MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdirilem Structured version   Visualization version   GIF version

Theorem ipdirilem 29191
Description: Lemma for ipdiri 29192. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipdiri.8 𝐴𝑋
ipdiri.9 𝐵𝑋
ipdiri.10 𝐶𝑋
Assertion
Ref Expression
ipdirilem ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))

Proof of Theorem ipdirilem
StepHypRef Expression
1 2cn 12048 . . . . . . 7 2 ∈ ℂ
2 2ne0 12077 . . . . . . 7 2 ≠ 0
31, 2recidi 11706 . . . . . 6 (2 · (1 / 2)) = 1
43oveq1i 7285 . . . . 5 ((2 · (1 / 2))𝑆(𝐴𝐺𝐵)) = (1𝑆(𝐴𝐺𝐵))
5 ip1i.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
65phnvi 29178 . . . . . 6 𝑈 ∈ NrmCVec
7 halfcn 12188 . . . . . . 7 (1 / 2) ∈ ℂ
8 ipdiri.8 . . . . . . . 8 𝐴𝑋
9 ipdiri.9 . . . . . . . 8 𝐵𝑋
10 ip1i.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
11 ip1i.2 . . . . . . . . 9 𝐺 = ( +𝑣𝑈)
1210, 11nvgcl 28982 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
136, 8, 9, 12mp3an 1460 . . . . . . 7 (𝐴𝐺𝐵) ∈ 𝑋
141, 7, 133pm3.2i 1338 . . . . . 6 (2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋)
15 ip1i.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
1610, 15nvsass 28990 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋)) → ((2 · (1 / 2))𝑆(𝐴𝐺𝐵)) = (2𝑆((1 / 2)𝑆(𝐴𝐺𝐵))))
176, 14, 16mp2an 689 . . . . 5 ((2 · (1 / 2))𝑆(𝐴𝐺𝐵)) = (2𝑆((1 / 2)𝑆(𝐴𝐺𝐵)))
1810, 15nvsid 28989 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → (1𝑆(𝐴𝐺𝐵)) = (𝐴𝐺𝐵))
196, 13, 18mp2an 689 . . . . 5 (1𝑆(𝐴𝐺𝐵)) = (𝐴𝐺𝐵)
204, 17, 193eqtr3i 2774 . . . 4 (2𝑆((1 / 2)𝑆(𝐴𝐺𝐵))) = (𝐴𝐺𝐵)
2120oveq1i 7285 . . 3 ((2𝑆((1 / 2)𝑆(𝐴𝐺𝐵)))𝑃𝐶) = ((𝐴𝐺𝐵)𝑃𝐶)
22 ip1i.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
2310, 15nvscl 28988 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋) → ((1 / 2)𝑆(𝐴𝐺𝐵)) ∈ 𝑋)
246, 7, 13, 23mp3an 1460 . . . 4 ((1 / 2)𝑆(𝐴𝐺𝐵)) ∈ 𝑋
25 ipdiri.10 . . . 4 𝐶𝑋
2610, 11, 15, 22, 5, 24, 25ip2i 29190 . . 3 ((2𝑆((1 / 2)𝑆(𝐴𝐺𝐵)))𝑃𝐶) = (2 · (((1 / 2)𝑆(𝐴𝐺𝐵))𝑃𝐶))
2721, 26eqtr3i 2768 . 2 ((𝐴𝐺𝐵)𝑃𝐶) = (2 · (((1 / 2)𝑆(𝐴𝐺𝐵))𝑃𝐶))
28 neg1cn 12087 . . . . . 6 -1 ∈ ℂ
2910, 15nvscl 28988 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
306, 28, 9, 29mp3an 1460 . . . . 5 (-1𝑆𝐵) ∈ 𝑋
3110, 11nvgcl 28982 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
326, 8, 30, 31mp3an 1460 . . . 4 (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋
3310, 15nvscl 28988 . . . 4 ((𝑈 ∈ NrmCVec ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋) → ((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))) ∈ 𝑋)
346, 7, 32, 33mp3an 1460 . . 3 ((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))) ∈ 𝑋
3510, 11, 15, 22, 5, 24, 34, 25ip1i 29189 . 2 (((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))𝑃𝐶) + ((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))𝑃𝐶)) = (2 · (((1 / 2)𝑆(𝐴𝐺𝐵))𝑃𝐶))
36 eqid 2738 . . . . . . . . . . . 12 (1st𝑈) = (1st𝑈)
3736nvvc 28977 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
386, 37ax-mp 5 . . . . . . . . . 10 (1st𝑈) ∈ CVecOLD
3911vafval 28965 . . . . . . . . . . 11 𝐺 = (1st ‘(1st𝑈))
