![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipasslem9 | Structured version Visualization version GIF version |
Description: Lemma for ipassi 30603. Conclude from ipasslem8 30599 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | β’ π = (BaseSetβπ) |
ip1i.2 | β’ πΊ = ( +π£ βπ) |
ip1i.4 | β’ π = ( Β·π OLD βπ) |
ip1i.7 | β’ π = (Β·πOLDβπ) |
ip1i.9 | β’ π β CPreHilOLD |
ipasslem9.a | β’ π΄ β π |
ipasslem9.b | β’ π΅ β π |
Ref | Expression |
---|---|
ipasslem9 | β’ (πΆ β β β ((πΆππ΄)ππ΅) = (πΆ Β· (π΄ππ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7412 | . . . . . 6 β’ (π€ = πΆ β (π€ππ΄) = (πΆππ΄)) | |
2 | 1 | oveq1d 7420 | . . . . 5 β’ (π€ = πΆ β ((π€ππ΄)ππ΅) = ((πΆππ΄)ππ΅)) |
3 | oveq1 7412 | . . . . 5 β’ (π€ = πΆ β (π€ Β· (π΄ππ΅)) = (πΆ Β· (π΄ππ΅))) | |
4 | 2, 3 | oveq12d 7423 | . . . 4 β’ (π€ = πΆ β (((π€ππ΄)ππ΅) β (π€ Β· (π΄ππ΅))) = (((πΆππ΄)ππ΅) β (πΆ Β· (π΄ππ΅)))) |
5 | eqid 2726 | . . . 4 β’ (π€ β β β¦ (((π€ππ΄)ππ΅) β (π€ Β· (π΄ππ΅)))) = (π€ β β β¦ (((π€ππ΄)ππ΅) β (π€ Β· (π΄ππ΅)))) | |
6 | ovex 7438 | . . . 4 β’ (((πΆππ΄)ππ΅) β (πΆ Β· (π΄ππ΅))) β V | |
7 | 4, 5, 6 | fvmpt 6992 | . . 3 β’ (πΆ β β β ((π€ β β β¦ (((π€ππ΄)ππ΅) β (π€ Β· (π΄ππ΅))))βπΆ) = (((πΆππ΄)ππ΅) β (πΆ Β· (π΄ππ΅)))) |
8 | ip1i.1 | . . . . 5 β’ π = (BaseSetβπ) | |
9 | ip1i.2 | . . . . 5 β’ πΊ = ( +π£ βπ) | |
10 | ip1i.4 | . . . . 5 β’ π = ( Β·π OLD βπ) | |
11 | ip1i.7 | . . . . 5 β’ π = (Β·πOLDβπ) | |
12 | ip1i.9 | . . . . 5 β’ π β CPreHilOLD | |
13 | ipasslem9.a | . . . . 5 β’ π΄ β π | |
14 | ipasslem9.b | . . . . 5 β’ π΅ β π | |
15 | 8, 9, 10, 11, 12, 13, 14, 5 | ipasslem8 30599 | . . . 4 β’ (π€ β β β¦ (((π€ππ΄)ππ΅) β (π€ Β· (π΄ππ΅)))):ββΆ{0} |
16 | fvconst 7158 | . . . 4 β’ (((π€ β β β¦ (((π€ππ΄)ππ΅) β (π€ Β· (π΄ππ΅)))):ββΆ{0} β§ πΆ β β) β ((π€ β β β¦ (((π€ππ΄)ππ΅) β (π€ Β· (π΄ππ΅))))βπΆ) = 0) | |
17 | 15, 16 | mpan 687 | . . 3 β’ (πΆ β β β ((π€ β β β¦ (((π€ππ΄)ππ΅) β (π€ Β· (π΄ππ΅))))βπΆ) = 0) |
18 | 7, 17 | eqtr3d 2768 | . 2 β’ (πΆ β β β (((πΆππ΄)ππ΅) β (πΆ Β· (π΄ππ΅))) = 0) |
19 | recn 11202 | . . 3 β’ (πΆ β β β πΆ β β) | |
20 | 12 | phnvi 30578 | . . . . . 6 β’ π β NrmCVec |
21 | 8, 10 | nvscl 30388 | . . . . . 6 β’ ((π β NrmCVec β§ πΆ β β β§ π΄ β π) β (πΆππ΄) β π) |
22 | 20, 13, 21 | mp3an13 1448 | . . . . 5 β’ (πΆ β β β (πΆππ΄) β π) |
