![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ip2i | Structured version Visualization version GIF version |
Description: Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ip2i.8 | ⊢ 𝐴 ∈ 𝑋 |
ip2i.9 | ⊢ 𝐵 ∈ 𝑋 |
Ref | Expression |
---|---|
ip2i | ⊢ ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip1i.9 | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | 1 | phnvi 30848 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
3 | ip2i.8 | . . . . . 6 ⊢ 𝐴 ∈ 𝑋 | |
4 | ip1i.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
5 | ip1i.2 | . . . . . . 7 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
6 | 4, 5 | nvgcl 30652 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) ∈ 𝑋) |
7 | 2, 3, 3, 6 | mp3an 1461 | . . . . 5 ⊢ (𝐴𝐺𝐴) ∈ 𝑋 |
8 | ip2i.9 | . . . . 5 ⊢ 𝐵 ∈ 𝑋 | |
9 | ip1i.7 | . . . . . 6 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
10 | 4, 9 | dipcl 30744 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ) |
11 | 2, 7, 8, 10 | mp3an 1461 | . . . 4 ⊢ ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ |
12 | 11 | addridi 11477 | . . 3 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + 0) = ((𝐴𝐺𝐴)𝑃𝐵) |
13 | ip1i.4 | . . . . . . . 8 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
14 | eqid 2740 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
15 | 4, 5, 13, 14 | nvrinv 30683 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec‘𝑈)) |
16 | 2, 3, 15 | mp2an 691 | . . . . . 6 ⊢ (𝐴𝐺(-1𝑆𝐴)) = (0vec‘𝑈) |
17 | 16 | oveq1i 7458 | . . . . 5 ⊢ ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec‘𝑈)𝑃𝐵) |
18 | 4, 14, 9 | dip0l 30750 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((0vec‘𝑈)𝑃𝐵) = 0) |
19 | 2, 8, 18 | mp2an 691 | . . . . 5 ⊢ ((0vec‘𝑈)𝑃𝐵) = 0 |
20 | 17, 19 | eqtri 2768 | . . . 4 ⊢ ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0 |
21 | 20 | oveq2i 7459 | . . 3 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (((𝐴𝐺𝐴)𝑃𝐵) + 0) |
22 | df-2 12356 | . . . . . 6 ⊢ 2 = (1 + 1) | |
23 | 22 | oveq1i 7458 | . . . . 5 ⊢ (2𝑆𝐴) = ((1 + 1)𝑆𝐴) |
24 | ax-1cn 11242 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
25 | 24, 24, 3 | 3pm3.2i 1339 | . . . . . . 7 ⊢ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) |
26 | 4, 5, 13 | nvdir 30663 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
27 | 2, 25, 26 | mp2an 691 | . . . . . 6 ⊢ ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)) |
28 | 4, 13 | nvsid 30659 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
29 | 2, 3, 28 | mp2an 691 | . . . . . . 7 ⊢ (1𝑆𝐴) = 𝐴 |
30 | 29, 29 | oveq12i 7460 | . . . . . 6 ⊢ ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴) |
31 | 27, 30 | eqtri 2768 | . . . . 5 ⊢ ((1 + 1)𝑆𝐴) = (𝐴𝐺𝐴) |
32 | 23, 31 | eqtri 2768 | . . . 4 ⊢ (2𝑆𝐴) = (𝐴𝐺𝐴) |
33 | 32 | oveq1i 7458 | . . 3 ⊢ ((2𝑆𝐴)𝑃𝐵) = ((𝐴𝐺𝐴)𝑃𝐵) |
34 | 12, 21, 33 | 3eqtr4ri 2779 | . 2 ⊢ ((2𝑆𝐴)𝑃𝐵) = (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) |
35 | 4, 5, 13, 9, 1, 3, 3, 8 | ip1i 30859 | . 2 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (2 · (𝐴𝑃𝐵)) |
36 | 34, 35 | eqtri 2768 | 1 ⊢ ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 -cneg 11521 2c2 12348 NrmCVeccnv 30616 +𝑣 cpv 30617 BaseSetcba 30618 ·𝑠OLD cns 30619 0veccn0v 30620 ·𝑖OLDcdip 30732 CPreHilOLDccphlo 30844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-grpo 30525 df-gid 30526 df-ginv 30527 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-nmcv 30632 df-dip 30733 df-ph 30845 |
This theorem is referenced by: ipdirilem 30861 |
Copyright terms: Public domain | W3C validator |