4039vcablo 28931 . . . . . . . . . 10 ((1st𝑈) ∈ CVecOLD𝐺 ∈ AbelOp)
4138, 40ax-mp 5 . . . . . . . . 9 𝐺 ∈ AbelOp
428, 9pm3.2i 471 . . . . . . . . 9 (𝐴𝑋𝐵𝑋)
438, 30pm3.2i 471 . . . . . . . . 9 (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋)
4410, 11bafval 28966 . . . . . . . . . 10 𝑋 = ran 𝐺
4544ablo4 28912 . . . . . . . . 9 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵))) = ((𝐴𝐺𝐴)𝐺(𝐵𝐺(-1𝑆𝐵))))
4641, 42, 43, 45mp3an 1460 . . . . . . . 8 ((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵))) = ((𝐴𝐺𝐴)𝐺(𝐵𝐺(-1𝑆𝐵)))
4715smfval 28967 . . . . . . . . . . 11 𝑆 = (2nd ‘(1st𝑈))
4839, 47, 44vc2OLD 28930 . . . . . . . . . 10 (((1st𝑈) ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))
4938, 8, 48mp2an 689 . . . . . . . . 9 (𝐴𝐺𝐴) = (2𝑆𝐴)
50 eqid 2738 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
5110, 11, 15, 50nvrinv 29013 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝐺(-1𝑆𝐵)) = (0vec𝑈))
526, 9, 51mp2an 689 . . . . . . . . 9 (𝐵𝐺(-1𝑆𝐵)) = (0vec𝑈)
5349, 52oveq12i 7287 . . . . . . . 8 ((𝐴𝐺𝐴)𝐺(𝐵𝐺(-1𝑆𝐵))) = ((2𝑆𝐴)𝐺(0vec𝑈))
5410, 15nvscl 28988 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 2 ∈ ℂ ∧ 𝐴𝑋) → (2𝑆𝐴) ∈ 𝑋)
556, 1, 8, 54mp3an 1460 . . . . . . . . 9 (2𝑆𝐴) ∈ 𝑋
5610, 11, 50nv0rid 28997 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (2𝑆𝐴) ∈ 𝑋) → ((2𝑆𝐴)𝐺(0vec𝑈)) = (2𝑆𝐴))
576, 55, 56mp2an 689 . . . . . . . 8 ((2𝑆𝐴)𝐺(0vec𝑈)) = (2𝑆𝐴)
5846, 53, 573eqtri 2770 . . . . . . 7 ((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵))) = (2𝑆𝐴)
5958oveq2i 7286 . . . . . 6 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵)))) = ((1 / 2)𝑆(2𝑆𝐴))
607, 1, 83pm3.2i 1338 . . . . . . 7 ((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴𝑋)
6110, 15nvsass 28990 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴𝑋)) → (((1 / 2) · 2)𝑆𝐴) = ((1 / 2)𝑆(2𝑆𝐴)))
626, 60, 61mp2an 689 . . . . . 6 (((1 / 2) · 2)𝑆𝐴) = ((1 / 2)𝑆(2𝑆𝐴))
6359, 62eqtr4i 2769 . . . . 5 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵)))) = (((1 / 2) · 2)𝑆𝐴)
647, 13, 323pm3.2i 1338 . . . . . 6 ((1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
6510, 11, 15nvdi 28992 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)) → ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵)))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))
666, 64, 65mp2an 689 . . . . 5 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵)))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))
67 ax-1cn 10929 . . . . . . . 8 1 ∈ ℂ
6867, 1, 2divcan1i 11719 . . . . . . 7 ((1 / 2) · 2) = 1
6968oveq1i 7285 . . . . . 6 (((1 / 2) · 2)𝑆𝐴) = (1𝑆𝐴)
7010, 15nvsid 28989 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
716, 8, 70mp2an 689 . . . . . 6 (1𝑆𝐴) = 𝐴
7269, 71eqtri 2766 . . . . 5 (((1 / 2) · 2)𝑆𝐴) = 𝐴
7363, 66, 723eqtr3i 2774 . . . 4 (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))) = 𝐴
7473oveq1i 7285 . . 3 ((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))𝑃𝐶) = (𝐴𝑃𝐶)
7528, 7mulcomi 10983 . . . . . . . . 9 (-1 · (1 / 2)) = ((1 / 2) · -1)
