MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem5 Structured version   Visualization version   GIF version

Theorem ipasslem5 30765
Description: Lemma for ipassi 30771. Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem5 ((𝐶 ∈ ℚ ∧ 𝐴𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem5
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12980 . . 3 (𝐶 ∈ ℚ ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℕ 𝐶 = (𝑗 / 𝑘))
2 zcn 12609 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
3 nnrecre 12300 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
43recnd 11283 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
5 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
65phnvi 30746 . . . . . . . . . 10 𝑈 ∈ NrmCVec
7 ipasslem1.b . . . . . . . . . 10 𝐵𝑋
8 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
9 ip1i.7 . . . . . . . . . . 11 𝑃 = (·𝑖OLD𝑈)
108, 9dipcl 30642 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
116, 7, 10mp3an13 1449 . . . . . . . . 9 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
12 mulass 11237 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
132, 4, 11, 12syl3an 1157 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
142adantr 479 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑗 ∈ ℂ)
15 nncn 12266 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
1615adantl 480 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
17 nnne0 12292 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
1817adantl 480 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
1914, 16, 18divrecd 12038 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝑗 / 𝑘) = (𝑗 · (1 / 𝑘)))
20193adant3 1129 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝑗 / 𝑘) = (𝑗 · (1 / 𝑘)))
2120oveq1d 7431 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘) · (𝐴𝑃𝐵)) = ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)))
2220oveq1d 7431 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘)𝑆𝐴) = ((𝑗 · (1 / 𝑘))𝑆𝐴))
23 id 22 . . . . . . . . . . . 12 (𝐴𝑋𝐴𝑋)
24 ip1i.4 . . . . . . . . . . . . . 14 𝑆 = ( ·𝑠OLD𝑈)
258, 24nvsass 30558 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
266, 25mpan 688 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
272, 4, 23, 26syl3an 1157 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
2822, 27eqtrd 2766 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘)𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
2928oveq1d 7431 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵))
308, 24nvscl 30556 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
316, 30mp3an1 1445 . . . . . . . . . . . 12 (((1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
324, 31sylan 578 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
33 ip1i.2 . . . . . . . . . . . 12 𝐺 = ( +𝑣𝑈)
348, 33, 24, 9, 5, 7ipasslem3 30763 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ ((1 / 𝑘)𝑆𝐴) ∈ 𝑋) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
3532, 34sylan2 591 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ (𝑘 ∈ ℕ ∧ 𝐴𝑋)) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
36353impb 1112 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
378, 33, 24, 9, 5, 7ipasslem4 30764 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑘)𝑆𝐴)𝑃𝐵) = ((1 / 𝑘) · (𝐴𝑃𝐵)))
38373adant1 1127 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑘)𝑆𝐴)𝑃𝐵) = ((1 / 𝑘) · (𝐴𝑃𝐵)))
3938oveq2d 7432 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
4029, 36, 393eqtrd 2770 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
4113, 21, 403eqtr4rd 2777 . . . . . . 7 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵)))
42 oveq1 7423 . . . . . . . . 9 (𝐶 = (𝑗 / 𝑘) → (𝐶𝑆𝐴) = ((𝑗 / 𝑘)𝑆𝐴))
4342oveq1d 7431 . . . . . . . 8 (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵))
44 oveq1 7423 . . . . . . . 8 (𝐶 = (𝑗 / 𝑘) → (𝐶 · (𝐴𝑃𝐵)) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵)))
4543, 44eqeq12d 2742 . . . . . . 7 (𝐶 = (𝑗 / 𝑘) → (((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)) ↔ (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵))))
4641, 45syl5ibrcom 246 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
47463expia 1118 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝐴𝑋 → (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))))
4847com23 86 . . . 4 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝐶 = (𝑗 / 𝑘) → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))))
4948rexlimivv 3190 . . 3 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℕ 𝐶 = (𝑗 / 𝑘) → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
501, 49sylbi 216 . 2 (𝐶 ∈ ℚ → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
5150imp 405 1 ((𝐶 ∈ ℚ ∧ 𝐴𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wrex 3060  cfv 6546  (class class class)co 7416  cc 11147  0cc0 11149  1c1 11150   · cmul 11154   / cdiv 11912  cn 12258  cz 12604  cq 12978  NrmCVeccnv 30514   +𝑣 cpv 30515  BaseSetcba 30516   ·𝑠OLD cns 30517  ·𝑖OLDcdip 30630  CPreHilOLDccphlo 30742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9478  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-n0 12519  df-z 12605  df-uz 12869  df-q 12979  df-rp 13023  df-fz 13533  df-fzo 13676  df-seq 14016  df-exp 14076  df-hash 14343  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-clim 15485  df-sum 15686  df-grpo 30423  df-gid 30424  df-ginv 30425  df-ablo 30475  df-vc 30489  df-nv 30522  df-va 30525  df-ba 30526  df-sm 30527  df-0v 30528  df-nmcv 30530  df-dip 30631  df-ph 30743
This theorem is referenced by:  ipasslem8  30767
  Copyright terms: Public domain W3C validator