MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip1ilem Structured version   Visualization version   GIF version

Theorem ip1ilem 30855
Description: Lemma for ip1i 30856. (Contributed by NM, 21-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip1i.a 𝐴𝑋
ip1i.b 𝐵𝑋
ip1i.c 𝐶𝑋
ip1i.6 𝑁 = (normCV𝑈)
ip0i.j 𝐽 ∈ ℂ
Assertion
Ref Expression
ip1ilem (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶))

Proof of Theorem ip1ilem
StepHypRef Expression
1 ip1i.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
21phnvi 30845 . . . . . 6 𝑈 ∈ NrmCVec
3 ip1i.a . . . . . 6 𝐴𝑋
4 ip1i.c . . . . . 6 𝐶𝑋
5 ip1i.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
6 ip1i.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
7 ip1i.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
8 ip1i.6 . . . . . . 7 𝑁 = (normCV𝑈)
9 ip1i.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
105, 6, 7, 8, 94ipval2 30737 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (4 · (𝐴𝑃𝐶)) = ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
112, 3, 4, 10mp3an 1460 . . . . 5 (4 · (𝐴𝑃𝐶)) = ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
1211oveq2i 7442 . . . 4 (2 · (4 · (𝐴𝑃𝐶))) = (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
13 2cn 12339 . . . . 5 2 ∈ ℂ
14 4cn 12349 . . . . 5 4 ∈ ℂ
155, 9dipcl 30741 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑃𝐶) ∈ ℂ)
162, 3, 4, 15mp3an 1460 . . . . 5 (𝐴𝑃𝐶) ∈ ℂ
1713, 14, 16mul12i 11454 . . . 4 (2 · (4 · (𝐴𝑃𝐶))) = (4 · (2 · (𝐴𝑃𝐶)))
185, 6nvgcl 30649 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐺𝐶) ∈ 𝑋)
192, 3, 4, 18mp3an 1460 . . . . . . . . . . 11 (𝐴𝐺𝐶) ∈ 𝑋
205, 8, 2, 19nvcli 30691 . . . . . . . . . 10 (𝑁‘(𝐴𝐺𝐶)) ∈ ℝ
2120resqcli 14222 . . . . . . . . 9 ((𝑁‘(𝐴𝐺𝐶))↑2) ∈ ℝ
2221recni 11273 . . . . . . . 8 ((𝑁‘(𝐴𝐺𝐶))↑2) ∈ ℂ
23 ax-1cn 11211 . . . . . . . . . . . . . 14 1 ∈ ℂ
2423negcli 11575 . . . . . . . . . . . . 13 -1 ∈ ℂ
255, 7nvscl 30655 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐶𝑋) → (-1𝑆𝐶) ∈ 𝑋)
262, 24, 4, 25mp3an 1460 . . . . . . . . . . . 12 (-1𝑆𝐶) ∈ 𝑋
275, 6nvgcl 30649 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐶)) ∈ 𝑋)
282, 3, 26, 27mp3an 1460 . . . . . . . . . . 11 (𝐴𝐺(-1𝑆𝐶)) ∈ 𝑋
295, 8, 2, 28nvcli 30691 . . . . . . . . . 10 (𝑁‘(𝐴𝐺(-1𝑆𝐶))) ∈ ℝ
3029resqcli 14222 . . . . . . . . 9 ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2) ∈ ℝ
3130recni 11273 . . . . . . . 8 ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2) ∈ ℂ
3222, 31subcli 11583 . . . . . . 7 (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) ∈ ℂ
33 ax-icn 11212 . . . . . . . 8 i ∈ ℂ
345, 7nvscl 30655 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐶𝑋) → (i𝑆𝐶) ∈ 𝑋)
352, 33, 4, 34mp3an 1460 . . . . . . . . . . . . 13 (i𝑆𝐶) ∈ 𝑋
365, 6nvgcl 30649 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (i𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(i𝑆𝐶)) ∈ 𝑋)
372, 3, 35, 36mp3an 1460 . . . . . . . . . . . 12 (𝐴𝐺(i𝑆𝐶)) ∈ 𝑋
385, 8, 2, 37nvcli 30691 . . . . . . . . . . 11 (𝑁‘(𝐴𝐺(i𝑆𝐶))) ∈ ℝ
3938resqcli 14222 . . . . . . . . . 10 ((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) ∈ ℝ
4039recni 11273 . . . . . . . . 9 ((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) ∈ ℂ
4133negcli 11575 . . . . . . . . . . . . . 14 -i ∈ ℂ
425, 7nvscl 30655 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ ∧ 𝐶𝑋) → (-i𝑆𝐶) ∈ 𝑋)
432, 41, 4, 42mp3an 1460 . . . . . . . . . . . . 13 (-i𝑆𝐶) ∈ 𝑋
445, 6nvgcl 30649 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-i𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(-i𝑆𝐶)) ∈ 𝑋)
452, 3, 43, 44mp3an 1460 . . . . . . . . . . . 12 (𝐴𝐺(-i𝑆𝐶)) ∈ 𝑋
465, 8, 2, 45nvcli 30691 . . . . . . . . . . 11 (𝑁‘(𝐴𝐺(-i𝑆𝐶))) ∈ ℝ
4746resqcli 14222 . . . . . . . . . 10 ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2) ∈ ℝ
