MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2i Structured version   Visualization version   GIF version

Theorem ip2i 30800
Description: Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip2i.8 𝐴𝑋
ip2i.9 𝐵𝑋
Assertion
Ref Expression
ip2i ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵))

Proof of Theorem ip2i
StepHypRef Expression
1 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
21phnvi 30788 . . . . 5 𝑈 ∈ NrmCVec
3 ip2i.8 . . . . . 6 𝐴𝑋
4 ip1i.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
5 ip1i.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
64, 5nvgcl 30592 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝐺𝐴) ∈ 𝑋)
72, 3, 3, 6mp3an 1463 . . . . 5 (𝐴𝐺𝐴) ∈ 𝑋
8 ip2i.9 . . . . 5 𝐵𝑋
9 ip1i.7 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
104, 9dipcl 30684 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐴) ∈ 𝑋𝐵𝑋) → ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ)
112, 7, 8, 10mp3an 1463 . . . 4 ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ
1211addridi 11295 . . 3 (((𝐴𝐺𝐴)𝑃𝐵) + 0) = ((𝐴𝐺𝐴)𝑃𝐵)
13 ip1i.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
14 eqid 2731 . . . . . . . 8 (0vec𝑈) = (0vec𝑈)
154, 5, 13, 14nvrinv 30623 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
162, 3, 15mp2an 692 . . . . . 6 (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈)
1716oveq1i 7351 . . . . 5 ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec𝑈)𝑃𝐵)
184, 14, 9dip0l 30690 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
192, 8, 18mp2an 692 . . . . 5 ((0vec𝑈)𝑃𝐵) = 0
2017, 19eqtri 2754 . . . 4 ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0
2120oveq2i 7352 . . 3 (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (((𝐴𝐺𝐴)𝑃𝐵) + 0)
22 df-2 12183 . . . . . 6 2 = (1 + 1)
2322oveq1i 7351 . . . . 5 (2𝑆𝐴) = ((1 + 1)𝑆𝐴)
24 ax-1cn 11059 . . . . . . . 8 1 ∈ ℂ
2524, 24, 33pm3.2i 1340 . . . . . . 7 (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)
264, 5, 13nvdir 30603 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
272, 25, 26mp2an 692 . . . . . 6 ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))
284, 13nvsid 30599 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
292, 3, 28mp2an 692 . . . . . . 7 (1𝑆𝐴) = 𝐴
3029, 29oveq12i 7353 . . . . . 6 ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴)
3127, 30eqtri 2754 . . . . 5 ((1 + 1)𝑆𝐴) = (𝐴𝐺𝐴)
3223, 31eqtri 2754 . . . 4 (2𝑆𝐴) = (𝐴𝐺𝐴)
3332oveq1i 7351 . . 3 ((2𝑆𝐴)𝑃𝐵) = ((𝐴𝐺𝐴)𝑃𝐵)
3412, 21, 333eqtr4ri 2765 . 2 ((2𝑆𝐴)𝑃𝐵) = (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵))
354, 5, 13, 9, 1, 3, 3, 8ip1i 30799 . 2 (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (2 · (𝐴𝑃𝐵))
3634, 35eqtri 2754 1 ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵))
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  -cneg 11340  2c2 12175  NrmCVeccnv 30556   +𝑣 cpv 30557  BaseSetcba 30558   ·𝑠OLD cns 30559  0veccn0v 30560  ·𝑖OLDcdip 30672  CPreHilOLDccphlo 30784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589  df-grpo 30465  df-gid 30466  df-ginv 30467  df-ablo 30517  df-vc 30531  df-nv 30564  df-va 30567  df-ba 30568  df-sm 30569  df-0v 30570  df-nmcv 30572  df-dip 30673  df-ph 30785
This theorem is referenced by:  ipdirilem  30801
  Copyright terms: Public domain W3C validator