Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ip2i | Structured version Visualization version GIF version |
Description: Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ip2i.8 | ⊢ 𝐴 ∈ 𝑋 |
ip2i.9 | ⊢ 𝐵 ∈ 𝑋 |
Ref | Expression |
---|---|
ip2i | ⊢ ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip1i.9 | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | 1 | phnvi 29079 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
3 | ip2i.8 | . . . . . 6 ⊢ 𝐴 ∈ 𝑋 | |
4 | ip1i.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | ip1i.2 | . . . . . . 7 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
6 | 4, 5 | nvgcl 28883 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) ∈ 𝑋) |
7 | 2, 3, 3, 6 | mp3an 1459 | . . . . 5 ⊢ (𝐴𝐺𝐴) ∈ 𝑋 |
8 | ip2i.9 | . . . . 5 ⊢ 𝐵 ∈ 𝑋 | |
9 | ip1i.7 | . . . . . 6 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
10 | 4, 9 | dipcl 28975 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ) |
11 | 2, 7, 8, 10 | mp3an 1459 | . . . 4 ⊢ ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ |
12 | 11 | addid1i 11092 | . . 3 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + 0) = ((𝐴𝐺𝐴)𝑃𝐵) |
13 | ip1i.4 | . . . . . . . 8 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
14 | eqid 2738 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
15 | 4, 5, 13, 14 | nvrinv 28914 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec‘𝑈)) |
16 | 2, 3, 15 | mp2an 688 | . . . . . 6 ⊢ (𝐴𝐺(-1𝑆𝐴)) = (0vec‘𝑈) |
17 | 16 | oveq1i 7265 | . . . . 5 ⊢ ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec‘𝑈)𝑃𝐵) |
18 | 4, 14, 9 | dip0l 28981 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((0vec‘𝑈)𝑃𝐵) = 0) |
19 | 2, 8, 18 | mp2an 688 | . . . . 5 ⊢ ((0vec‘𝑈)𝑃𝐵) = 0 |
20 | 17, 19 | eqtri 2766 | . . . 4 ⊢ ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0 |
21 | 20 | oveq2i 7266 | . . 3 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (((𝐴𝐺𝐴)𝑃𝐵) + 0) |
22 | df-2 11966 | . . . . . 6 ⊢ 2 = (1 + 1) | |
23 | 22 | oveq1i 7265 | . . . . 5 ⊢ (2𝑆𝐴) = ((1 + 1)𝑆𝐴) |
24 | ax-1cn 10860 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
25 | 24, 24, 3 | 3pm3.2i 1337 | . . . . . . 7 ⊢ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) |
26 | 4, 5, 13 | nvdir 28894 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
27 | 2, 25, 26 | mp2an 688 | . . . . . 6 ⊢ ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)) |
28 | 4, 13 | nvsid 28890 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
29 | 2, 3, 28 | mp2an 688 | . . . . . . 7 ⊢ (1𝑆𝐴) = 𝐴 |
30 | 29, 29 | oveq12i 7267 | . . . . . 6 ⊢ ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴) |
31 | 27, 30 | eqtri 2766 | . . . . 5 ⊢ ((1 + 1)𝑆𝐴) = (𝐴𝐺𝐴) |
32 | 23, 31 | eqtri 2766 | . . . 4 ⊢ (2𝑆𝐴) = (𝐴𝐺𝐴) |
33 | 32 | oveq1i 7265 | . . 3 ⊢ ((2𝑆𝐴)𝑃𝐵) = ((𝐴𝐺𝐴)𝑃𝐵) |
34 | 12, 21, 33 | 3eqtr4ri 2777 | . 2 ⊢ ((2𝑆𝐴)𝑃𝐵) = (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) |
35 | 4, 5, 13, 9, 1, 3, 3, 8 | ip1i 29090 | . 2 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (2 · (𝐴𝑃𝐵)) |
36 | 34, 35 | eqtri 2766 | 1 ⊢ ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 -cneg 11136 2c2 11958 NrmCVeccnv 28847 +𝑣 cpv 28848 BaseSetcba 28849 ·𝑠OLD cns 28850 0veccn0v 28851 ·𝑖OLDcdip 28963 CPreHilOLDccphlo 29075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 df-dip 28964 df-ph 29076 |
This theorem is referenced by: ipdirilem 29092 |
Copyright terms: Public domain | W3C validator |