4847recni 11273 . . . . . . . . 9 ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2) ∈ ℂ
4940, 48subcli 11583 . . . . . . . 8 (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)) ∈ ℂ
5033, 49mulcli 11266 . . . . . . 7 (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))) ∈ ℂ
5113, 32, 50adddii 11271 . . . . . 6 (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))) = ((2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))) + (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
52 ip1i.b . . . . . . . . 9 𝐵𝑋
535, 6, 7, 9, 1, 3, 52, 4, 8, 23ip0i 30854 . . . . . . . 8 ((((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)))
545, 7nvsid 30656 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋) → (1𝑆𝐶) = 𝐶)
552, 4, 54mp2an 692 . . . . . . . . . . . . 13 (1𝑆𝐶) = 𝐶
5655oveq2i 7442 . . . . . . . . . . . 12 ((𝐴𝐺𝐵)𝐺(1𝑆𝐶)) = ((𝐴𝐺𝐵)𝐺𝐶)
5756fveq2i 6910 . . . . . . . . . . 11 (𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶))) = (𝑁‘((𝐴𝐺𝐵)𝐺𝐶))
5857oveq1i 7441 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2)
5958oveq1i 7441 . . . . . . . . 9 (((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2))
6055oveq2i 7442 . . . . . . . . . . . 12 ((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)) = ((𝐴𝐺(-1𝑆𝐵))𝐺𝐶)
6160fveq2i 6910 . . . . . . . . . . 11 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶))) = (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))
6261oveq1i 7441 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2)
6362oveq1i 7441 . . . . . . . . 9 (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))
6459, 63oveq12i 7443 . . . . . . . 8 ((((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) = ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)))
6555oveq2i 7442 . . . . . . . . . . . 12 (𝐴𝐺(1𝑆𝐶)) = (𝐴𝐺𝐶)
6665fveq2i 6910 . . . . . . . . . . 11 (𝑁‘(𝐴𝐺(1𝑆𝐶))) = (𝑁‘(𝐴𝐺𝐶))
6766oveq1i 7441 . . . . . . . . . 10 ((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) = ((𝑁‘(𝐴𝐺𝐶))↑2)
6867oveq1i 7441 . . . . . . . . 9 (((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) = (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))
6968oveq2i 7442 . . . . . . . 8 (2 · (((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)))
7053, 64, 693eqtr3i 2771 . . . . . . 7 ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)))
715, 6, 7, 9, 1, 3, 52, 4, 8, 33ip0i 30854 . . . . . . . . 9 ((((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))
7271oveq2i 7442 . . . . . . . 8 (i · ((((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))) = (i · (2 · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
735, 6nvgcl 30649 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
742, 3, 52, 73mp3an 1460 . . . . . . . . . . . . . 14 (𝐴𝐺𝐵) ∈ 𝑋
755, 6nvgcl 30649 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(i𝑆𝐶)) ∈ 𝑋)
762, 74, 35, 75mp3an 1460 . . . . . . . . . . . . 13 ((𝐴𝐺𝐵)𝐺(i𝑆𝐶)) ∈ 𝑋
775, 8, 2, 76nvcli 30691 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶))) ∈ ℝ
7877resqcli 14222 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) ∈ ℝ
7978recni 11273 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) ∈ ℂ
805, 6nvgcl 30649 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (-i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)) ∈ 𝑋)
812, 74, 43, 80mp3an 1460 . . . . . . . . . . . . 13 ((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)) ∈ 𝑋
825, 8, 2, 81nvcli 30691 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶))) ∈ ℝ
8382resqcli 14222 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2) ∈ ℝ
8483recni 11273 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2) ∈ ℂ
8579, 84subcli 11583 . . . . . . . . 9 (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) ∈ ℂ
