| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipasslem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for ipassi 30820. Show that ((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)) is continuous on ℝ. (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
| ipasslem7.a | ⊢ 𝐴 ∈ 𝑋 |
| ipasslem7.b | ⊢ 𝐵 ∈ 𝑋 |
| ipasslem7.f | ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) |
| ipasslem7.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| ipasslem7.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| ipasslem7 | ⊢ 𝐹 ∈ (𝐽 Cn 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipasslem7.f | . 2 ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) | |
| 2 | ipasslem7.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 3 | ipasslem7.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 4 | 3 | tgioo2 24724 | . . . . 5 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
| 5 | 2, 4 | eqtri 2752 | . . . 4 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
| 6 | 3 | cnfldtopon 24703 | . . . . 5 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
| 8 | ax-resscn 11101 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ⊆ ℂ) |
| 10 | 7 | cnmptid 23581 | . . . . . . 7 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (𝐾 Cn 𝐾)) |
| 11 | ip1i.9 | . . . . . . . . . . 11 ⊢ 𝑈 ∈ CPreHilOLD | |
| 12 | 11 | phnvi 30795 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
| 13 | ip1i.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 14 | eqid 2729 | . . . . . . . . . . 11 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
| 15 | 13, 14 | imsxmet 30671 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘𝑋)) |
| 16 | 12, 15 | ax-mp 5 | . . . . . . . . 9 ⊢ (IndMet‘𝑈) ∈ (∞Met‘𝑋) |
| 17 | eqid 2729 | . . . . . . . . . 10 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
| 18 | 17 | mopntopon 24360 | . . . . . . . . 9 ⊢ ((IndMet‘𝑈) ∈ (∞Met‘𝑋) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋)) |
| 19 | 16, 18 | mp1i 13 | . . . . . . . 8 ⊢ (⊤ → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋)) |
| 20 | ipasslem7.a | . . . . . . . . 9 ⊢ 𝐴 ∈ 𝑋 | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 𝐴 ∈ 𝑋) |
| 22 | 7, 19, 21 | cnmptc 23582 | . . . . . . 7 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ 𝐴) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈)))) |
| 23 | ip1i.4 | . . . . . . . . 9 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 24 | 14, 17, 23, 3 | smcn 30677 | . . . . . . . 8 ⊢ (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈)))) |
| 25 | 12, 24 | mp1i 13 | . . . . . . 7 ⊢ (⊤ → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈)))) |
| 26 | 7, 10, 22, 25 | cnmpt12f 23586 | . . . . . 6 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (𝑤𝑆𝐴)) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈)))) |
| 27 | ipasslem7.b | . . . . . . . 8 ⊢ 𝐵 ∈ 𝑋 | |
| 28 | 27 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝐵 ∈ 𝑋) |
| 29 | 7, 19, 28 | cnmptc 23582 | . . . . . 6 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ 𝐵) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈)))) |
| 30 | ip1i.7 | . . . . . . . 8 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 31 | 30, 14, 17, 3 | dipcn 30699 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾)) |
| 32 | 12, 31 | mp1i 13 | . . . . . 6 ⊢ (⊤ → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾)) |
| 33 | 7, 26, 29, 32 | cnmpt12f 23586 | . . . . 5 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ ((𝑤𝑆𝐴)𝑃𝐵)) ∈ (𝐾 Cn 𝐾)) |
| 34 | 13, 30 | dipcl 30691 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
| 35 | 12, 20, 27, 34 | mp3an 1463 | . . . . . . . 8 ⊢ (𝐴𝑃𝐵) ∈ ℂ |
| 36 | 35 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (𝐴𝑃𝐵) ∈ ℂ) |
| 37 | 7, 7, 36 | cnmptc 23582 | . . . . . 6 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (𝐴𝑃𝐵)) ∈ (𝐾 Cn 𝐾)) |
| 38 | 3 | mulcn 24789 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 39 | 38 | a1i 11 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 40 | 7, 10, 37, 39 | cnmpt12f 23586 | . . . . 5 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (𝑤 · (𝐴𝑃𝐵))) ∈ (𝐾 Cn 𝐾)) |
| 41 | 3 | subcn 24788 | . . . . . 6 ⊢ − ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 42 | 41 | a1i 11 | . . . . 5 ⊢ (⊤ → − ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 43 | 7, 33, 40, 42 | cnmpt12f 23586 | . . . 4 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐾 Cn 𝐾)) |
| 44 | 5, 7, 9, 43 | cnmpt1res 23596 | . . 3 ⊢ (⊤ → (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾)) |
| 45 | 44 | mptru 1547 | . 2 ⊢ (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾) |
| 46 | 1, 45 | eqeltri 2824 | 1 ⊢ 𝐹 ∈ (𝐽 Cn 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ⊆ wss 3911 ↦ cmpt 5183 ran crn 5632 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 · cmul 11049 − cmin 11381 (,)cioo 13282 ↾t crest 17359 TopOpenctopn 17360 topGenctg 17376 ∞Metcxmet 21281 MetOpencmopn 21286 ℂfldccnfld 21296 TopOnctopon 22830 Cn ccn 23144 ×t ctx 23480 NrmCVeccnv 30563 +𝑣 cpv 30564 BaseSetcba 30565 ·𝑠OLD cns 30566 IndMetcims 30570 ·𝑖OLDcdip 30679 CPreHilOLDccphlo 30791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cn 23147 df-cnp 23148 df-tx 23482 df-hmeo 23675 df-xms 24241 df-ms 24242 df-tms 24243 df-grpo 30472 df-gid 30473 df-ginv 30474 df-gdiv 30475 df-ablo 30524 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-vs 30578 df-nmcv 30579 df-ims 30580 df-dip 30680 df-ph 30792 |
| This theorem is referenced by: ipasslem8 30816 |
| Copyright terms: Public domain | W3C validator |