MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem7 Structured version   Visualization version   GIF version

Theorem ipasslem7 30816
Description: Lemma for ipassi 30821. Show that ((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)) is continuous on . (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem7.a 𝐴𝑋
ipasslem7.b 𝐵𝑋
ipasslem7.f 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
ipasslem7.j 𝐽 = (topGen‘ran (,))
ipasslem7.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ipasslem7 𝐹 ∈ (𝐽 Cn 𝐾)
Distinct variable groups:   𝑤,𝐵   𝑤,𝐾   𝑤,𝑃   𝑤,𝑆   𝑤,𝑈   𝑤,𝑋   𝑤,𝐴
Allowed substitution hints:   𝐹(𝑤)   𝐺(𝑤)   𝐽(𝑤)

Proof of Theorem ipasslem7
StepHypRef Expression
1 ipasslem7.f . 2 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
2 ipasslem7.j . . . . 5 𝐽 = (topGen‘ran (,))
3 ipasslem7.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
43tgioo2 24718 . . . . 5 (topGen‘ran (,)) = (𝐾t ℝ)
52, 4eqtri 2754 . . . 4 𝐽 = (𝐾t ℝ)
63cnfldtopon 24697 . . . . 5 𝐾 ∈ (TopOn‘ℂ)
76a1i 11 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘ℂ))
8 ax-resscn 11063 . . . . 5 ℝ ⊆ ℂ
98a1i 11 . . . 4 (⊤ → ℝ ⊆ ℂ)
107cnmptid 23576 . . . . . . 7 (⊤ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (𝐾 Cn 𝐾))
11 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
1211phnvi 30796 . . . . . . . . . 10 𝑈 ∈ NrmCVec
13 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
14 eqid 2731 . . . . . . . . . . 11 (IndMet‘𝑈) = (IndMet‘𝑈)
1513, 14imsxmet 30672 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘𝑋))
1612, 15ax-mp 5 . . . . . . . . 9 (IndMet‘𝑈) ∈ (∞Met‘𝑋)
17 eqid 2731 . . . . . . . . . 10 (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈))
1817mopntopon 24354 . . . . . . . . 9 ((IndMet‘𝑈) ∈ (∞Met‘𝑋) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋))
1916, 18mp1i 13 . . . . . . . 8 (⊤ → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋))
20 ipasslem7.a . . . . . . . . 9 𝐴𝑋
2120a1i 11 . . . . . . . 8 (⊤ → 𝐴𝑋)
227, 19, 21cnmptc 23577 . . . . . . 7 (⊤ → (𝑤 ∈ ℂ ↦ 𝐴) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈))))
23 ip1i.4 . . . . . . . . 9 𝑆 = ( ·𝑠OLD𝑈)
2414, 17, 23, 3smcn 30678 . . . . . . . 8 (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈))))
2512, 24mp1i 13 . . . . . . 7 (⊤ → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈))))
267, 10, 22, 25cnmpt12f 23581 . . . . . 6 (⊤ → (𝑤 ∈ ℂ ↦ (𝑤𝑆𝐴)) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈))))
27 ipasslem7.b . . . . . . . 8 𝐵𝑋
2827a1i 11 . . . . . . 7 (⊤ → 𝐵𝑋)
297, 19, 28cnmptc 23577 . . . . . 6 (⊤ → (𝑤 ∈ ℂ ↦ 𝐵) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈))))
30 ip1i.7 . . . . . . . 8 𝑃 = (·𝑖OLD𝑈)
3130, 14, 17, 3dipcn 30700 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾))
3212, 31mp1i 13 . . . . . 6 (⊤ → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾))
337, 26, 29, 32cnmpt12f 23581 . . . . 5 (⊤ → (𝑤 ∈ ℂ ↦ ((𝑤𝑆𝐴)𝑃𝐵)) ∈ (𝐾 Cn 𝐾))
3413, 30dipcl 30692 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
3512, 20, 27, 34mp3an 1463 . . . . . . . 8 (𝐴𝑃𝐵) ∈ ℂ
3635a1i 11 . . . . . . 7 (⊤ → (𝐴𝑃𝐵) ∈ ℂ)
377, 7, 36cnmptc 23577 . . . . . 6 (⊤ → (𝑤 ∈ ℂ ↦ (𝐴𝑃𝐵)) ∈ (𝐾 Cn 𝐾))
383mulcn 24783 . . . . . . 7 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
3938a1i 11 . . . . . 6 (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
407, 10, 37, 39cnmpt12f 23581 . . . . 5 (⊤ → (𝑤 ∈ ℂ ↦ (𝑤 · (𝐴𝑃𝐵))) ∈ (𝐾 Cn 𝐾))
413subcn 24782 . . . . . 6 − ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
4241a1i 11 . . . . 5 (⊤ → − ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
437, 33, 40, 42cnmpt12f 23581 . . . 4 (⊤ → (𝑤 ∈ ℂ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐾 Cn 𝐾))
445, 7, 9, 43cnmpt1res 23591 . . 3 (⊤ → (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾))
4544mptru 1548 . 2 (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾)
461, 45eqeltri 2827 1 𝐹 ∈ (𝐽 Cn 𝐾)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wtru 1542  wcel 2111  wss 3897  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  cc 11004  cr 11005   · cmul 11011  cmin 11344  (,)cioo 13245  t crest 17324  TopOpenctopn 17325  topGenctg 17341  ∞Metcxmet 21276  MetOpencmopn 21281  fldccnfld 21291  TopOnctopon 22825   Cn ccn 23139   ×t ctx 23475  NrmCVeccnv 30564   +𝑣 cpv 30565  BaseSetcba 30566   ·𝑠OLD cns 30567  IndMetcims 30571  ·𝑖OLDcdip 30680  CPreHilOLDccphlo 30792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-grpo 30473  df-gid 30474  df-ginv 30475  df-gdiv 30476  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-vs 30579  df-nmcv 30580  df-ims 30581  df-dip 30681  df-ph 30793
This theorem is referenced by:  ipasslem8  30817
  Copyright terms: Public domain W3C validator