| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ip2i | Structured version Visualization version GIF version | ||
| Description: Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
| ip2i.8 | ⊢ 𝐴 ∈ 𝑋 |
| ip2i.9 | ⊢ 𝐵 ∈ 𝑋 |
| Ref | Expression |
|---|---|
| ip2i | ⊢ ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.9 | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
| 2 | 1 | phnvi 30745 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
| 3 | ip2i.8 | . . . . . 6 ⊢ 𝐴 ∈ 𝑋 | |
| 4 | ip1i.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 5 | ip1i.2 | . . . . . . 7 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 6 | 4, 5 | nvgcl 30549 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝐴) ∈ 𝑋) |
| 7 | 2, 3, 3, 6 | mp3an 1463 | . . . . 5 ⊢ (𝐴𝐺𝐴) ∈ 𝑋 |
| 8 | ip2i.9 | . . . . 5 ⊢ 𝐵 ∈ 𝑋 | |
| 9 | ip1i.7 | . . . . . 6 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 10 | 4, 9 | dipcl 30641 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ) |
| 11 | 2, 7, 8, 10 | mp3an 1463 | . . . 4 ⊢ ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ |
| 12 | 11 | addridi 11361 | . . 3 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + 0) = ((𝐴𝐺𝐴)𝑃𝐵) |
| 13 | ip1i.4 | . . . . . . . 8 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 14 | eqid 2729 | . . . . . . . 8 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 15 | 4, 5, 13, 14 | nvrinv 30580 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec‘𝑈)) |
| 16 | 2, 3, 15 | mp2an 692 | . . . . . 6 ⊢ (𝐴𝐺(-1𝑆𝐴)) = (0vec‘𝑈) |
| 17 | 16 | oveq1i 7397 | . . . . 5 ⊢ ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec‘𝑈)𝑃𝐵) |
| 18 | 4, 14, 9 | dip0l 30647 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((0vec‘𝑈)𝑃𝐵) = 0) |
| 19 | 2, 8, 18 | mp2an 692 | . . . . 5 ⊢ ((0vec‘𝑈)𝑃𝐵) = 0 |
| 20 | 17, 19 | eqtri 2752 | . . . 4 ⊢ ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0 |
| 21 | 20 | oveq2i 7398 | . . 3 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (((𝐴𝐺𝐴)𝑃𝐵) + 0) |
| 22 | df-2 12249 | . . . . . 6 ⊢ 2 = (1 + 1) | |
| 23 | 22 | oveq1i 7397 | . . . . 5 ⊢ (2𝑆𝐴) = ((1 + 1)𝑆𝐴) |
| 24 | ax-1cn 11126 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 25 | 24, 24, 3 | 3pm3.2i 1340 | . . . . . . 7 ⊢ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) |
| 26 | 4, 5, 13 | nvdir 30560 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))) |
| 27 | 2, 25, 26 | mp2an 692 | . . . . . 6 ⊢ ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)) |
| 28 | 4, 13 | nvsid 30556 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
| 29 | 2, 3, 28 | mp2an 692 | . . . . . . 7 ⊢ (1𝑆𝐴) = 𝐴 |
| 30 | 29, 29 | oveq12i 7399 | . . . . . 6 ⊢ ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴) |
| 31 | 27, 30 | eqtri 2752 | . . . . 5 ⊢ ((1 + 1)𝑆𝐴) = (𝐴𝐺𝐴) |
| 32 | 23, 31 | eqtri 2752 | . . . 4 ⊢ (2𝑆𝐴) = (𝐴𝐺𝐴) |
| 33 | 32 | oveq1i 7397 | . . 3 ⊢ ((2𝑆𝐴)𝑃𝐵) = ((𝐴𝐺𝐴)𝑃𝐵) |
| 34 | 12, 21, 33 | 3eqtr4ri 2763 | . 2 ⊢ ((2𝑆𝐴)𝑃𝐵) = (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) |
| 35 | 4, 5, 13, 9, 1, 3, 3, 8 | ip1i 30756 | . 2 ⊢ (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (2 · (𝐴𝑃𝐵)) |
| 36 | 34, 35 | eqtri 2752 | 1 ⊢ ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 -cneg 11406 2c2 12241 NrmCVeccnv 30513 +𝑣 cpv 30514 BaseSetcba 30515 ·𝑠OLD cns 30516 0veccn0v 30517 ·𝑖OLDcdip 30629 CPreHilOLDccphlo 30741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-grpo 30422 df-gid 30423 df-ginv 30424 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-nmcv 30529 df-dip 30630 df-ph 30742 |
| This theorem is referenced by: ipdirilem 30758 |
| Copyright terms: Public domain | W3C validator |