| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipasslem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for ipassi 30821. Show that ((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)) is continuous on ℝ. (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
| ipasslem7.a | ⊢ 𝐴 ∈ 𝑋 |
| ipasslem7.b | ⊢ 𝐵 ∈ 𝑋 |
| ipasslem7.f | ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) |
| ipasslem7.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| ipasslem7.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| ipasslem7 | ⊢ 𝐹 ∈ (𝐽 Cn 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipasslem7.f | . 2 ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) | |
| 2 | ipasslem7.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 3 | ipasslem7.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 4 | 3 | tgioo2 24718 | . . . . 5 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
| 5 | 2, 4 | eqtri 2754 | . . . 4 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
| 6 | 3 | cnfldtopon 24697 | . . . . 5 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
| 8 | ax-resscn 11063 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ⊆ ℂ) |
| 10 | 7 | cnmptid 23576 | . . . . . . 7 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (𝐾 Cn 𝐾)) |
| 11 | ip1i.9 | . . . . . . . . . . 11 ⊢ 𝑈 ∈ CPreHilOLD | |
| 12 | 11 | phnvi 30796 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
| 13 | ip1i.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 14 | eqid 2731 | . . . . . . . . . . 11 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
| 15 | 13, 14 | imsxmet 30672 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘𝑋)) |
| 16 | 12, 15 | ax-mp 5 | . . . . . . . . 9 ⊢ (IndMet‘𝑈) ∈ (∞Met‘𝑋) |
| 17 | eqid 2731 | . . . . . . . . . 10 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
| 18 | 17 | mopntopon 24354 | . . . . . . . . 9 ⊢ ((IndMet‘𝑈) ∈ (∞Met‘𝑋) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋)) |
| 19 | 16, 18 | mp1i 13 | . . . . . . . 8 ⊢ (⊤ → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋)) |
| 20 | ipasslem7.a | . . . . . . . . 9 ⊢ 𝐴 ∈ 𝑋 | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 𝐴 ∈ 𝑋) |
| 22 | 7, 19, 21 | cnmptc 23577 | . . . . . . 7 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ 𝐴) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈)))) |
| 23 | ip1i.4 | . . . . . . . . 9 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 24 | 14, 17, 23, 3 | smcn 30678 | . . . . . . . 8 ⊢ (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈)))) |
| 25 | 12, 24 | mp1i 13 | . . . . . . 7 ⊢ (⊤ → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈)))) |
| 26 | 7, 10, 22, 25 | cnmpt12f 23581 | . . . . . 6 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (𝑤𝑆𝐴)) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈)))) |
| 27 | ipasslem7.b | . . . . . . . 8 ⊢ 𝐵 ∈ 𝑋 | |
| 28 | 27 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝐵 ∈ 𝑋) |
| 29 | 7, 19, 28 | cnmptc 23577 | . . . . . 6 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ 𝐵) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈)))) |
| 30 | ip1i.7 | . . . . . . . 8 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 31 | 30, 14, 17, 3 | dipcn 30700 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾)) |
| 32 | 12, 31 | mp1i 13 | . . . . . 6 ⊢ (⊤ → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾)) |
| 33 | 7, 26, 29, 32 | cnmpt12f 23581 | . . . . 5 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ ((𝑤𝑆𝐴)𝑃𝐵)) ∈ (𝐾 Cn 𝐾)) |
| 34 | 13, 30 | dipcl 30692 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
| 35 | 12, 20, 27, 34 | mp3an 1463 | . . . . . . . 8 ⊢ (𝐴𝑃𝐵) ∈ ℂ |
| 36 | 35 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (𝐴𝑃𝐵) ∈ ℂ) |
| 37 | 7, 7, 36 | cnmptc 23577 | . . . . . 6 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (𝐴𝑃𝐵)) ∈ (𝐾 Cn 𝐾)) |
| 38 | 3 | mulcn 24783 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 39 | 38 | a1i 11 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 40 | 7, 10, 37, 39 | cnmpt12f 23581 | . . . . 5 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (𝑤 · (𝐴𝑃𝐵))) ∈ (𝐾 Cn 𝐾)) |
| 41 | 3 | subcn 24782 | . . . . . 6 ⊢ − ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 42 | 41 | a1i 11 | . . . . 5 ⊢ (⊤ → − ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 43 | 7, 33, 40, 42 | cnmpt12f 23581 | . . . 4 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐾 Cn 𝐾)) |
| 44 | 5, 7, 9, 43 | cnmpt1res 23591 | . . 3 ⊢ (⊤ → (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾)) |
| 45 | 44 | mptru 1548 | . 2 ⊢ (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾) |
| 46 | 1, 45 | eqeltri 2827 | 1 ⊢ 𝐹 ∈ (𝐽 Cn 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ⊆ wss 3897 ↦ cmpt 5170 ran crn 5615 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 · cmul 11011 − cmin 11344 (,)cioo 13245 ↾t crest 17324 TopOpenctopn 17325 topGenctg 17341 ∞Metcxmet 21276 MetOpencmopn 21281 ℂfldccnfld 21291 TopOnctopon 22825 Cn ccn 23139 ×t ctx 23475 NrmCVeccnv 30564 +𝑣 cpv 30565 BaseSetcba 30566 ·𝑠OLD cns 30567 IndMetcims 30571 ·𝑖OLDcdip 30680 CPreHilOLDccphlo 30792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cn 23142 df-cnp 23143 df-tx 23477 df-hmeo 23670 df-xms 24235 df-ms 24236 df-tms 24237 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-vs 30579 df-nmcv 30580 df-ims 30581 df-dip 30681 df-ph 30793 |
| This theorem is referenced by: ipasslem8 30817 |
| Copyright terms: Public domain | W3C validator |