MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem5 Structured version   Visualization version   GIF version

Theorem ipasslem5 30867
Description: Lemma for ipassi 30873. Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem5 ((𝐶 ∈ ℚ ∧ 𝐴𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem5
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 13015 . . 3 (𝐶 ∈ ℚ ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℕ 𝐶 = (𝑗 / 𝑘))
2 zcn 12644 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
3 nnrecre 12335 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
43recnd 11318 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
5 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
65phnvi 30848 . . . . . . . . . 10 𝑈 ∈ NrmCVec
7 ipasslem1.b . . . . . . . . . 10 𝐵𝑋
8 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
9 ip1i.7 . . . . . . . . . . 11 𝑃 = (·𝑖OLD𝑈)
108, 9dipcl 30744 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
116, 7, 10mp3an13 1452 . . . . . . . . 9 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
12 mulass 11272 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
132, 4, 11, 12syl3an 1160 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
142adantr 480 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑗 ∈ ℂ)
15 nncn 12301 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
1615adantl 481 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
17 nnne0 12327 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
1817adantl 481 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
1914, 16, 18divrecd 12073 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝑗 / 𝑘) = (𝑗 · (1 / 𝑘)))
20193adant3 1132 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝑗 / 𝑘) = (𝑗 · (1 / 𝑘)))
2120oveq1d 7463 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘) · (𝐴𝑃𝐵)) = ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)))
2220oveq1d 7463 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘)𝑆𝐴) = ((𝑗 · (1 / 𝑘))𝑆𝐴))
23 id 22 . . . . . . . . . . . 12 (𝐴𝑋𝐴𝑋)
24 ip1i.4 . . . . . . . . . . . . . 14 𝑆 = ( ·𝑠OLD𝑈)
258, 24nvsass 30660 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
266, 25mpan 689 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
272, 4, 23, 26syl3an 1160 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
2822, 27eqtrd 2780 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘)𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
2928oveq1d 7463 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵))
308, 24nvscl 30658 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
316, 30mp3an1 1448 . . . . . . . . . . . 12 (((1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
324, 31sylan 579 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
33 ip1i.2 . . . . . . . . . . . 12 𝐺 = ( +𝑣𝑈)
348, 33, 24, 9, 5, 7ipasslem3 30865 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ ((1 / 𝑘)𝑆𝐴) ∈ 𝑋) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
3532, 34sylan2 592 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ (𝑘 ∈ ℕ ∧ 𝐴𝑋)) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
36353impb 1115 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
378, 33, 24, 9, 5, 7ipasslem4 30866 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑘)𝑆𝐴)𝑃𝐵) = ((1 / 𝑘) · (𝐴𝑃𝐵)))
38373adant1 1130 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑘)𝑆𝐴)𝑃𝐵) = ((1 / 𝑘) · (𝐴𝑃𝐵)))
3938oveq2d 7464 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
4029, 36, 393eqtrd 2784 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
4113, 21, 403eqtr4rd 2791 . . . . . . 7 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵)))
42 oveq1 7455 . . . . . . . . 9 (𝐶 = (𝑗 / 𝑘) → (𝐶𝑆𝐴) = ((𝑗 / 𝑘)𝑆𝐴))
4342oveq1d 7463 . . . . . . . 8 (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵))
44 oveq1 7455 . . . . . . . 8 (𝐶 = (𝑗 / 𝑘) → (𝐶 · (𝐴𝑃𝐵)) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵)))
4543, 44eqeq12d 2756 . . . . . . 7 (𝐶 = (𝑗 / 𝑘) → (((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)) ↔ (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵))))
4641, 45syl5ibrcom 247 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
47463expia 1121 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝐴𝑋 → (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))))
4847com23 86 . . . 4 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝐶 = (𝑗 / 𝑘) → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))))
4948rexlimivv 3207 . . 3 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℕ 𝐶 = (𝑗 / 𝑘) → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
501, 49sylbi 217 . 2 (𝐶 ∈ ℚ → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
5150imp 406 1 ((𝐶 ∈ ℚ ∧ 𝐴𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   · cmul 11189   / cdiv 11947  cn 12293  cz 12639  cq 13013  NrmCVeccnv 30616   +𝑣 cpv 30617  BaseSetcba 30618   ·𝑠OLD cns 30619  ·𝑖OLDcdip 30732  CPreHilOLDccphlo 30844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-grpo 30525  df-gid 30526  df-ginv 30527  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-nmcv 30632  df-dip 30733  df-ph 30845
This theorem is referenced by:  ipasslem8  30869
  Copyright terms: Public domain W3C validator