MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdirilem Structured version   Visualization version   GIF version

Theorem ipdirilem 29092
Description: Lemma for ipdiri 29093. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipdiri.8 𝐴𝑋
ipdiri.9 𝐵𝑋
ipdiri.10 𝐶𝑋
Assertion
Ref Expression
ipdirilem ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))

Proof of Theorem ipdirilem
StepHypRef Expression
1 2cn 11978 . . . . . . 7 2 ∈ ℂ
2 2ne0 12007 . . . . . . 7 2 ≠ 0
31, 2recidi 11636 . . . . . 6 (2 · (1 / 2)) = 1
43oveq1i 7265 . . . . 5 ((2 · (1 / 2))𝑆(𝐴𝐺𝐵)) = (1𝑆(𝐴𝐺𝐵))
5 ip1i.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
65phnvi 29079 . . . . . 6 𝑈 ∈ NrmCVec
7 halfcn 12118 . . . . . . 7 (1 / 2) ∈ ℂ
8 ipdiri.8 . . . . . . . 8 𝐴𝑋
9 ipdiri.9 . . . . . . . 8 𝐵𝑋
10 ip1i.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
11 ip1i.2 . . . . . . . . 9 𝐺 = ( +𝑣𝑈)
1210, 11nvgcl 28883 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
136, 8, 9, 12mp3an 1459 . . . . . . 7 (𝐴𝐺𝐵) ∈ 𝑋
141, 7, 133pm3.2i 1337 . . . . . 6 (2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋)
15 ip1i.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
1610, 15nvsass 28891 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋)) → ((2 · (1 / 2))𝑆(𝐴𝐺𝐵)) = (2𝑆((1 / 2)𝑆(𝐴𝐺𝐵))))
176, 14, 16mp2an 688 . . . . 5 ((2 · (1 / 2))𝑆(𝐴𝐺𝐵)) = (2𝑆((1 / 2)𝑆(𝐴𝐺𝐵)))
1810, 15nvsid 28890 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → (1𝑆(𝐴𝐺𝐵)) = (𝐴𝐺𝐵))
196, 13, 18mp2an 688 . . . . 5 (1𝑆(𝐴𝐺𝐵)) = (𝐴𝐺𝐵)
204, 17, 193eqtr3i 2774 . . . 4 (2𝑆((1 / 2)𝑆(𝐴𝐺𝐵))) = (𝐴𝐺𝐵)
2120oveq1i 7265 . . 3 ((2𝑆((1 / 2)𝑆(𝐴𝐺𝐵)))𝑃𝐶) = ((𝐴𝐺𝐵)𝑃𝐶)
22 ip1i.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
2310, 15nvscl 28889 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋) → ((1 / 2)𝑆(𝐴𝐺𝐵)) ∈ 𝑋)
246, 7, 13, 23mp3an 1459 . . . 4 ((1 / 2)𝑆(𝐴𝐺𝐵)) ∈ 𝑋
25 ipdiri.10 . . . 4 𝐶𝑋
2610, 11, 15, 22, 5, 24, 25ip2i 29091 . . 3 ((2𝑆((1 / 2)𝑆(𝐴𝐺𝐵)))𝑃𝐶) = (2 · (((1 / 2)𝑆(𝐴𝐺𝐵))𝑃𝐶))
2721, 26eqtr3i 2768 . 2 ((𝐴𝐺𝐵)𝑃𝐶) = (2 · (((1 / 2)𝑆(𝐴𝐺𝐵))𝑃𝐶))
28 neg1cn 12017 . . . . . 6 -1 ∈ ℂ
2910, 15nvscl 28889 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
306, 28, 9, 29mp3an 1459 . . . . 5 (-1𝑆𝐵) ∈ 𝑋
3110, 11nvgcl 28883 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
326, 8, 30, 31mp3an 1459 . . . 4 (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋
3310, 15nvscl 28889 . . . 4 ((𝑈 ∈ NrmCVec ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋) → ((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))) ∈ 𝑋)
346, 7, 32, 33mp3an 1459 . . 3 ((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))) ∈ 𝑋
3510, 11, 15, 22, 5, 24, 34, 25ip1i 29090 . 2 (((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))𝑃𝐶) + ((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))𝑃𝐶)) = (2 · (((1 / 2)𝑆(𝐴𝐺𝐵))𝑃𝐶))
36 eqid 2738 . . . . . . . . . . . 12 (1st𝑈) = (1st𝑈)
3736nvvc 28878 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
