MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem5 Structured version   Visualization version   GIF version

Theorem ipasslem5 29197
Description: Lemma for ipassi 29203. Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem5 ((𝐶 ∈ ℚ ∧ 𝐴𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem5
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12690 . . 3 (𝐶 ∈ ℚ ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℕ 𝐶 = (𝑗 / 𝑘))
2 zcn 12324 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
3 nnrecre 12015 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
43recnd 11003 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
5 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
65phnvi 29178 . . . . . . . . . 10 𝑈 ∈ NrmCVec
7 ipasslem1.b . . . . . . . . . 10 𝐵𝑋
8 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
9 ip1i.7 . . . . . . . . . . 11 𝑃 = (·𝑖OLD𝑈)
108, 9dipcl 29074 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
116, 7, 10mp3an13 1451 . . . . . . . . 9 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
12 mulass 10959 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
132, 4, 11, 12syl3an 1159 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
142adantr 481 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑗 ∈ ℂ)
15 nncn 11981 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
1615adantl 482 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
17 nnne0 12007 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
1817adantl 482 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
1914, 16, 18divrecd 11754 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝑗 / 𝑘) = (𝑗 · (1 / 𝑘)))
20193adant3 1131 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝑗 / 𝑘) = (𝑗 · (1 / 𝑘)))
2120oveq1d 7290 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘) · (𝐴𝑃𝐵)) = ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)))
2220oveq1d 7290 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘)𝑆𝐴) = ((𝑗 · (1 / 𝑘))𝑆𝐴))
23 id 22 . . . . . . . . . . . 12 (𝐴𝑋𝐴𝑋)
24 ip1i.4 . . . . . . . . . . . . . 14 𝑆 = ( ·𝑠OLD𝑈)
258, 24nvsass 28990 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
266, 25mpan 687 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
272, 4, 23, 26syl3an 1159 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
2822, 27eqtrd 2778 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘)𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
2928oveq1d 7290 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵))
308, 24nvscl 28988 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
316, 30mp3an1 1447 . . . . . . . . . . . 12 (((1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
324, 31sylan 580 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
33 ip1i.2 . . . . . . . . . . . 12 𝐺 = ( +𝑣𝑈)
348, 33, 24, 9, 5, 7ipasslem3 29195 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ ((1 / 𝑘)𝑆𝐴) ∈ 𝑋) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
3532, 34sylan2 593 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ (𝑘 ∈ ℕ ∧ 𝐴𝑋)) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
36353impb 1114 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
378, 33, 24, 9, 5, 7ipasslem4 29196 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑘)𝑆𝐴)𝑃𝐵) = ((1 / 𝑘) · (𝐴𝑃𝐵)))
38373adant1 1129 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑘)𝑆𝐴)𝑃𝐵) = ((1 / 𝑘) · (𝐴𝑃𝐵)))
3938oveq2d 7291 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
4029, 36, 393eqtrd 2782 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
4113, 21, 403eqtr4rd 2789 . . . . . . 7 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵)))
42 oveq1 7282 . . . . . . . . 9 (𝐶 = (𝑗 / 𝑘) → (𝐶𝑆𝐴) = ((𝑗 / 𝑘)𝑆𝐴))
4342oveq1d 7290 . . . . . . . 8 (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵))
44 oveq1 7282 . . . . . . . 8 (𝐶 = (𝑗 / 𝑘) → (𝐶 · (𝐴𝑃𝐵)) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵)))
4543, 44eqeq12d 2754 . . . . . . 7 (𝐶 = (𝑗 / 𝑘) → (((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)) ↔ (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵))))
4641, 45syl5ibrcom 246 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
47463expia 1120 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝐴𝑋 → (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))))
4847com23 86 . . . 4 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝐶 = (𝑗 / 𝑘) → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))))
4948rexlimivv 3221 . . 3 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℕ 𝐶 = (𝑗 / 𝑘) → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
501, 49sylbi 216 . 2 (𝐶 ∈ ℚ → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
5150imp 407 1 ((𝐶 ∈ ℚ ∧ 𝐴𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   · cmul 10876   / cdiv 11632  cn 11973  cz 12319  cq 12688  NrmCVeccnv 28946   +𝑣 cpv 28947  BaseSetcba 28948   ·𝑠OLD cns 28949  ·𝑖OLDcdip 29062  CPreHilOLDccphlo 29174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-grpo 28855  df-gid 28856  df-ginv 28857  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-dip 29063  df-ph 29175
This theorem is referenced by:  ipasslem8  29199
  Copyright terms: Public domain W3C validator