Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipasslem9 | Structured version Visualization version GIF version |
Description: Lemma for ipassi 28922. Conclude from ipasslem8 28918 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ipasslem9.a | ⊢ 𝐴 ∈ 𝑋 |
ipasslem9.b | ⊢ 𝐵 ∈ 𝑋 |
Ref | Expression |
---|---|
ipasslem9 | ⊢ (𝐶 ∈ ℝ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7220 | . . . . . 6 ⊢ (𝑤 = 𝐶 → (𝑤𝑆𝐴) = (𝐶𝑆𝐴)) | |
2 | 1 | oveq1d 7228 | . . . . 5 ⊢ (𝑤 = 𝐶 → ((𝑤𝑆𝐴)𝑃𝐵) = ((𝐶𝑆𝐴)𝑃𝐵)) |
3 | oveq1 7220 | . . . . 5 ⊢ (𝑤 = 𝐶 → (𝑤 · (𝐴𝑃𝐵)) = (𝐶 · (𝐴𝑃𝐵))) | |
4 | 2, 3 | oveq12d 7231 | . . . 4 ⊢ (𝑤 = 𝐶 → (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))) = (((𝐶𝑆𝐴)𝑃𝐵) − (𝐶 · (𝐴𝑃𝐵)))) |
5 | eqid 2737 | . . . 4 ⊢ (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) | |
6 | ovex 7246 | . . . 4 ⊢ (((𝐶𝑆𝐴)𝑃𝐵) − (𝐶 · (𝐴𝑃𝐵))) ∈ V | |
7 | 4, 5, 6 | fvmpt 6818 | . . 3 ⊢ (𝐶 ∈ ℝ → ((𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))‘𝐶) = (((𝐶𝑆𝐴)𝑃𝐵) − (𝐶 · (𝐴𝑃𝐵)))) |
8 | ip1i.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
9 | ip1i.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
10 | ip1i.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
11 | ip1i.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
12 | ip1i.9 | . . . . 5 ⊢ 𝑈 ∈ CPreHilOLD | |
13 | ipasslem9.a | . . . . 5 ⊢ 𝐴 ∈ 𝑋 | |
14 | ipasslem9.b | . . . . 5 ⊢ 𝐵 ∈ 𝑋 | |
15 | 8, 9, 10, 11, 12, 13, 14, 5 | ipasslem8 28918 | . . . 4 ⊢ (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))):ℝ⟶{0} |
16 | fvconst 6979 | . . . 4 ⊢ (((𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))):ℝ⟶{0} ∧ 𝐶 ∈ ℝ) → ((𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))‘𝐶) = 0) | |
17 | 15, 16 | mpan 690 | . . 3 ⊢ (𝐶 ∈ ℝ → ((𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))‘𝐶) = 0) |
18 | 7, 17 | eqtr3d 2779 | . 2 ⊢ (𝐶 ∈ ℝ → (((𝐶𝑆𝐴)𝑃𝐵) − (𝐶 · (𝐴𝑃𝐵))) = 0) |
19 | recn 10819 | . . 3 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
20 | 12 | phnvi 28897 | . . . . . 6 ⊢ 𝑈 ∈ NrmCVec |
21 | 8, 10 | nvscl 28707 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (𝐶𝑆𝐴) ∈ 𝑋) |
22 | 20, 13, 21 | mp3an13 1454 | . . . . 5 ⊢ (𝐶 ∈ ℂ → (𝐶𝑆𝐴) ∈ 𝑋) |
23 | 8, 11 | dipcl 28793 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶𝑆𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) ∈ ℂ) |
24 | 20, 14, 23 | mp3an13 1454 | . . . . 5 ⊢ ((𝐶𝑆𝐴) ∈ 𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) ∈ ℂ) |
25 | 22, 24 | syl 17 | . . . 4 ⊢ (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) ∈ ℂ) |
26 | 8, 11 | dipcl 28793 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
27 | 20, 13, 14, 26 | mp3an 1463 | . . . . 5 ⊢ (𝐴𝑃𝐵) ∈ ℂ |
28 | mulcl 10813 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → (𝐶 · (𝐴𝑃𝐵)) ∈ ℂ) | |
29 | 27, 28 | mpan2 691 | . . . 4 ⊢ (𝐶 ∈ ℂ → (𝐶 · (𝐴𝑃𝐵)) ∈ ℂ) |
30 | 25, 29 | subeq0ad 11199 | . . 3 ⊢ (𝐶 ∈ ℂ → ((((𝐶𝑆𝐴)𝑃𝐵) − (𝐶 · (𝐴𝑃𝐵))) = 0 ↔ ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))) |
31 | 19, 30 | syl 17 | . 2 ⊢ (𝐶 ∈ ℝ → ((((𝐶𝑆𝐴)𝑃𝐵) − (𝐶 · (𝐴𝑃𝐵))) = 0 ↔ ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))) |
32 | 18, 31 | mpbid 235 | 1 ⊢ (𝐶 ∈ ℝ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 {csn 4541 ↦ cmpt 5135 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 ℝcr 10728 0cc0 10729 · cmul 10734 − cmin 11062 NrmCVeccnv 28665 +𝑣 cpv 28666 BaseSetcba 28667 ·𝑠OLD cns 28668 ·𝑖OLDcdip 28781 CPreHilOLDccphlo 28893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-icc 12942 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-sum 15250 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-pt 16949 df-prds 16952 df-xrs 17007 df-qtop 17012 df-imas 17013 df-xps 17015 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-mulg 18489 df-cntz 18711 df-cmn 19172 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-cnfld 20364 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-cn 22124 df-cnp 22125 df-t1 22211 df-haus 22212 df-tx 22459 df-hmeo 22652 df-xms 23218 df-ms 23219 df-tms 23220 df-grpo 28574 df-gid 28575 df-ginv 28576 df-gdiv 28577 df-ablo 28626 df-vc 28640 df-nv 28673 df-va 28676 df-ba 28677 df-sm 28678 df-0v 28679 df-vs 28680 df-nmcv 28681 df-ims 28682 df-dip 28782 df-ph 28894 |
This theorem is referenced by: ipasslem11 28921 |
Copyright terms: Public domain | W3C validator |