23 | 8, 11 | dipcl 30474 | . . . . . 6 β’ ((π β NrmCVec β§ (πΆππ΄) β π β§ π΅ β π) β ((πΆππ΄)ππ΅) β β) |
24 | 20, 14, 23 | mp3an13 1448 | . . . . 5 β’ ((πΆππ΄) β π β ((πΆππ΄)ππ΅) β β) |
25 | 22, 24 | syl 17 | . . . 4 β’ (πΆ β β β ((πΆππ΄)ππ΅) β β) |
26 | 8, 11 | dipcl 30474 | . . . . . 6 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄ππ΅) β β) |
27 | 20, 13, 14, 26 | mp3an 1457 | . . . . 5 β’ (π΄ππ΅) β β |
28 | mulcl 11196 | . . . . 5 β’ ((πΆ β β β§ (π΄ππ΅) β β) β (πΆ Β· (π΄ππ΅)) β β) | |
29 | 27, 28 | mpan2 688 | . . . 4 β’ (πΆ β β β (πΆ Β· (π΄ππ΅)) β β) |
30 | 25, 29 | subeq0ad 11585 | . . 3 β’ (πΆ β β β ((((πΆππ΄)ππ΅) β (πΆ Β· (π΄ππ΅))) = 0 β ((πΆππ΄)ππ΅) = (πΆ Β· (π΄ππ΅)))) |
31 | 19, 30 | syl 17 | . 2 β’ (πΆ β β β ((((πΆππ΄)ππ΅) β (πΆ Β· (π΄ππ΅))) = 0 β ((πΆππ΄)ππ΅) = (πΆ Β· (π΄ππ΅)))) |
32 | 18, 31 | mpbid 231 | 1 β’ (πΆ β β β ((πΆππ΄)ππ΅) = (πΆ Β· (π΄ππ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 {csn 4623 β¦ cmpt 5224 βΆwf 6533 βcfv 6537 (class class class)co 7405 βcc 11110 βcr 11111 0cc0 11112 Β· cmul 11117 β cmin 11448 NrmCVeccnv 30346 +π£ cpv 30347 BaseSetcba 30348 Β·π OLD cns 30349 Β·πOLDcdip 30462 CPreHilOLDccphlo 30574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13334 df-icc 13337 df-fz 13491 df-fzo 13634 df-seq 13973 df-exp 14033 df-hash 14296 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-sum 15639 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-hom 17230 df-cco 17231 df-rest 17377 df-topn 17378 df-0g 17396 df-gsum 17397 df-topgen 17398 df-pt 17399 df-prds 17402 df-xrs 17457 df-qtop 17462 df-imas 17463 df-xps 17465 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18714 df-mulg 18996 df-cntz 19233 df-cmn 19702 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-cnfld 21241 df-top 22751 df-topon 22768 df-topsp 22790 df-bases 22804 df-cld 22878 df-ntr 22879 df-cls 22880 df-cn 23086 df-cnp 23087 df-t1 23173 df-haus 23174 df-tx 23421 df-hmeo 23614 df-xms 24181 df-ms 24182 df-tms 24183 df-grpo 30255 df-gid 30256 df-ginv 30257 df-gdiv 30258 df-ablo 30307 df-vc 30321 df-nv 30354 df-va 30357 df-ba 30358 df-sm 30359 df-0v 30360 df-vs 30361 df-nmcv 30362 df-ims 30363 df-dip 30463 df-ph 30575 |
This theorem is referenced by: ipasslem11 30602 |
Copyright terms: Public domain | W3C validator |