Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipasslem7 | Structured version Visualization version GIF version |
Description: Lemma for ipassi 29203. Show that ((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)) is continuous on ℝ. (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ipasslem7.a | ⊢ 𝐴 ∈ 𝑋 |
ipasslem7.b | ⊢ 𝐵 ∈ 𝑋 |
ipasslem7.f | ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) |
ipasslem7.j | ⊢ 𝐽 = (topGen‘ran (,)) |
ipasslem7.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
ipasslem7 | ⊢ 𝐹 ∈ (𝐽 Cn 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipasslem7.f | . 2 ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) | |
2 | ipasslem7.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | ipasslem7.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
4 | 3 | tgioo2 23966 | . . . . 5 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
5 | 2, 4 | eqtri 2766 | . . . 4 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
6 | 3 | cnfldtopon 23946 | . . . . 5 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
8 | ax-resscn 10928 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
9 | 8 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ⊆ ℂ) |
10 | 7 | cnmptid 22812 | . . . . . . 7 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (𝐾 Cn 𝐾)) |
11 | ip1i.9 | . . . . . . . . . . 11 ⊢ 𝑈 ∈ CPreHilOLD | |
12 | 11 | phnvi 29178 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
13 | ip1i.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (BaseSet‘𝑈) | |
14 | eqid 2738 | . . . . . . . . . . 11 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
15 | 13, 14 | imsxmet 29054 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘𝑋)) |
16 | 12, 15 | ax-mp 5 | . . . . . . . . 9 ⊢ (IndMet‘𝑈) ∈ (∞Met‘𝑋) |
17 | eqid 2738 | . . . . . . . . . 10 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
18 | 17 | mopntopon 23592 | . . . . . . . . 9 ⊢ ((IndMet‘𝑈) ∈ (∞Met‘𝑋) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋)) |
19 | 16, 18 | mp1i 13 | . . . . . . . 8 ⊢ (⊤ → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋)) |
20 | ipasslem7.a | . . . . . . . . 9 ⊢ 𝐴 ∈ 𝑋 | |
21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 𝐴 ∈ 𝑋) |
22 | 7, 19, 21 | cnmptc 22813 | . . . . . . 7 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ 𝐴) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈)))) |
23 | ip1i.4 | . . . . . . . . 9 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
24 | 14, 17, 23, 3 | smcn 29060 | . . . . . . . 8 ⊢ (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈)))) |
25 | 12, 24 | mp1i 13 | . . . . . . 7 ⊢ (⊤ → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈)))) |
26 | 7, 10, 22, 25 | cnmpt12f 22817 | . . . . . 6 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (𝑤𝑆𝐴)) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈)))) |
27 | ipasslem7.b | . . . . . . . 8 ⊢ 𝐵 ∈ 𝑋 | |
28 | 27 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝐵 ∈ 𝑋) |
29 | 7, 19, 28 | cnmptc 22813 | . . . . . 6 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ 𝐵) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈)))) |
30 | ip1i.7 | . . . . . . . 8 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
31 | 30, 14, 17, 3 | dipcn 29082 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾)) |
32 | 12, 31 | mp1i 13 | . . . . . 6 ⊢ (⊤ → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾)) |
33 | 7, 26, 29, 32 | cnmpt12f 22817 | . . . . 5 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ ((𝑤𝑆𝐴)𝑃𝐵)) ∈ (𝐾 Cn 𝐾)) |
34 | 13, 30 | dipcl 29074 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
35 | 12, 20, 27, 34 | mp3an 1460 | . . . . . . . 8 ⊢ (𝐴𝑃𝐵) ∈ ℂ |
36 | 35 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (𝐴𝑃𝐵) ∈ ℂ) |
37 | 7, 7, 36 | cnmptc 22813 | . . . . . 6 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (𝐴𝑃𝐵)) ∈ (𝐾 Cn 𝐾)) |
38 | 3 | mulcn 24030 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
39 | 38 | a1i 11 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
40 | 7, 10, 37, 39 | cnmpt12f 22817 | . . . . 5 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (𝑤 · (𝐴𝑃𝐵))) ∈ (𝐾 Cn 𝐾)) |
41 | 3 | subcn 24029 | . . . . . 6 ⊢ − ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
42 | 41 | a1i 11 | . . . . 5 ⊢ (⊤ → − ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
43 | 7, 33, 40, 42 | cnmpt12f 22817 | . . . 4 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐾 Cn 𝐾)) |
44 | 5, 7, 9, 43 | cnmpt1res 22827 | . . 3 ⊢ (⊤ → (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾)) |
45 | 44 | mptru 1546 | . 2 ⊢ (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾) |
46 | 1, 45 | eqeltri 2835 | 1 ⊢ 𝐹 ∈ (𝐽 Cn 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ⊆ wss 3887 ↦ cmpt 5157 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 · cmul 10876 − cmin 11205 (,)cioo 13079 ↾t crest 17131 TopOpenctopn 17132 topGenctg 17148 ∞Metcxmet 20582 MetOpencmopn 20587 ℂfldccnfld 20597 TopOnctopon 22059 Cn ccn 22375 ×t ctx 22711 NrmCVeccnv 28946 +𝑣 cpv 28947 BaseSetcba 28948 ·𝑠OLD cns 28949 IndMetcims 28953 ·𝑖OLDcdip 29062 CPreHilOLDccphlo 29174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cn 22378 df-cnp 22379 df-tx 22713 df-hmeo 22906 df-xms 23473 df-ms 23474 df-tms 23475 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-vs 28961 df-nmcv 28962 df-ims 28963 df-dip 29063 df-ph 29175 |
This theorem is referenced by: ipasslem8 29199 |
Copyright terms: Public domain | W3C validator |