MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2i Structured version   Visualization version   GIF version

Theorem ip2i 29656
Description: Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip2i.8 𝐴𝑋
ip2i.9 𝐵𝑋
Assertion
Ref Expression
ip2i ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵))

Proof of Theorem ip2i
StepHypRef Expression
1 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
21phnvi 29644 . . . . 5 𝑈 ∈ NrmCVec
3 ip2i.8 . . . . . 6 𝐴𝑋
4 ip1i.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
5 ip1i.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
64, 5nvgcl 29448 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝐺𝐴) ∈ 𝑋)
72, 3, 3, 6mp3an 1461 . . . . 5 (𝐴𝐺𝐴) ∈ 𝑋
8 ip2i.9 . . . . 5 𝐵𝑋
9 ip1i.7 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
104, 9dipcl 29540 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐴) ∈ 𝑋𝐵𝑋) → ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ)
112, 7, 8, 10mp3an 1461 . . . 4 ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ
1211addid1i 11338 . . 3 (((𝐴𝐺𝐴)𝑃𝐵) + 0) = ((𝐴𝐺𝐴)𝑃𝐵)
13 ip1i.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
14 eqid 2736 . . . . . . . 8 (0vec𝑈) = (0vec𝑈)
154, 5, 13, 14nvrinv 29479 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
162, 3, 15mp2an 690 . . . . . 6 (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈)
1716oveq1i 7363 . . . . 5 ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec𝑈)𝑃𝐵)
184, 14, 9dip0l 29546 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
192, 8, 18mp2an 690 . . . . 5 ((0vec𝑈)𝑃𝐵) = 0
2017, 19eqtri 2764 . . . 4 ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0
2120oveq2i 7364 . . 3 (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (((𝐴𝐺𝐴)𝑃𝐵) + 0)
22 df-2 12212 . . . . . 6 2 = (1 + 1)
2322oveq1i 7363 . . . . 5 (2𝑆𝐴) = ((1 + 1)𝑆𝐴)
24 ax-1cn 11105 . . . . . . . 8 1 ∈ ℂ
2524, 24, 33pm3.2i 1339 . . . . . . 7 (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)
264, 5, 13nvdir 29459 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
272, 25, 26mp2an 690 . . . . . 6 ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))
284, 13nvsid 29455 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
292, 3, 28mp2an 690 . . . . . . 7 (1𝑆𝐴) = 𝐴
3029, 29oveq12i 7365 . . . . . 6 ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴)
3127, 30eqtri 2764 . . . . 5 ((1 + 1)𝑆𝐴) = (𝐴𝐺𝐴)
3223, 31eqtri 2764 . . . 4 (2𝑆𝐴) = (𝐴𝐺𝐴)
3332oveq1i 7363 . . 3 ((2𝑆𝐴)𝑃𝐵) = ((𝐴𝐺𝐴)𝑃𝐵)
3412, 21, 333eqtr4ri 2775 . 2 ((2𝑆𝐴)𝑃𝐵) = (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵))
354, 5, 13, 9, 1, 3, 3, 8ip1i 29655 . 2 (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (2 · (𝐴𝑃𝐵))
3634, 35eqtri 2764 1 ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵))
Colors of variables: wff setvar class
Syntax hints:  w3a 1087   = wceq 1541  wcel 2106  cfv 6493  (class class class)co 7353  cc 11045  0cc0 11047  1c1 11048   + caddc 11050   · cmul 11052  -cneg 11382  2c2 12204  NrmCVeccnv 29412   +𝑣 cpv 29413  BaseSetcba 29414   ·𝑠OLD cns 29415  0veccn0v 29416  ·𝑖OLDcdip 29528  CPreHilOLDccphlo 29640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-inf2 9573  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-1st 7917  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-1o 8408  df-er 8644  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9374  df-oi 9442  df-card 9871  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-nn 12150  df-2 12212  df-3 12213  df-4 12214  df-n0 12410  df-z 12496  df-uz 12760  df-rp 12908  df-fz 13417  df-fzo 13560  df-seq 13899  df-exp 13960  df-hash 14223  df-cj 14976  df-re 14977  df-im 14978  df-sqrt 15112  df-abs 15113  df-clim 15362  df-sum 15563  df-grpo 29321  df-gid 29322  df-ginv 29323  df-ablo 29373  df-vc 29387  df-nv 29420  df-va 29423  df-ba 29424  df-sm 29425  df-0v 29426  df-nmcv 29428  df-dip 29529  df-ph 29641
This theorem is referenced by:  ipdirilem  29657
  Copyright terms: Public domain W3C validator