386, 37ax-mp 5 . . . . . . . . . 10 (1st𝑈) ∈ CVecOLD
3911vafval 28866 . . . . . . . . . . 11 𝐺 = (1st ‘(1st𝑈))
4039vcablo 28832 . . . . . . . . . 10 ((1st𝑈) ∈ CVecOLD𝐺 ∈ AbelOp)
4138, 40ax-mp 5 . . . . . . . . 9 𝐺 ∈ AbelOp
428, 9pm3.2i 470 . . . . . . . . 9 (𝐴𝑋𝐵𝑋)
438, 30pm3.2i 470 . . . . . . . . 9 (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋)
4410, 11bafval 28867 . . . . . . . . . 10 𝑋 = ran 𝐺
4544ablo4 28813 . . . . . . . . 9 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵))) = ((𝐴𝐺𝐴)𝐺(𝐵𝐺(-1𝑆𝐵))))
4641, 42, 43, 45mp3an 1459 . . . . . . . 8 ((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵))) = ((𝐴𝐺𝐴)𝐺(𝐵𝐺(-1𝑆𝐵)))
4715smfval 28868 . . . . . . . . . . 11 𝑆 = (2nd ‘(1st𝑈))
4839, 47, 44vc2OLD 28831 . . . . . . . . . 10 (((1st𝑈) ∈ CVecOLD𝐴𝑋) → (𝐴𝐺𝐴) = (2𝑆𝐴))
4938, 8, 48mp2an 688 . . . . . . . . 9 (𝐴𝐺𝐴) = (2𝑆𝐴)
50 eqid 2738 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
5110, 11, 15, 50nvrinv 28914 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝐺(-1𝑆𝐵)) = (0vec𝑈))
526, 9, 51mp2an 688 . . . . . . . . 9 (𝐵𝐺(-1𝑆𝐵)) = (0vec𝑈)
5349, 52oveq12i 7267 . . . . . . . 8 ((𝐴𝐺𝐴)𝐺(𝐵𝐺(-1𝑆𝐵))) = ((2𝑆𝐴)𝐺(0vec𝑈))
5410, 15nvscl 28889 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 2 ∈ ℂ ∧ 𝐴𝑋) → (2𝑆𝐴) ∈ 𝑋)
556, 1, 8, 54mp3an 1459 . . . . . . . . 9 (2𝑆𝐴) ∈ 𝑋
5610, 11, 50nv0rid 28898 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (2𝑆𝐴) ∈ 𝑋) → ((2𝑆𝐴)𝐺(0vec𝑈)) = (2𝑆𝐴))
576, 55, 56mp2an 688 . . . . . . . 8 ((2𝑆𝐴)𝐺(0vec𝑈)) = (2𝑆𝐴)
5846, 53, 573eqtri 2770 . . . . . . 7 ((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵))) = (2𝑆𝐴)
5958oveq2i 7266 . . . . . 6 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵)))) = ((1 / 2)𝑆(2𝑆𝐴))
607, 1, 83pm3.2i 1337 . . . . . . 7 ((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴𝑋)
6110, 15nvsass 28891 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴𝑋)) → (((1 / 2) · 2)𝑆𝐴) = ((1 / 2)𝑆(2𝑆𝐴)))
626, 60, 61mp2an 688 . . . . . 6 (((1 / 2) · 2)𝑆𝐴) = ((1 / 2)𝑆(2𝑆𝐴))
6359, 62eqtr4i 2769 . . . . 5 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵)))) = (((1 / 2) · 2)𝑆𝐴)
647, 13, 323pm3.2i 1337 . . . . . 6 ((1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
6510, 11, 15nvdi 28893 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)) → ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵)))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))
666, 64, 65mp2an 688 . . . . 5 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺(𝐴𝐺(-1𝑆𝐵)))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))
67 ax-1cn 10860 . . . . . . . 8 1 ∈ ℂ
6867, 1, 2divcan1i 11649 . . . . . . 7 ((1 / 2) · 2) = 1
6968oveq1i 7265 . . . . . 6 (((1 / 2) · 2)𝑆𝐴) = (1𝑆𝐴)
7010, 15nvsid 28890 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
716, 8, 70mp2an 688 . . . . . 6 (1𝑆𝐴) = 𝐴
7269, 71eqtri 2766 . . . . 5 (((1 / 2) · 2)𝑆𝐴) = 𝐴
7363, 66, 723eqtr3i 2774 . . . 4 (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))) = 𝐴
