MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip1ilem Structured version   Visualization version   GIF version

Theorem ip1ilem 28253
Description: Lemma for ip1i 28254. (Contributed by NM, 21-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip1i.a 𝐴𝑋
ip1i.b 𝐵𝑋
ip1i.c 𝐶𝑋
ip1i.6 𝑁 = (normCV𝑈)
ip0i.j 𝐽 ∈ ℂ
Assertion
Ref Expression
ip1ilem (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶))

Proof of Theorem ip1ilem
StepHypRef Expression
1 ip1i.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
21phnvi 28243 . . . . . 6 𝑈 ∈ NrmCVec
3 ip1i.a . . . . . 6 𝐴𝑋
4 ip1i.c . . . . . 6 𝐶𝑋
5 ip1i.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
6 ip1i.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
7 ip1i.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
8 ip1i.6 . . . . . . 7 𝑁 = (normCV𝑈)
9 ip1i.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
105, 6, 7, 8, 94ipval2 28135 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (4 · (𝐴𝑃𝐶)) = ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
112, 3, 4, 10mp3an 1534 . . . . 5 (4 · (𝐴𝑃𝐶)) = ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
1211oveq2i 6933 . . . 4 (2 · (4 · (𝐴𝑃𝐶))) = (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
13 2cn 11450 . . . . 5 2 ∈ ℂ
14 4cn 11461 . . . . 5 4 ∈ ℂ
155, 9dipcl 28139 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑃𝐶) ∈ ℂ)
162, 3, 4, 15mp3an 1534 . . . . 5 (𝐴𝑃𝐶) ∈ ℂ
1713, 14, 16mul12i 10571 . . . 4 (2 · (4 · (𝐴𝑃𝐶))) = (4 · (2 · (𝐴𝑃𝐶)))
185, 6nvgcl 28047 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐺𝐶) ∈ 𝑋)
192, 3, 4, 18mp3an 1534 . . . . . . . . . . 11 (𝐴𝐺𝐶) ∈ 𝑋
205, 8, 2, 19nvcli 28089 . . . . . . . . . 10 (𝑁‘(𝐴𝐺𝐶)) ∈ ℝ
2120resqcli 13268 . . . . . . . . 9 ((𝑁‘(𝐴𝐺𝐶))↑2) ∈ ℝ
2221recni 10391 . . . . . . . 8 ((𝑁‘(𝐴𝐺𝐶))↑2) ∈ ℂ
23 ax-1cn 10330 . . . . . . . . . . . . . 14 1 ∈ ℂ
2423negcli 10691 . . . . . . . . . . . . 13 -1 ∈ ℂ
255, 7nvscl 28053 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐶𝑋) → (-1𝑆𝐶) ∈ 𝑋)
262, 24, 4, 25mp3an 1534 . . . . . . . . . . . 12 (-1𝑆𝐶) ∈ 𝑋
275, 6nvgcl 28047 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐶)) ∈ 𝑋)
282, 3, 26, 27mp3an 1534 . . . . . . . . . . 11 (𝐴𝐺(-1𝑆𝐶)) ∈ 𝑋
295, 8, 2, 28nvcli 28089 . . . . . . . . . 10 (𝑁‘(𝐴𝐺(-1𝑆𝐶))) ∈ ℝ
3029resqcli 13268 . . . . . . . . 9 ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2) ∈ ℝ
3130recni 10391 . . . . . . . 8 ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2) ∈ ℂ
3222, 31subcli 10699 . . . . . . 7 (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) ∈ ℂ
33 ax-icn 10331 . . . . . . . 8 i ∈ ℂ
345, 7nvscl 28053 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐶𝑋) → (i𝑆𝐶) ∈ 𝑋)
352, 33, 4, 34mp3an 1534 . . . . . . . . . . . . 13 (i𝑆𝐶) ∈ 𝑋
365, 6nvgcl 28047 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (i𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(i𝑆𝐶)) ∈ 𝑋)
372, 3, 35, 36mp3an 1534 . . . . . . . . . . . 12 (𝐴𝐺(i𝑆𝐶)) ∈ 𝑋
385, 8, 2, 37nvcli 28089 . . . . . . . . . . 11 (𝑁‘(𝐴𝐺(i𝑆𝐶))) ∈ ℝ
3938resqcli 13268 . . . . . . . . . 10 ((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) ∈ ℝ
4039recni 10391 . . . . . . . . 9 ((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) ∈ ℂ
4133negcli 10691 . . . . . . . . . . . . . 14 -i ∈ ℂ
425, 7nvscl 28053 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ ∧ 𝐶𝑋) → (-i𝑆𝐶) ∈ 𝑋)
432, 41, 4, 42mp3an 1534 . . . . . . . . . . . . 13 (-i𝑆𝐶) ∈ 𝑋
445, 6nvgcl 28047 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-i𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(-i𝑆𝐶)) ∈ 𝑋)
452, 3, 43, 44mp3an 1534 . . . . . . . . . . . 12 (𝐴𝐺(-i𝑆𝐶)) ∈ 𝑋
465, 8, 2, 45nvcli 28089 . . . . . . . . . . 11 (𝑁‘(𝐴𝐺(-i𝑆𝐶))) ∈ ℝ
4746resqcli 13268 . . . . . . . . . 10 ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2) ∈ ℝ
