MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2i Structured version   Visualization version   GIF version

Theorem ip2i 30757
Description: Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip2i.8 𝐴𝑋
ip2i.9 𝐵𝑋
Assertion
Ref Expression
ip2i ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵))

Proof of Theorem ip2i
StepHypRef Expression
1 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
21phnvi 30745 . . . . 5 𝑈 ∈ NrmCVec
3 ip2i.8 . . . . . 6 𝐴𝑋
4 ip1i.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
5 ip1i.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
64, 5nvgcl 30549 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝐺𝐴) ∈ 𝑋)
72, 3, 3, 6mp3an 1463 . . . . 5 (𝐴𝐺𝐴) ∈ 𝑋
8 ip2i.9 . . . . 5 𝐵𝑋
9 ip1i.7 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
104, 9dipcl 30641 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐴) ∈ 𝑋𝐵𝑋) → ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ)
112, 7, 8, 10mp3an 1463 . . . 4 ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ
1211addridi 11361 . . 3 (((𝐴𝐺𝐴)𝑃𝐵) + 0) = ((𝐴𝐺𝐴)𝑃𝐵)
13 ip1i.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
14 eqid 2729 . . . . . . . 8 (0vec𝑈) = (0vec𝑈)
154, 5, 13, 14nvrinv 30580 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
162, 3, 15mp2an 692 . . . . . 6 (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈)
1716oveq1i 7397 . . . . 5 ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec𝑈)𝑃𝐵)
184, 14, 9dip0l 30647 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
192, 8, 18mp2an 692 . . . . 5 ((0vec𝑈)𝑃𝐵) = 0
2017, 19eqtri 2752 . . . 4 ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0
2120oveq2i 7398 . . 3 (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (((𝐴𝐺𝐴)𝑃𝐵) + 0)
22 df-2 12249 . . . . . 6 2 = (1 + 1)
2322oveq1i 7397 . . . . 5 (2𝑆𝐴) = ((1 + 1)𝑆𝐴)
24 ax-1cn 11126 . . . . . . . 8 1 ∈ ℂ
2524, 24, 33pm3.2i 1340 . . . . . . 7 (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)
264, 5, 13nvdir 30560 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
272, 25, 26mp2an 692 . . . . . 6 ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))
284, 13nvsid 30556 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
292, 3, 28mp2an 692 . . . . . . 7 (1𝑆𝐴) = 𝐴
3029, 29oveq12i 7399 . . . . . 6 ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴)
3127, 30eqtri 2752 . . . . 5 ((1 + 1)𝑆𝐴) = (𝐴𝐺𝐴)
3223, 31eqtri 2752 . . . 4 (2𝑆𝐴) = (𝐴𝐺𝐴)
3332oveq1i 7397 . . 3 ((2𝑆𝐴)𝑃𝐵) = ((𝐴𝐺𝐴)𝑃𝐵)
3412, 21, 333eqtr4ri 2763 . 2 ((2𝑆𝐴)𝑃𝐵) = (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵))
354, 5, 13, 9, 1, 3, 3, 8ip1i 30756 . 2 (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (2 · (𝐴𝑃𝐵))
3634, 35eqtri 2752 1 ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵))
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  -cneg 11406  2c2 12241  NrmCVeccnv 30513   +𝑣 cpv 30514  BaseSetcba 30515   ·𝑠OLD cns 30516  0veccn0v 30517  ·𝑖OLDcdip 30629  CPreHilOLDccphlo 30741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-grpo 30422  df-gid 30423  df-ginv 30424  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-nmcv 30529  df-dip 30630  df-ph 30742
This theorem is referenced by:  ipdirilem  30758
  Copyright terms: Public domain W3C validator