![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ip2i | Structured version Visualization version GIF version |
Description: Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ip2i.8 | ⊢ 𝐴 ∈ 𝑋 |
ip2i.9 | ⊢ 𝐵 ∈ 𝑋 |
Ref | Expression |
---|---|
ip2i | ⊢ ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip1i.9 | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | 1 | phnvi 30845 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
3 | ip2i.8 | . . . . . 6 ⊢ 𝐴 ∈ 𝑋 | |
4 | ip1i.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | ip1i.2 | . . . . . . 7 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
6 | 4, 5 | nvgcl 30649 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) ∈ 𝑋) |
7 | 2, 3, 3, 6 | mp3an 1460 | . . . . 5 ⊢ (𝐴𝐺𝐴) ∈ 𝑋 |
8 | ip2i.9 | . . . . 5 ⊢ 𝐵 ∈ 𝑋 | |
9 | ip1i.7 | . . . . . 6 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
10 | 4, 9 | dipcl 30741 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ) |
11 | 2, 7, 8, 10 | mp3an 1460 | . . . 4 ⊢ ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ |
12 | 11 | addridi 11446 | . . 3 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + 0) = ((𝐴𝐺𝐴)𝑃𝐵) |
13 | ip1i.4 | . . . . . . . 8 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
14 | eqid 2735 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
15 | 4, 5, 13, 14 | nvrinv 30680 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec‘𝑈)) |
16 | 2, 3, 15 | mp2an 692 | . . . . . 6 ⊢ (𝐴𝐺(-1𝑆𝐴)) = (0vec‘𝑈) |
17 | 16 | oveq1i 7441 | . . . . 5 ⊢ ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec‘𝑈)𝑃𝐵) |
18 | 4, 14, 9 | dip0l 30747 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((0vec‘𝑈)𝑃𝐵) = 0) |
19 | 2, 8, 18 | mp2an 692 | . . . . 5 ⊢ ((0vec‘𝑈)𝑃𝐵) = 0 |
20 | 17, 19 | eqtri 2763 | . . . 4 ⊢ ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0 |
21 | 20 | oveq2i 7442 | . . 3 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (((𝐴𝐺𝐴)𝑃𝐵) + 0) |
22 | df-2 12327 | . . . . . 6 ⊢ 2 = (1 + 1) | |
23 | 22 | oveq1i 7441 | . . . . 5 ⊢ (2𝑆𝐴) = ((1 + 1)𝑆𝐴) |
24 | ax-1cn 11211 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
25 | 24, 24, 3 | 3pm3.2i 1338 | . . . . . . 7 ⊢ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) |
26 | 4, 5, 13 | nvdir 30660 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
27 | 2, 25, 26 | mp2an 692 | . . . . . 6 ⊢ ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)) |
28 | 4, 13 | nvsid 30656 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
29 | 2, 3, 28 | mp2an 692 | . . . . . . 7 ⊢ (1𝑆𝐴) = 𝐴 |
30 | 29, 29 | oveq12i 7443 | . . . . . 6 ⊢ ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴) |
31 | 27, 30 | eqtri 2763 | . . . . 5 ⊢ ((1 + 1)𝑆𝐴) = (𝐴𝐺𝐴) |
32 | 23, 31 | eqtri 2763 | . . . 4 ⊢ (2𝑆𝐴) = (𝐴𝐺𝐴) |
33 | 32 | oveq1i 7441 | . . 3 ⊢ ((2𝑆𝐴)𝑃𝐵) = ((𝐴𝐺𝐴)𝑃𝐵) |
34 | 12, 21, 33 | 3eqtr4ri 2774 | . 2 ⊢ ((2𝑆𝐴)𝑃𝐵) = (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) |
35 | 4, 5, 13, 9, 1, 3, 3, 8 | ip1i 30856 | . 2 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (2 · (𝐴𝑃𝐵)) |
36 | 34, 35 | eqtri 2763 | 1 ⊢ ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 -cneg 11491 2c2 12319 NrmCVeccnv 30613 +𝑣 cpv 30614 BaseSetcba 30615 ·𝑠OLD cns 30616 0veccn0v 30617 ·𝑖OLDcdip 30729 CPreHilOLDccphlo 30841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-grpo 30522 df-gid 30523 df-ginv 30524 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-nmcv 30629 df-dip 30730 df-ph 30842 |
This theorem is referenced by: ipdirilem 30858 |
Copyright terms: Public domain | W3C validator |