-vs 28030 df-nmcv 28031 df-ims 28032 df-dip 28132 df-ph 28244 |
This theorem is referenced by: phoeqi 28289 |
Copyright terms: Public domain | W3C validator |