| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimph | Structured version Visualization version GIF version | ||
| Description: Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elimph.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| elimph.5 | ⊢ 𝑍 = (0vec‘𝑈) |
| elimph.6 | ⊢ 𝑈 ∈ CPreHilOLD |
| Ref | Expression |
|---|---|
| elimph | ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimph.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | elimph.5 | . 2 ⊢ 𝑍 = (0vec‘𝑈) | |
| 3 | elimph.6 | . . 3 ⊢ 𝑈 ∈ CPreHilOLD | |
| 4 | 3 | phnvi 30752 | . 2 ⊢ 𝑈 ∈ NrmCVec |
| 5 | 1, 2, 4 | elimnv 30619 | 1 ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ifcif 4491 ‘cfv 6514 BaseSetcba 30522 0veccn0v 30524 CPreHilOLDccphlo 30748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-1st 7971 df-2nd 7972 df-grpo 30429 df-gid 30430 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-nmcv 30536 df-ph 30749 |
| This theorem is referenced by: ipdiri 30766 ipassi 30777 sii 30790 |
| Copyright terms: Public domain | W3C validator |