MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimph Structured version   Visualization version   GIF version

Theorem elimph 30073
Description: Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
elimph.1 𝑋 = (BaseSetβ€˜π‘ˆ)
elimph.5 𝑍 = (0vecβ€˜π‘ˆ)
elimph.6 π‘ˆ ∈ CPreHilOLD
Assertion
Ref Expression
elimph if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋

Proof of Theorem elimph
StepHypRef Expression
1 elimph.1 . 2 𝑋 = (BaseSetβ€˜π‘ˆ)
2 elimph.5 . 2 𝑍 = (0vecβ€˜π‘ˆ)
3 elimph.6 . . 3 π‘ˆ ∈ CPreHilOLD
43phnvi 30069 . 2 π‘ˆ ∈ NrmCVec
51, 2, 4elimnv 29936 1 if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542   ∈ wcel 2107  ifcif 4529  β€˜cfv 6544  BaseSetcba 29839  0veccn0v 29841  CPreHilOLDccphlo 30065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-1st 7975  df-2nd 7976  df-grpo 29746  df-gid 29747  df-ablo 29798  df-vc 29812  df-nv 29845  df-va 29848  df-ba 29849  df-sm 29850  df-0v 29851  df-nmcv 29853  df-ph 30066
This theorem is referenced by:  ipdiri  30083  ipassi  30094  sii  30107
  Copyright terms: Public domain W3C validator