7675oveq1i 7285 . . . . . . . 8 ((-1 · (1 / 2))𝑆(𝐴𝐺(-1𝑆𝐵))) = (((1 / 2) · -1)𝑆(𝐴𝐺(-1𝑆𝐵)))
7728, 7, 323pm3.2i 1338 . . . . . . . . 9 (-1 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
7810, 15nvsass 28990 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)) → ((-1 · (1 / 2))𝑆(𝐴𝐺(-1𝑆𝐵))) = (-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))
796, 77, 78mp2an 689 . . . . . . . 8 ((-1 · (1 / 2))𝑆(𝐴𝐺(-1𝑆𝐵))) = (-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))
807, 28, 323pm3.2i 1338 . . . . . . . . . 10 ((1 / 2) ∈ ℂ ∧ -1 ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
8110, 15nvsass 28990 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ -1 ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)) → (((1 / 2) · -1)𝑆(𝐴𝐺(-1𝑆𝐵))) = ((1 / 2)𝑆(-1𝑆(𝐴𝐺(-1𝑆𝐵)))))
826, 80, 81mp2an 689 . . . . . . . . 9 (((1 / 2) · -1)𝑆(𝐴𝐺(-1𝑆𝐵))) = ((1 / 2)𝑆(-1𝑆(𝐴𝐺(-1𝑆𝐵))))
8328, 8, 303pm3.2i 1338 . . . . . . . . . . . 12 (-1 ∈ ℂ ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋)
8410, 11, 15nvdi 28992 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋)) → (-1𝑆(𝐴𝐺(-1𝑆𝐵))) = ((-1𝑆𝐴)𝐺(-1𝑆(-1𝑆𝐵))))
856, 83, 84mp2an 689 . . . . . . . . . . 11 (-1𝑆(𝐴𝐺(-1𝑆𝐵))) = ((-1𝑆𝐴)𝐺(-1𝑆(-1𝑆𝐵)))
86 neg1mulneg1e1 12186 . . . . . . . . . . . . . 14 (-1 · -1) = 1
8786oveq1i 7285 . . . . . . . . . . . . 13 ((-1 · -1)𝑆𝐵) = (1𝑆𝐵)
8828, 28, 93pm3.2i 1338 . . . . . . . . . . . . . 14 (-1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐵𝑋)
8910, 15nvsass 28990 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐵𝑋)) → ((-1 · -1)𝑆𝐵) = (-1𝑆(-1𝑆𝐵)))
906, 88, 89mp2an 689 . . . . . . . . . . . . 13 ((-1 · -1)𝑆𝐵) = (-1𝑆(-1𝑆𝐵))
9110, 15nvsid 28989 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
926, 9, 91mp2an 689 . . . . . . . . . . . . 13 (1𝑆𝐵) = 𝐵
9387, 90, 923eqtr3i 2774 . . . . . . . . . . . 12 (-1𝑆(-1𝑆𝐵)) = 𝐵
9493oveq2i 7286 . . . . . . . . . . 11 ((-1𝑆𝐴)𝐺(-1𝑆(-1𝑆𝐵))) = ((-1𝑆𝐴)𝐺𝐵)
9585, 94eqtri 2766 . . . . . . . . . 10 (-1𝑆(𝐴𝐺(-1𝑆𝐵))) = ((-1𝑆𝐴)𝐺𝐵)
9695oveq2i 7286 . . . . . . . . 9 ((1 / 2)𝑆(-1𝑆(𝐴𝐺(-1𝑆𝐵)))) = ((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵))
9782, 96eqtri 2766 . . . . . . . 8 (((1 / 2) · -1)𝑆(𝐴𝐺(-1𝑆𝐵))) = ((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵))
9876, 79, 973eqtr3i 2774 . . . . . . 7 (-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))) = ((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵))
9998oveq2i 7286 . . . . . 6 (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵)))
10010, 15nvscl 28988 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
1016, 28, 8, 100mp3an 1460 . . . . . . . . 9 (-1𝑆𝐴) ∈ 𝑋
10210, 11nvgcl 28982 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-1𝑆𝐴)𝐺𝐵) ∈ 𝑋)
1036, 101, 9, 102mp3an 1460 . . . . . . . 8 ((-1𝑆𝐴)𝐺𝐵) ∈ 𝑋
1047, 13, 1033pm3.2i 1338 . . . . . . 7 ((1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ ((-1𝑆𝐴)𝐺𝐵) ∈ 𝑋)
10510, 11, 15nvdi 28992 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ ((-1𝑆𝐴)𝐺𝐵) ∈ 𝑋)) → ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵))))
1066, 104, 105mp2an 689 . . . . . 6 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵)))