865, 7nvscl 30655 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
872, 24, 52, 86mp3an 1460 . . . . . . . . . . . . . . 15 (-1𝑆𝐵) ∈ 𝑋
885, 6nvgcl 30649 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
892, 3, 87, 88mp3an 1460 . . . . . . . . . . . . . 14 (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋
905, 6nvgcl 30649 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)) ∈ 𝑋)
912, 89, 35, 90mp3an 1460 . . . . . . . . . . . . 13 ((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)) ∈ 𝑋
925, 8, 2, 91nvcli 30691 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶))) ∈ ℝ
9392resqcli 14222 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) ∈ ℝ
9493recni 11273 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) ∈ ℂ
955, 6nvgcl 30649 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (-i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)) ∈ 𝑋)
962, 89, 43, 95mp3an 1460 . . . . . . . . . . . . 13 ((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)) ∈ 𝑋
975, 8, 2, 96nvcli 30691 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶))) ∈ ℝ
9897resqcli 14222 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2) ∈ ℝ
9998recni 11273 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2) ∈ ℂ
10094, 99subcli 11583 . . . . . . . . 9 (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)) ∈ ℂ
10133, 85, 100adddii 11271 . . . . . . . 8 (i · ((((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))) = ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))
10233, 13, 49mul12i 11454 . . . . . . . 8 (i · (2 · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))) = (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
10372, 101, 1023eqtr3i 2771 . . . . . . 7 ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))) = (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
10470, 103oveq12i 7443 . . . . . 6 (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) + ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))) = ((2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))) + (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
10551, 104eqtr4i 2766 . . . . 5 (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))) = (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) + ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
1065, 6nvgcl 30649 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝐺𝐶) ∈ 𝑋)
1072, 74, 4, 106mp3an 1460 . . . . . . . . . 10 ((𝐴𝐺𝐵)𝐺𝐶) ∈ 𝑋
1085, 8, 2, 107nvcli 30691 . . . . . . . . 9 (𝑁‘((𝐴𝐺𝐵)𝐺𝐶)) ∈ ℝ
109108resqcli 14222 . . . . . . . 8 ((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) ∈ ℝ
110109recni 11273 . . . . . . 7 ((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) ∈ ℂ
1115, 6nvgcl 30649 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)) ∈ 𝑋)
1122, 74, 26, 111mp3an 1460 . . . . . . . . . 10 ((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)) ∈ 𝑋
1135, 8, 2, 112nvcli 30691 . . . . . . . . 9 (𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶))) ∈ ℝ
114113resqcli 14222 . . . . . . . 8 ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2) ∈ ℝ
115114recni 11273 . . . . . . 7 ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2) ∈ ℂ
116110, 115subcli 11583 . . . . . 6 (((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) ∈ ℂ
1175, 6nvgcl 30649 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐶) ∈ 𝑋)
1182, 89, 4, 117mp3an 1460 . . . . . . . . . 10 ((𝐴𝐺(-1𝑆𝐵))𝐺𝐶) ∈ 𝑋
1195, 8, 2, 118nvcli 30691 . . . . . . . . 9 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶)) ∈ ℝ
120119resqcli 14222 . . . . . . . 8 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) ∈ ℝ
121120recni 11273 . . . . . . 7 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) ∈ ℂ
1225, 6nvgcl 30649 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)) ∈ 𝑋)
