| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ip2i | Structured version Visualization version GIF version | ||
| Description: Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
| ip2i.8 | ⊢ 𝐴 ∈ 𝑋 |
| ip2i.9 | ⊢ 𝐵 ∈ 𝑋 |
| Ref | Expression |
|---|---|
| ip2i | ⊢ ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.9 | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
| 2 | 1 | phnvi 30788 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
| 3 | ip2i.8 | . . . . . 6 ⊢ 𝐴 ∈ 𝑋 | |
| 4 | ip1i.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 5 | ip1i.2 | . . . . . . 7 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 6 | 4, 5 | nvgcl 30592 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) ∈ 𝑋) |
| 7 | 2, 3, 3, 6 | mp3an 1463 | . . . . 5 ⊢ (𝐴𝐺𝐴) ∈ 𝑋 |
| 8 | ip2i.9 | . . . . 5 ⊢ 𝐵 ∈ 𝑋 | |
| 9 | ip1i.7 | . . . . . 6 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 10 | 4, 9 | dipcl 30684 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ) |
| 11 | 2, 7, 8, 10 | mp3an 1463 | . . . 4 ⊢ ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ |
| 12 | 11 | addridi 11295 | . . 3 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + 0) = ((𝐴𝐺𝐴)𝑃𝐵) |
| 13 | ip1i.4 | . . . . . . . 8 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 14 | eqid 2731 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 15 | 4, 5, 13, 14 | nvrinv 30623 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec‘𝑈)) |
| 16 | 2, 3, 15 | mp2an 692 | . . . . . 6 ⊢ (𝐴𝐺(-1𝑆𝐴)) = (0vec‘𝑈) |
| 17 | 16 | oveq1i 7351 | . . . . 5 ⊢ ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec‘𝑈)𝑃𝐵) |
| 18 | 4, 14, 9 | dip0l 30690 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((0vec‘𝑈)𝑃𝐵) = 0) |
| 19 | 2, 8, 18 | mp2an 692 | . . . . 5 ⊢ ((0vec‘𝑈)𝑃𝐵) = 0 |
| 20 | 17, 19 | eqtri 2754 | . . . 4 ⊢ ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0 |
| 21 | 20 | oveq2i 7352 | . . 3 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (((𝐴𝐺𝐴)𝑃𝐵) + 0) |
| 22 | df-2 12183 | . . . . . 6 ⊢ 2 = (1 + 1) | |
| 23 | 22 | oveq1i 7351 | . . . . 5 ⊢ (2𝑆𝐴) = ((1 + 1)𝑆𝐴) |
| 24 | ax-1cn 11059 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 25 | 24, 24, 3 | 3pm3.2i 1340 | . . . . . . 7 ⊢ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) |
| 26 | 4, 5, 13 | nvdir 30603 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
| 27 | 2, 25, 26 | mp2an 692 | . . . . . 6 ⊢ ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)) |
| 28 | 4, 13 | nvsid 30599 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
| 29 | 2, 3, 28 | mp2an 692 | . . . . . . 7 ⊢ (1𝑆𝐴) = 𝐴 |
| 30 | 29, 29 | oveq12i 7353 | . . . . . 6 ⊢ ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴) |
| 31 | 27, 30 | eqtri 2754 | . . . . 5 ⊢ ((1 + 1)𝑆𝐴) = (𝐴𝐺𝐴) |
| 32 | 23, 31 | eqtri 2754 | . . . 4 ⊢ (2𝑆𝐴) = (𝐴𝐺𝐴) |
| 33 | 32 | oveq1i 7351 | . . 3 ⊢ ((2𝑆𝐴)𝑃𝐵) = ((𝐴𝐺𝐴)𝑃𝐵) |
| 34 | 12, 21, 33 | 3eqtr4ri 2765 | . 2 ⊢ ((2𝑆𝐴)𝑃𝐵) = (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) |
| 35 | 4, 5, 13, 9, 1, 3, 3, 8 | ip1i 30799 | . 2 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (2 · (𝐴𝑃𝐵)) |
| 36 | 34, 35 | eqtri 2754 | 1 ⊢ ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 -cneg 11340 2c2 12175 NrmCVeccnv 30556 +𝑣 cpv 30557 BaseSetcba 30558 ·𝑠OLD cns 30559 0veccn0v 30560 ·𝑖OLDcdip 30672 CPreHilOLDccphlo 30784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-sum 15589 df-grpo 30465 df-gid 30466 df-ginv 30467 df-ablo 30517 df-vc 30531 df-nv 30564 df-va 30567 df-ba 30568 df-sm 30569 df-0v 30570 df-nmcv 30572 df-dip 30673 df-ph 30785 |
| This theorem is referenced by: ipdirilem 30801 |
| Copyright terms: Public domain | W3C validator |