10799, 106eqtr4i 2769 . . . . 5 (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))) = ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵)))
108101, 9pm3.2i 471 . . . . . . . . 9 ((-1𝑆𝐴) ∈ 𝑋𝐵𝑋)
10944ablo4 28912 . . . . . . . . 9 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋) ∧ ((-1𝑆𝐴) ∈ 𝑋𝐵𝑋)) → ((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵)) = ((𝐴𝐺(-1𝑆𝐴))𝐺(𝐵𝐺𝐵)))
11041, 42, 108, 109mp3an 1460 . . . . . . . 8 ((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵)) = ((𝐴𝐺(-1𝑆𝐴))𝐺(𝐵𝐺𝐵))
11110, 11, 15, 50nvrinv 29013 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
1126, 8, 111mp2an 689 . . . . . . . . . 10 (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈)
113112oveq1i 7285 . . . . . . . . 9 ((𝐴𝐺(-1𝑆𝐴))𝐺(𝐵𝐺𝐵)) = ((0vec𝑈)𝐺(𝐵𝐺𝐵))
11410, 11nvgcl 28982 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐵𝑋) → (𝐵𝐺𝐵) ∈ 𝑋)
1156, 9, 9, 114mp3an 1460 . . . . . . . . . 10 (𝐵𝐺𝐵) ∈ 𝑋
11610, 11, 50nv0lid 28998 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺𝐵) ∈ 𝑋) → ((0vec𝑈)𝐺(𝐵𝐺𝐵)) = (𝐵𝐺𝐵))
1176, 115, 116mp2an 689 . . . . . . . . 9 ((0vec𝑈)𝐺(𝐵𝐺𝐵)) = (𝐵𝐺𝐵)
118113, 117eqtri 2766 . . . . . . . 8 ((𝐴𝐺(-1𝑆𝐴))𝐺(𝐵𝐺𝐵)) = (𝐵𝐺𝐵)
11939, 47, 44vc2OLD 28930 . . . . . . . . 9 (((1st𝑈) ∈ CVecOLD𝐵𝑋) → (𝐵𝐺𝐵) = (2𝑆𝐵))
12038, 9, 119mp2an 689 . . . . . . . 8 (𝐵𝐺𝐵) = (2𝑆𝐵)
121110, 118, 1203eqtri 2770 . . . . . . 7 ((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵)) = (2𝑆𝐵)
122121oveq2i 7286 . . . . . 6 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵))) = ((1 / 2)𝑆(2𝑆𝐵))
1237, 1, 93pm3.2i 1338 . . . . . . 7 ((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐵𝑋)
12410, 15nvsass 28990 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐵𝑋)) → (((1 / 2) · 2)𝑆𝐵) = ((1 / 2)𝑆(2𝑆𝐵)))
1256, 123, 124mp2an 689 . . . . . 6 (((1 / 2) · 2)𝑆𝐵) = ((1 / 2)𝑆(2𝑆𝐵))
12668oveq1i 7285 . . . . . 6 (((1 / 2) · 2)𝑆𝐵) = (1𝑆𝐵)
127122, 125, 1263eqtr2i 2772 . . . . 5 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵))) = (1𝑆𝐵)
128107, 127, 923eqtri 2770 . . . 4 (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))) = 𝐵
129128oveq1i 7285 . . 3 ((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))𝑃𝐶) = (𝐵𝑃𝐶)
13074, 129oveq12i 7287 . 2 (((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))𝑃𝐶) + ((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))𝑃𝐶)) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))
13127, 35, 1303eqtr2i 2772 1 ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  1st c1st 7829  cc 10869  1c1 10872   + caddc 10874   · cmul 10876  -cneg 11206   / cdiv 11632  2c2 12028  AbelOpcablo 28906  CVecOLDcvc 28920  NrmCVeccnv 28946   +𝑣 cpv 28947  BaseSetcba 28948   ·𝑠OLD cns 28949  0veccn0v 28950  ·𝑖OLDcdip 29062  CPreHilOLDccphlo 29174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-grpo 28855  df-gid 28856  df-ginv 28857  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-dip 29063  df-ph 29175
This theorem is referenced by:  ipdiri  29192
  Copyright terms: Public domain W3C validator