MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimph Structured version   Visualization version   GIF version

Theorem elimph 29083
Description: Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
elimph.1 𝑋 = (BaseSet‘𝑈)
elimph.5 𝑍 = (0vec𝑈)
elimph.6 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
elimph if(𝐴𝑋, 𝐴, 𝑍) ∈ 𝑋

Proof of Theorem elimph
StepHypRef Expression
1 elimph.1 . 2 𝑋 = (BaseSet‘𝑈)
2 elimph.5 . 2 𝑍 = (0vec𝑈)
3 elimph.6 . . 3 𝑈 ∈ CPreHilOLD
43phnvi 29079 . 2 𝑈 ∈ NrmCVec
51, 2, 4elimnv 28946 1 if(𝐴𝑋, 𝐴, 𝑍) ∈ 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  ifcif 4456  cfv 6418  BaseSetcba 28849  0veccn0v 28851  CPreHilOLDccphlo 29075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-1st 7804  df-2nd 7805  df-grpo 28756  df-gid 28757  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-ph 29076
This theorem is referenced by:  ipdiri  29093  ipassi  29104  sii  29117
  Copyright terms: Public domain W3C validator