MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem7 Structured version   Visualization version   GIF version

Theorem ipasslem7 30865
Description: Lemma for ipassi 30870. Show that ((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)) is continuous on . (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem7.a 𝐴𝑋
ipasslem7.b 𝐵𝑋
ipasslem7.f 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
ipasslem7.j 𝐽 = (topGen‘ran (,))
ipasslem7.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ipasslem7 𝐹 ∈ (𝐽 Cn 𝐾)
Distinct variable groups:   𝑤,𝐵   𝑤,𝐾   𝑤,𝑃   𝑤,𝑆   𝑤,𝑈   𝑤,𝑋   𝑤,𝐴
Allowed substitution hints:   𝐹(𝑤)   𝐺(𝑤)   𝐽(𝑤)

Proof of Theorem ipasslem7
StepHypRef Expression
1 ipasslem7.f . 2 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
2 ipasslem7.j . . . . 5 𝐽 = (topGen‘ran (,))
3 ipasslem7.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
43tgioo2 24839 . . . . 5 (topGen‘ran (,)) = (𝐾t ℝ)
52, 4eqtri 2763 . . . 4 𝐽 = (𝐾t ℝ)
63cnfldtopon 24819 . . . . 5 𝐾 ∈ (TopOn‘ℂ)
76a1i 11 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘ℂ))
8 ax-resscn 11210 . . . . 5 ℝ ⊆ ℂ
98a1i 11 . . . 4 (⊤ → ℝ ⊆ ℂ)
107cnmptid 23685 . . . . . . 7 (⊤ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (𝐾 Cn 𝐾))
11 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
1211phnvi 30845 . . . . . . . . . 10 𝑈 ∈ NrmCVec
13 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
14 eqid 2735 . . . . . . . . . . 11 (IndMet‘𝑈) = (IndMet‘𝑈)
1513, 14imsxmet 30721 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘𝑋))
1612, 15ax-mp 5 . . . . . . . . 9 (IndMet‘𝑈) ∈ (∞Met‘𝑋)
17 eqid 2735 . . . . . . . . . 10 (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈))
1817mopntopon 24465 . . . . . . . . 9 ((IndMet‘𝑈) ∈ (∞Met‘𝑋) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋))
1916, 18mp1i 13 . . . . . . . 8 (⊤ → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋))
20 ipasslem7.a . . . . . . . . 9 𝐴𝑋
2120a1i 11 . . . . . . . 8 (⊤ → 𝐴𝑋)
227, 19, 21cnmptc 23686 . . . . . . 7 (⊤ → (𝑤 ∈ ℂ ↦ 𝐴) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈))))
23 ip1i.4 . . . . . . . . 9 𝑆 = ( ·𝑠OLD𝑈)
2414, 17, 23, 3smcn 30727 . . . . . . . 8 (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈))))
2512, 24mp1i 13 . . . . . . 7 (⊤ → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈))))
267, 10, 22, 25cnmpt12f 23690 . . . . . 6 (⊤ → (𝑤 ∈ ℂ ↦ (𝑤𝑆𝐴)) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈))))
27 ipasslem7.b . . . . . . . 8 𝐵𝑋
2827a1i 11 . . . . . . 7 (⊤ → 𝐵𝑋)
297, 19, 28cnmptc 23686 . . . . . 6 (⊤ → (𝑤 ∈ ℂ ↦ 𝐵) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈))))
30 ip1i.7 . . . . . . . 8 𝑃 = (·𝑖OLD𝑈)
3130, 14, 17, 3dipcn 30749 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾))
3212, 31mp1i 13 . . . . . 6 (⊤ → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾))
337, 26, 29, 32cnmpt12f 23690 . . . . 5 (⊤ → (𝑤 ∈ ℂ ↦ ((𝑤𝑆𝐴)𝑃𝐵)) ∈ (𝐾 Cn 𝐾))
3413, 30dipcl 30741 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
3512, 20, 27, 34mp3an 1460 . . . . . . . 8 (𝐴𝑃𝐵) ∈ ℂ
3635a1i 11 . . . . . . 7 (⊤ → (𝐴𝑃𝐵) ∈ ℂ)
377, 7, 36cnmptc 23686 . . . . . 6 (⊤ → (𝑤 ∈ ℂ ↦ (𝐴𝑃𝐵)) ∈ (𝐾 Cn 𝐾))
383mulcn 24903 . . . . . . 7 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
3938a1i 11 . . . . . 6 (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
407, 10, 37, 39cnmpt12f 23690 . . . . 5 (⊤ → (𝑤 ∈ ℂ ↦ (𝑤 · (𝐴𝑃𝐵))) ∈ (𝐾 Cn 𝐾))
413subcn 24902 . . . . . 6 − ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
4241a1i 11 . . . . 5 (⊤ → − ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
437, 33, 40, 42cnmpt12f 23690 . . . 4 (⊤ → (𝑤 ∈ ℂ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐾 Cn 𝐾))
445, 7, 9, 43cnmpt1res 23700 . . 3 (⊤ → (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾))
4544mptru 1544 . 2 (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾)
461, 45eqeltri 2835 1 𝐹 ∈ (𝐽 Cn 𝐾)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wtru 1538  wcel 2106  wss 3963  cmpt 5231  ran crn 5690  cfv 6563  (class class class)co 7431  cc 11151  cr 11152   · cmul 11158  cmin 11490  (,)cioo 13384  t crest 17467  TopOpenctopn 17468  topGenctg 17484  ∞Metcxmet 21367  MetOpencmopn 21372  fldccnfld 21382  TopOnctopon 22932   Cn ccn 23248   ×t ctx 23584  NrmCVeccnv 30613   +𝑣 cpv 30614  BaseSetcba 30615   ·𝑠OLD cns 30616  IndMetcims 30620  ·𝑖OLDcdip 30729  CPreHilOLDccphlo 30841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-cnp 23252  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629  df-ims 30630  df-dip 30730  df-ph 30842
This theorem is referenced by:  ipasslem8  30866
  Copyright terms: Public domain W3C validator