4847recni 10391 . . . . . . . . 9 ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2) ∈ ℂ
4940, 48subcli 10699 . . . . . . . 8 (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)) ∈ ℂ
5033, 49mulcli 10384 . . . . . . 7 (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))) ∈ ℂ
5113, 32, 50adddii 10389 . . . . . 6 (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))) = ((2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))) + (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
52 ip1i.b . . . . . . . . 9 𝐵𝑋
535, 6, 7, 9, 1, 3, 52, 4, 8, 23ip0i 28252 . . . . . . . 8 ((((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)))
545, 7nvsid 28054 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋) → (1𝑆𝐶) = 𝐶)
552, 4, 54mp2an 682 . . . . . . . . . . . . 13 (1𝑆𝐶) = 𝐶
5655oveq2i 6933 . . . . . . . . . . . 12 ((𝐴𝐺𝐵)𝐺(1𝑆𝐶)) = ((𝐴𝐺𝐵)𝐺𝐶)
5756fveq2i 6449 . . . . . . . . . . 11 (𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶))) = (𝑁‘((𝐴𝐺𝐵)𝐺𝐶))
5857oveq1i 6932 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2)
5958oveq1i 6932 . . . . . . . . 9 (((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2))
6055oveq2i 6933 . . . . . . . . . . . 12 ((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)) = ((𝐴𝐺(-1𝑆𝐵))𝐺𝐶)
6160fveq2i 6449 . . . . . . . . . . 11 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶))) = (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))
6261oveq1i 6932 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2)
6362oveq1i 6932 . . . . . . . . 9 (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))
6459, 63oveq12i 6934 . . . . . . . 8 ((((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) = ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)))
6555oveq2i 6933 . . . . . . . . . . . 12 (𝐴𝐺(1𝑆𝐶)) = (𝐴𝐺𝐶)
6665fveq2i 6449 . . . . . . . . . . 11 (𝑁‘(𝐴𝐺(1𝑆𝐶))) = (𝑁‘(𝐴𝐺𝐶))
6766oveq1i 6932 . . . . . . . . . 10 ((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) = ((𝑁‘(𝐴𝐺𝐶))↑2)
6867oveq1i 6932 . . . . . . . . 9 (((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) = (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))
6968oveq2i 6933 . . . . . . . 8 (2 · (((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)))
7053, 64, 693eqtr3i 2809 . . . . . . 7 ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)))
715, 6, 7, 9, 1, 3, 52, 4, 8, 33ip0i 28252 . . . . . . . . 9 ((((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))
7271oveq2i 6933 . . . . . . . 8 (i · ((((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))) = (i · (2 · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
735, 6nvgcl 28047 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
742, 3, 52, 73mp3an 1534 . . . . . . . . . . . . . 14 (𝐴𝐺𝐵) ∈ 𝑋
755, 6nvgcl 28047 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(i𝑆𝐶)) ∈ 𝑋)
762, 74, 35, 75mp3an 1534 . . . . . . . . . . . . 13 ((𝐴𝐺𝐵)𝐺(i𝑆𝐶)) ∈ 𝑋
775, 8, 2, 76nvcli 28089 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶))) ∈ ℝ
7877resqcli 13268 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) ∈ ℝ
7978recni 10391 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) ∈ ℂ
805, 6nvgcl 28047 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (-i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)) ∈ 𝑋)
812, 74, 43, 80mp3an 1534 . . . . . . . . . . . . 13 ((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)) ∈ 𝑋
825, 8, 2, 81nvcli 28089 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶))) ∈ ℝ
8382resqcli 13268 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2) ∈ ℝ
8483recni 10391 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2) ∈ ℂ
8579, 84subcli 10699 . . . . . . . . 9 (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) ∈ ℂ
865, 7nvscl 28053 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