1232, 89, 26, 122mp3an 1460 . . . . . . . . . 10 ((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)) ∈ 𝑋
1245, 8, 2, 123nvcli 30691 . . . . . . . . 9 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶))) ∈ ℝ
125124resqcli 14222 . . . . . . . 8 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2) ∈ ℝ
126125recni 11273 . . . . . . 7 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2) ∈ ℂ
127121, 126subcli 11583 . . . . . 6 (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) ∈ ℂ
12833, 85mulcli 11266 . . . . . 6 (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) ∈ ℂ
12933, 100mulcli 11266 . . . . . 6 (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))) ∈ ℂ
130116, 127, 128, 129add4i 11484 . . . . 5 (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) + ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))) = (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))) + ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
1315, 9dipcl 30741 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) ∈ ℂ)
1322, 74, 4, 131mp3an 1460 . . . . . . 7 ((𝐴𝐺𝐵)𝑃𝐶) ∈ ℂ
1335, 9dipcl 30741 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶) ∈ ℂ)
1342, 89, 4, 133mp3an 1460 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶) ∈ ℂ
13514, 132, 134adddii 11271 . . . . . 6 (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) = ((4 · ((𝐴𝐺𝐵)𝑃𝐶)) + (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)))
1365, 6, 7, 8, 94ipval2 30737 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → (4 · ((𝐴𝐺𝐵)𝑃𝐶)) = ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))))
1372, 74, 4, 136mp3an 1460 . . . . . . 7 (4 · ((𝐴𝐺𝐵)𝑃𝐶)) = ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))))
1385, 6, 7, 8, 94ipval2 30737 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐶𝑋) → (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
1392, 89, 4, 138mp3an 1460 . . . . . . 7 (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))
140137, 139oveq12i 7443 . . . . . 6 ((4 · ((𝐴𝐺𝐵)𝑃𝐶)) + (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) = (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))) + ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
141135, 140eqtr2i 2764 . . . . 5 (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))) + ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))) = (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)))
142105, 130, 1413eqtri 2767 . . . 4 (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))) = (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)))
14312, 17, 1423eqtr3ri 2772 . . 3 (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) = (4 · (2 · (𝐴𝑃𝐶)))
144143oveq1i 7441 . 2 ((4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) / 4) = ((4 · (2 · (𝐴𝑃𝐶))) / 4)
145132, 134addcli 11265 . . 3 (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) ∈ ℂ
146 4ne0 12372 . . 3 4 ≠ 0
147145, 14, 146divcan3i 12011 . 2 ((4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) / 4) = (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))
14813, 16mulcli 11266 . . 3 (2 · (𝐴𝑃𝐶)) ∈ ℂ
149148, 14, 146divcan3i 12011 . 2 ((4 · (2 · (𝐴𝑃𝐶))) / 4) = (2 · (𝐴𝑃𝐶))
150144, 147, 1493eqtr3i 2771 1 (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  cc 11151  1c1 11154  ici 11155   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  4c4 12321  cexp 14099  NrmCVeccnv 30613   +𝑣 cpv 30614  BaseSetcba 30615   ·𝑠OLD cns 30616  normCVcnmcv 30619  ·𝑖OLDcdip 30729  CPreHilOLDccphlo 30841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-grpo 30522  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-nmcv 30629  df-dip 30730  df-ph 30842
This theorem is referenced by:  ip1i  30856
  Copyright terms: Public domain W3C validator