Step | Hyp | Ref
| Expression |
1 | | elq 12690 |
. . 3
⊢ (𝐶 ∈ ℚ ↔
∃𝑗 ∈ ℤ
∃𝑘 ∈ ℕ
𝐶 = (𝑗 / 𝑘)) |
2 | | zcn 12324 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
ℂ) |
3 | | nnrecre 12015 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
4 | 3 | recnd 11003 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℂ) |
5 | | ip1i.9 |
. . . . . . . . . . 11
⊢ 𝑈 ∈
CPreHilOLD |
6 | 5 | phnvi 29178 |
. . . . . . . . . 10
⊢ 𝑈 ∈ NrmCVec |
7 | | ipasslem1.b |
. . . . . . . . . 10
⊢ 𝐵 ∈ 𝑋 |
8 | | ip1i.1 |
. . . . . . . . . . 11
⊢ 𝑋 = (BaseSet‘𝑈) |
9 | | ip1i.7 |
. . . . . . . . . . 11
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
10 | 8, 9 | dipcl 29074 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
11 | 6, 7, 10 | mp3an13 1451 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑋 → (𝐴𝑃𝐵) ∈ ℂ) |
12 | | mulass 10959 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵)))) |
13 | 2, 4, 11, 12 | syl3an 1159 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵)))) |
14 | 2 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑗 ∈
ℂ) |
15 | | nncn 11981 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
16 | 15 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
ℂ) |
17 | | nnne0 12007 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 ≠ 0) |
18 | 17 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0) |
19 | 14, 16, 18 | divrecd 11754 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝑗 / 𝑘) = (𝑗 · (1 / 𝑘))) |
20 | 19 | 3adant3 1131 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑗 / 𝑘) = (𝑗 · (1 / 𝑘))) |
21 | 20 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑗 / 𝑘) · (𝐴𝑃𝐵)) = ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵))) |
22 | 20 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑗 / 𝑘)𝑆𝐴) = ((𝑗 · (1 / 𝑘))𝑆𝐴)) |
23 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋) |
24 | | ip1i.4 |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (
·𝑠OLD ‘𝑈) |
25 | 8, 24 | nvsass 28990 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴))) |
26 | 6, 25 | mpan 687 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴))) |
27 | 2, 4, 23, 26 | syl3an 1159 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴))) |
28 | 22, 27 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑗 / 𝑘)𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴))) |
29 | 28 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵)) |
30 | 8, 24 | nvscl 28988 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋) |
31 | 6, 30 | mp3an1 1447 |
. . . . . . . . . . . 12
⊢ (((1 /
𝑘) ∈ ℂ ∧
𝐴 ∈ 𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋) |
32 | 4, 31 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋) |
33 | | ip1i.2 |
. . . . . . . . . . . 12
⊢ 𝐺 = ( +𝑣
‘𝑈) |
34 | 8, 33, 24, 9, 5, 7 | ipasslem3 29195 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ ((1 /
𝑘)𝑆𝐴) ∈ 𝑋) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵))) |
35 | 32, 34 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℤ ∧ (𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋)) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵))) |
36 | 35 | 3impb 1114 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵))) |
37 | 8, 33, 24, 9, 5, 7 | ipasslem4 29196 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑘)𝑆𝐴)𝑃𝐵) = ((1 / 𝑘) · (𝐴𝑃𝐵))) |
38 | 37 | 3adant1 1129 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑘)𝑆𝐴)𝑃𝐵) = ((1 / 𝑘) · (𝐴𝑃𝐵))) |
39 | 38 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵)))) |
40 | 29, 36, 39 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵)))) |
41 | 13, 21, 40 | 3eqtr4rd 2789 |
. . . . . . 7
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵))) |
42 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝐶 = (𝑗 / 𝑘) → (𝐶𝑆𝐴) = ((𝑗 / 𝑘)𝑆𝐴)) |
43 | 42 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵)) |
44 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝐶 = (𝑗 / 𝑘) → (𝐶 · (𝐴𝑃𝐵)) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵))) |
45 | 43, 44 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝐶 = (𝑗 / 𝑘) → (((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)) ↔ (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵)))) |
46 | 41, 45 | syl5ibrcom 246 |
. . . . . 6
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))) |
47 | 46 | 3expia 1120 |
. . . . 5
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ 𝑋 → (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))) |
48 | 47 | com23 86 |
. . . 4
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝐶 = (𝑗 / 𝑘) → (𝐴 ∈ 𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))) |
49 | 48 | rexlimivv 3221 |
. . 3
⊢
(∃𝑗 ∈
ℤ ∃𝑘 ∈
ℕ 𝐶 = (𝑗 / 𝑘) → (𝐴 ∈ 𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))) |
50 | 1, 49 | sylbi 216 |
. 2
⊢ (𝐶 ∈ ℚ → (𝐴 ∈ 𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))) |
51 | 50 | imp 407 |
1
⊢ ((𝐶 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))) |