![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipasslem7 | Structured version Visualization version GIF version |
Description: Lemma for ipassi 30873. Show that ((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)) is continuous on ℝ. (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ipasslem7.a | ⊢ 𝐴 ∈ 𝑋 |
ipasslem7.b | ⊢ 𝐵 ∈ 𝑋 |
ipasslem7.f | ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) |
ipasslem7.j | ⊢ 𝐽 = (topGen‘ran (,)) |
ipasslem7.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
ipasslem7 | ⊢ 𝐹 ∈ (𝐽 Cn 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipasslem7.f | . 2 ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) | |
2 | ipasslem7.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | ipasslem7.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
4 | 3 | tgioo2 24844 | . . . . 5 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
5 | 2, 4 | eqtri 2768 | . . . 4 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
6 | 3 | cnfldtopon 24824 | . . . . 5 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
8 | ax-resscn 11241 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
9 | 8 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ⊆ ℂ) |
10 | 7 | cnmptid 23690 | . . . . . . 7 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (𝐾 Cn 𝐾)) |
11 | ip1i.9 | . . . . . . . . . . 11 ⊢ 𝑈 ∈ CPreHilOLD | |
12 | 11 | phnvi 30848 | . . . . . . . . . 10 ⊢ 𝑈 ∈ NrmCVec |
13 | ip1i.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (BaseSet‘𝑈) | |
14 | eqid 2740 | . . . . . . . . . . 11 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
15 | 13, 14 | imsxmet 30724 | . . . . . . . . . 10 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘𝑋)) |
16 | 12, 15 | ax-mp 5 | . . . . . . . . 9 ⊢ (IndMet‘𝑈) ∈ (∞Met‘𝑋) |
17 | eqid 2740 | . . . . . . . . . 10 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
18 | 17 | mopntopon 24470 | . . . . . . . . 9 ⊢ ((IndMet‘𝑈) ∈ (∞Met‘𝑋) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋)) |
19 | 16, 18 | mp1i 13 | . . . . . . . 8 ⊢ (⊤ → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋)) |
20 | ipasslem7.a | . . . . . . . . 9 ⊢ 𝐴 ∈ 𝑋 | |
21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 𝐴 ∈ 𝑋) |
22 | 7, 19, 21 | cnmptc 23691 | . . . . . . 7 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ 𝐴) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈)))) |
23 | ip1i.4 | . . . . . . . . 9 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
24 | 14, 17, 23, 3 | smcn 30730 | . . . . . . . 8 ⊢ (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈)))) |
25 | 12, 24 | mp1i 13 | . . . . . . 7 ⊢ (⊤ → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈)))) |
26 | 7, 10, 22, 25 | cnmpt12f 23695 | . . . . . 6 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (𝑤𝑆𝐴)) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈)))) |
27 | ipasslem7.b | . . . . . . . 8 ⊢ 𝐵 ∈ 𝑋 | |
28 | 27 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝐵 ∈ 𝑋) |
29 | 7, 19, 28 | cnmptc 23691 | . . . . . 6 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ 𝐵) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈)))) |
30 | ip1i.7 | . . . . . . . 8 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
31 | 30, 14, 17, 3 | dipcn 30752 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾)) |
32 | 12, 31 | mp1i 13 | . . . . . 6 ⊢ (⊤ → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾)) |
33 | 7, 26, 29, 32 | cnmpt12f 23695 | . . . . 5 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ ((𝑤𝑆𝐴)𝑃𝐵)) ∈ (𝐾 Cn 𝐾)) |
34 | 13, 30 | dipcl 30744 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
35 | 12, 20, 27, 34 | mp3an 1461 | . . . . . . . 8 ⊢ (𝐴𝑃𝐵) ∈ ℂ |
36 | 35 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (𝐴𝑃𝐵) ∈ ℂ) |
37 | 7, 7, 36 | cnmptc 23691 | . . . . . 6 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (𝐴𝑃𝐵)) ∈ (𝐾 Cn 𝐾)) |
38 | 3 | mulcn 24908 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
39 | 38 | a1i 11 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
40 | 7, 10, 37, 39 | cnmpt12f 23695 | . . . . 5 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (𝑤 · (𝐴𝑃𝐵))) ∈ (𝐾 Cn 𝐾)) |
41 | 3 | subcn 24907 | . . . . . 6 ⊢ − ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
42 | 41 | a1i 11 | . . . . 5 ⊢ (⊤ → − ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
43 | 7, 33, 40, 42 | cnmpt12f 23695 | . . . 4 ⊢ (⊤ → (𝑤 ∈ ℂ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐾 Cn 𝐾)) |
44 | 5, 7, 9, 43 | cnmpt1res 23705 | . . 3 ⊢ (⊤ → (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾)) |
45 | 44 | mptru 1544 | . 2 ⊢ (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾) |
46 | 1, 45 | eqeltri 2840 | 1 ⊢ 𝐹 ∈ (𝐽 Cn 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ⊆ wss 3976 ↦ cmpt 5249 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 · cmul 11189 − cmin 11520 (,)cioo 13407 ↾t crest 17480 TopOpenctopn 17481 topGenctg 17497 ∞Metcxmet 21372 MetOpencmopn 21377 ℂfldccnfld 21387 TopOnctopon 22937 Cn ccn 23253 ×t ctx 23589 NrmCVeccnv 30616 +𝑣 cpv 30617 BaseSetcba 30618 ·𝑠OLD cns 30619 IndMetcims 30623 ·𝑖OLDcdip 30732 CPreHilOLDccphlo 30844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cn 23256 df-cnp 23257 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 df-dip 30733 df-ph 30845 |
This theorem is referenced by: ipasslem8 30869 |
Copyright terms: Public domain | W3C validator |