872, 24, 52, 86mp3an 1534 . . . . . . . . . . . . . . 15 (-1𝑆𝐵) ∈ 𝑋
885, 6nvgcl 28047 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
892, 3, 87, 88mp3an 1534 . . . . . . . . . . . . . 14 (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋
905, 6nvgcl 28047 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)) ∈ 𝑋)
912, 89, 35, 90mp3an 1534 . . . . . . . . . . . . 13 ((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)) ∈ 𝑋
925, 8, 2, 91nvcli 28089 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶))) ∈ ℝ
9392resqcli 13268 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) ∈ ℝ
9493recni 10391 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) ∈ ℂ
955, 6nvgcl 28047 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (-i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)) ∈ 𝑋)
962, 89, 43, 95mp3an 1534 . . . . . . . . . . . . 13 ((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)) ∈ 𝑋
975, 8, 2, 96nvcli 28089 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶))) ∈ ℝ
9897resqcli 13268 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2) ∈ ℝ
9998recni 10391 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2) ∈ ℂ
10094, 99subcli 10699 . . . . . . . . 9 (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)) ∈ ℂ
10133, 85, 100adddii 10389 . . . . . . . 8 (i · ((((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))) = ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))
10233, 13, 49mul12i 10571 . . . . . . . 8 (i · (2 · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))) = (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
10372, 101, 1023eqtr3i 2809 . . . . . . 7 ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))) = (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
10470, 103oveq12i 6934 . . . . . 6 (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) + ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))) = ((2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))) + (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
10551, 104eqtr4i 2804 . . . . 5 (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))) = (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) + ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
1065, 6nvgcl 28047 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝐺𝐶) ∈ 𝑋)
1072, 74, 4, 106mp3an 1534 . . . . . . . . . 10 ((𝐴𝐺𝐵)𝐺𝐶) ∈ 𝑋
1085, 8, 2, 107nvcli 28089 . . . . . . . . 9 (𝑁‘((𝐴𝐺𝐵)𝐺𝐶)) ∈ ℝ
109108resqcli 13268 . . . . . . . 8 ((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) ∈ ℝ
110109recni 10391 . . . . . . 7 ((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) ∈ ℂ
1115, 6nvgcl 28047 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)) ∈ 𝑋)
1122, 74, 26, 111mp3an 1534 . . . . . . . . . 10 ((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)) ∈ 𝑋
1135, 8, 2, 112nvcli 28089 . . . . . . . . 9 (𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶))) ∈ ℝ
114113resqcli 13268 . . . . . . . 8 ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2) ∈ ℝ
115114recni 10391 . . . . . . 7 ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2) ∈ ℂ
116110, 115subcli 10699 . . . . . 6 (((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) ∈ ℂ
1175, 6nvgcl 28047 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐶) ∈ 𝑋)
1182, 89, 4, 117mp3an 1534 . . . . . . . . . 10 ((𝐴𝐺(-1𝑆𝐵))𝐺𝐶) ∈ 𝑋
1195, 8, 2, 118nvcli 28089 . . . . . . . . 9 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶)) ∈ ℝ
120119resqcli 13268 . . . . . . . 8 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) ∈ ℝ
121120recni 10391 . . . . . . 7 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) ∈ ℂ
1225, 6nvgcl 28047 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)) ∈ 𝑋)
1232, 89, 26, 122mp3an 1534 . . . . . . . . . 10 ((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)) ∈ 𝑋
