MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem9 Structured version   Visualization version   GIF version

Theorem ipasslem9 28026
Description: Lemma for ipassi 28029. Conclude from ipasslem8 28025 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem9.a 𝐴𝑋
ipasslem9.b 𝐵𝑋
Assertion
Ref Expression
ipasslem9 (𝐶 ∈ ℝ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem9
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6798 . . . . . 6 (𝑤 = 𝐶 → (𝑤𝑆𝐴) = (𝐶𝑆𝐴))
21oveq1d 6806 . . . . 5 (𝑤 = 𝐶 → ((𝑤𝑆𝐴)𝑃𝐵) = ((𝐶𝑆𝐴)𝑃𝐵))
3 oveq1 6798 . . . . 5 (𝑤 = 𝐶 → (𝑤 · (𝐴𝑃𝐵)) = (𝐶 · (𝐴𝑃𝐵)))
42, 3oveq12d 6809 . . . 4 (𝑤 = 𝐶 → (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) = (((𝐶𝑆𝐴)𝑃𝐵) − (𝐶 · (𝐴𝑃𝐵))))
5 eqid 2771 . . . 4 (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
6 ovex 6821 . . . 4 (((𝐶𝑆𝐴)𝑃𝐵) − (𝐶 · (𝐴𝑃𝐵))) ∈ V
74, 5, 6fvmpt 6422 . . 3 (𝐶 ∈ ℝ → ((𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))‘𝐶) = (((𝐶𝑆𝐴)𝑃𝐵) − (𝐶 · (𝐴𝑃𝐵))))
8 ip1i.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
9 ip1i.2 . . . . 5 𝐺 = ( +𝑣𝑈)
10 ip1i.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
11 ip1i.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
12 ip1i.9 . . . . 5 𝑈 ∈ CPreHilOLD
13 ipasslem9.a . . . . 5 𝐴𝑋
14 ipasslem9.b . . . . 5 𝐵𝑋
158, 9, 10, 11, 12, 13, 14, 5ipasslem8 28025 . . . 4 (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))):ℝ⟶{0}
16 fvconst 6572 . . . 4 (((𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))):ℝ⟶{0} ∧ 𝐶 ∈ ℝ) → ((𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))‘𝐶) = 0)
1715, 16mpan 670 . . 3 (𝐶 ∈ ℝ → ((𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))‘𝐶) = 0)
187, 17eqtr3d 2807 . 2 (𝐶 ∈ ℝ → (((𝐶𝑆𝐴)𝑃𝐵) − (𝐶 · (𝐴𝑃𝐵))) = 0)
19 recn 10226 . . 3 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
2012phnvi 28004 . . . . . 6 𝑈 ∈ NrmCVec
218, 10nvscl 27814 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ ℂ ∧ 𝐴𝑋) → (𝐶𝑆𝐴) ∈ 𝑋)
2220, 13, 21mp3an13 1563 . . . . 5 (𝐶 ∈ ℂ → (𝐶𝑆𝐴) ∈ 𝑋)
238, 11dipcl 27900 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) ∈ ℂ)
2420, 14, 23mp3an13 1563 . . . . 5 ((𝐶𝑆𝐴) ∈ 𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) ∈ ℂ)
2522, 24syl 17 . . . 4 (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) ∈ ℂ)
268, 11dipcl 27900 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
2720, 13, 14, 26mp3an 1572 . . . . 5 (𝐴𝑃𝐵) ∈ ℂ
28 mulcl 10220 . . . . 5 ((𝐶 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → (𝐶 · (𝐴𝑃𝐵)) ∈ ℂ)
2927, 28mpan2 671 . . . 4 (𝐶 ∈ ℂ → (𝐶 · (𝐴𝑃𝐵)) ∈ ℂ)
3025, 29subeq0ad 10602 . . 3 (𝐶 ∈ ℂ → ((((𝐶𝑆𝐴)𝑃𝐵) − (𝐶 · (𝐴𝑃𝐵))) = 0 ↔ ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
3119, 30syl 17 . 2 (𝐶 ∈ ℝ → ((((𝐶𝑆𝐴)𝑃𝐵) − (𝐶 · (𝐴𝑃𝐵))) = 0 ↔ ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
3218, 31mpbid 222 1 (𝐶 ∈ ℝ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  wcel 2145  {csn 4316  cmpt 4863  wf 6025  cfv 6029  (class class class)co 6791  cc 10134  cr 10135  0cc0 10136   · cmul 10141  cmin 10466  NrmCVeccnv 27772   +𝑣 cpv 27773  BaseSetcba 27774   ·𝑠OLD cns 27775  ·𝑖OLDcdip 27888  CPreHilOLDccphlo 28000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-icc 12380  df-fz 12527  df-fzo 12667  df-seq 13002  df-exp 13061  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-clim 14420  df-sum 14618  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-cn 21245  df-cnp 21246  df-t1 21332  df-haus 21333  df-tx 21579  df-hmeo 21772  df-xms 22338  df-ms 22339  df-tms 22340  df-grpo 27680  df-gid 27681  df-ginv 27682  df-gdiv 27683  df-ablo 27732  df-vc 27747  df-nv 27780  df-va 27783  df-ba 27784  df-sm 27785  df-0v 27786  df-vs 27787  df-nmcv 27788  df-ims 27789  df-dip 27889  df-ph 28001
This theorem is referenced by:  ipasslem11  28028
  Copyright terms: Public domain W3C validator