Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem5 Structured version   Visualization version   GIF version

Theorem ipasslem5 28241
 Description: Lemma for ipassi 28247. Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem5 ((𝐶 ∈ ℚ ∧ 𝐴𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem5
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12080 . . 3 (𝐶 ∈ ℚ ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℕ 𝐶 = (𝑗 / 𝑘))
2 zcn 11716 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
3 nnrecre 11400 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
43recnd 10392 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
5 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
65phnvi 28222 . . . . . . . . . 10 𝑈 ∈ NrmCVec
7 ipasslem1.b . . . . . . . . . 10 𝐵𝑋
8 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
9 ip1i.7 . . . . . . . . . . 11 𝑃 = (·𝑖OLD𝑈)
108, 9dipcl 28118 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
116, 7, 10mp3an13 1580 . . . . . . . . 9 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
12 mulass 10347 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
132, 4, 11, 12syl3an 1203 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
142adantr 474 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑗 ∈ ℂ)
15 nncn 11366 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
1615adantl 475 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
17 nnne0 11393 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
1817adantl 475 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
1914, 16, 18divrecd 11137 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝑗 / 𝑘) = (𝑗 · (1 / 𝑘)))
20193adant3 1166 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝑗 / 𝑘) = (𝑗 · (1 / 𝑘)))
2120oveq1d 6925 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘) · (𝐴𝑃𝐵)) = ((𝑗 · (1 / 𝑘)) · (𝐴𝑃𝐵)))
2220oveq1d 6925 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘)𝑆𝐴) = ((𝑗 · (1 / 𝑘))𝑆𝐴))
23 id 22 . . . . . . . . . . . 12 (𝐴𝑋𝐴𝑋)
24 ip1i.4 . . . . . . . . . . . . . 14 𝑆 = ( ·𝑠OLD𝑈)
258, 24nvsass 28034 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
266, 25mpan 681 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
272, 4, 23, 26syl3an 1203 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 · (1 / 𝑘))𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
2822, 27eqtrd 2861 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗 / 𝑘)𝑆𝐴) = (𝑗𝑆((1 / 𝑘)𝑆𝐴)))
2928oveq1d 6925 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵))
308, 24nvscl 28032 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
316, 30mp3an1 1576 . . . . . . . . . . . 12 (((1 / 𝑘) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
324, 31sylan 575 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑘)𝑆𝐴) ∈ 𝑋)
33 ip1i.2 . . . . . . . . . . . 12 𝐺 = ( +𝑣𝑈)
348, 33, 24, 9, 5, 7ipasslem3 28239 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ ((1 / 𝑘)𝑆𝐴) ∈ 𝑋) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
3532, 34sylan2 586 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ (𝑘 ∈ ℕ ∧ 𝐴𝑋)) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
36353impb 1147 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → ((𝑗𝑆((1 / 𝑘)𝑆𝐴))𝑃𝐵) = (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)))
378, 33, 24, 9, 5, 7ipasslem4 28240 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑘)𝑆𝐴)𝑃𝐵) = ((1 / 𝑘) · (𝐴𝑃𝐵)))
38373adant1 1164 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑘)𝑆𝐴)𝑃𝐵) = ((1 / 𝑘) · (𝐴𝑃𝐵)))
3938oveq2d 6926 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝑗 · (((1 / 𝑘)𝑆𝐴)𝑃𝐵)) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
4029, 36, 393eqtrd 2865 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = (𝑗 · ((1 / 𝑘) · (𝐴𝑃𝐵))))
4113, 21, 403eqtr4rd 2872 . . . . . . 7 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵)))
42 oveq1 6917 . . . . . . . . 9 (𝐶 = (𝑗 / 𝑘) → (𝐶𝑆𝐴) = ((𝑗 / 𝑘)𝑆𝐴))
4342oveq1d 6925 . . . . . . . 8 (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵))
44 oveq1 6917 . . . . . . . 8 (𝐶 = (𝑗 / 𝑘) → (𝐶 · (𝐴𝑃𝐵)) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵)))
4543, 44eqeq12d 2840 . . . . . . 7 (𝐶 = (𝑗 / 𝑘) → (((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)) ↔ (((𝑗 / 𝑘)𝑆𝐴)𝑃𝐵) = ((𝑗 / 𝑘) · (𝐴𝑃𝐵))))
4641, 45syl5ibrcom 239 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ ∧ 𝐴𝑋) → (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
47463expia 1154 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝐴𝑋 → (𝐶 = (𝑗 / 𝑘) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))))
4847com23 86 . . . 4 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (𝐶 = (𝑗 / 𝑘) → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))))
4948rexlimivv 3246 . . 3 (∃𝑗 ∈ ℤ ∃𝑘 ∈ ℕ 𝐶 = (𝑗 / 𝑘) → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
501, 49sylbi 209 . 2 (𝐶 ∈ ℚ → (𝐴𝑋 → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
5150imp 397 1 ((𝐶 ∈ ℚ ∧ 𝐴𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164   ≠ wne 2999  ∃wrex 3118  ‘cfv 6127  (class class class)co 6910  ℂcc 10257  0cc0 10259  1c1 10260   · cmul 10264   / cdiv 11016  ℕcn 11357  ℤcz 11711  ℚcq 12078  NrmCVeccnv 27990   +𝑣 cpv 27991  BaseSetcba 27992   ·𝑠OLD cns 27993  ·𝑖OLDcdip 28106  CPreHilOLDccphlo 28218 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-rp 12120  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-sum 14801  df-grpo 27899  df-gid 27900  df-ginv 27901  df-ablo 27951  df-vc 27965  df-nv 27998  df-va 28001  df-ba 28002  df-sm 28003  df-0v 28004  df-nmcv 28006  df-dip 28107  df-ph 28219 This theorem is referenced by:  ipasslem8  28243
 Copyright terms: Public domain W3C validator