1245, 8, 2, 123nvcli 28089 . . . . . . . . 9 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶))) ∈ ℝ
125124resqcli 13268 . . . . . . . 8 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2) ∈ ℝ
126125recni 10391 . . . . . . 7 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2) ∈ ℂ
127121, 126subcli 10699 . . . . . 6 (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) ∈ ℂ
12833, 85mulcli 10384 . . . . . 6 (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) ∈ ℂ
12933, 100mulcli 10384 . . . . . 6 (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))) ∈ ℂ
130116, 127, 128, 129add4i 10600 . . . . 5 (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) + ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))) = (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))) + ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
1315, 9dipcl 28139 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) ∈ ℂ)
1322, 74, 4, 131mp3an 1534 . . . . . . 7 ((𝐴𝐺𝐵)𝑃𝐶) ∈ ℂ
1335, 9dipcl 28139 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶) ∈ ℂ)
1342, 89, 4, 133mp3an 1534 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶) ∈ ℂ
13514, 132, 134adddii 10389 . . . . . 6 (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) = ((4 · ((𝐴𝐺𝐵)𝑃𝐶)) + (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)))
1365, 6, 7, 8, 94ipval2 28135 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → (4 · ((𝐴𝐺𝐵)𝑃𝐶)) = ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))))
1372, 74, 4, 136mp3an 1534 . . . . . . 7 (4 · ((𝐴𝐺𝐵)𝑃𝐶)) = ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))))
1385, 6, 7, 8, 94ipval2 28135 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐶𝑋) → (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
1392, 89, 4, 138mp3an 1534 . . . . . . 7 (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))
140137, 139oveq12i 6934 . . . . . 6 ((4 · ((𝐴𝐺𝐵)𝑃𝐶)) + (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) = (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))) + ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
141135, 140eqtr2i 2802 . . . . 5 (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))) + ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))) = (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)))
142105, 130, 1413eqtri 2805 . . . 4 (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))) = (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)))
14312, 17, 1423eqtr3ri 2810 . . 3 (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) = (4 · (2 · (𝐴𝑃𝐶)))
144143oveq1i 6932 . 2 ((4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) / 4) = ((4 · (2 · (𝐴𝑃𝐶))) / 4)
145132, 134addcli 10383 . . 3 (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) ∈ ℂ
146 4ne0 11490 . . 3 4 ≠ 0
147145, 14, 146divcan3i 11121 . 2 ((4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) / 4) = (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))
14813, 16mulcli 10384 . . 3 (2 · (𝐴𝑃𝐶)) ∈ ℂ
149148, 14, 146divcan3i 11121 . 2 ((4 · (2 · (𝐴𝑃𝐶))) / 4) = (2 · (𝐴𝑃𝐶))
150144, 147, 1493eqtr3i 2809 1 (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wcel 2106  cfv 6135  (class class class)co 6922  cc 10270  1c1 10273  ici 10274   + caddc 10275   · cmul 10277  cmin 10606  -cneg 10607   / cdiv 11032  2c2 11430  4c4 11432  cexp 13178  NrmCVeccnv 28011   +𝑣 cpv 28012  BaseSetcba 28013   ·𝑠OLD cns 28014  normCVcnmcv 28017  ·𝑖OLDcdip 28127  CPreHilOLDccphlo 28239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-grpo 27920  df-ablo 27972  df-vc 27986  df-nv 28019  df-va 28022  df-ba 28023  df-sm 28024  df-0v 28025  df-nmcv 28027  df-dip 28128  df-ph 28240
This theorem is referenced by:  ip1i  28254
  Copyright terms: Public domain W3C validator