7473oveq1i 7265 . . 3 ((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))𝑃𝐶) = (𝐴𝑃𝐶)
7528, 7mulcomi 10914 . . . . . . . . 9 (-1 · (1 / 2)) = ((1 / 2) · -1)
7675oveq1i 7265 . . . . . . . 8 ((-1 · (1 / 2))𝑆(𝐴𝐺(-1𝑆𝐵))) = (((1 / 2) · -1)𝑆(𝐴𝐺(-1𝑆𝐵)))
7728, 7, 323pm3.2i 1337 . . . . . . . . 9 (-1 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
7810, 15nvsass 28891 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)) → ((-1 · (1 / 2))𝑆(𝐴𝐺(-1𝑆𝐵))) = (-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))
796, 77, 78mp2an 688 . . . . . . . 8 ((-1 · (1 / 2))𝑆(𝐴𝐺(-1𝑆𝐵))) = (-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))
807, 28, 323pm3.2i 1337 . . . . . . . . . 10 ((1 / 2) ∈ ℂ ∧ -1 ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
8110, 15nvsass 28891 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ -1 ∈ ℂ ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)) → (((1 / 2) · -1)𝑆(𝐴𝐺(-1𝑆𝐵))) = ((1 / 2)𝑆(-1𝑆(𝐴𝐺(-1𝑆𝐵)))))
826, 80, 81mp2an 688 . . . . . . . . 9 (((1 / 2) · -1)𝑆(𝐴𝐺(-1𝑆𝐵))) = ((1 / 2)𝑆(-1𝑆(𝐴𝐺(-1𝑆𝐵))))
8328, 8, 303pm3.2i 1337 . . . . . . . . . . . 12 (-1 ∈ ℂ ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋)
8410, 11, 15nvdi 28893 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋)) → (-1𝑆(𝐴𝐺(-1𝑆𝐵))) = ((-1𝑆𝐴)𝐺(-1𝑆(-1𝑆𝐵))))
856, 83, 84mp2an 688 . . . . . . . . . . 11 (-1𝑆(𝐴𝐺(-1𝑆𝐵))) = ((-1𝑆𝐴)𝐺(-1𝑆(-1𝑆𝐵)))
86 neg1mulneg1e1 12116 . . . . . . . . . . . . . 14 (-1 · -1) = 1
8786oveq1i 7265 . . . . . . . . . . . . 13 ((-1 · -1)𝑆𝐵) = (1𝑆𝐵)
8828, 28, 93pm3.2i 1337 . . . . . . . . . . . . . 14 (-1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐵𝑋)
8910, 15nvsass 28891 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐵𝑋)) → ((-1 · -1)𝑆𝐵) = (-1𝑆(-1𝑆𝐵)))
906, 88, 89mp2an 688 . . . . . . . . . . . . 13 ((-1 · -1)𝑆𝐵) = (-1𝑆(-1𝑆𝐵))
9110, 15nvsid 28890 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
926, 9, 91mp2an 688 . . . . . . . . . . . . 13 (1𝑆𝐵) = 𝐵
9387, 90, 923eqtr3i 2774 . . . . . . . . . . . 12 (-1𝑆(-1𝑆𝐵)) = 𝐵
9493oveq2i 7266 . . . . . . . . . . 11 ((-1𝑆𝐴)𝐺(-1𝑆(-1𝑆𝐵))) = ((-1𝑆𝐴)𝐺𝐵)
9585, 94eqtri 2766 . . . . . . . . . 10 (-1𝑆(𝐴𝐺(-1𝑆𝐵))) = ((-1𝑆𝐴)𝐺𝐵)
9695oveq2i 7266 . . . . . . . . 9 ((1 / 2)𝑆(-1𝑆(𝐴𝐺(-1𝑆𝐵)))) = ((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵))
9782, 96eqtri 2766 . . . . . . . 8 (((1 / 2) · -1)𝑆(𝐴𝐺(-1𝑆𝐵))) = ((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵))
9876, 79, 973eqtr3i 2774 . . . . . . 7 (-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))) = ((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵))
9998oveq2i 7266 . . . . . 6 (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵)))
10010, 15nvscl 28889 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
1016, 28, 8, 100mp3an 1459 . . . . . . . . 9 (-1𝑆𝐴) ∈ 𝑋
10210, 11nvgcl 28883 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-1𝑆𝐴)𝐺𝐵) ∈ 𝑋)
1036, 101, 9, 102mp3an 1459 . . . . . . . 8 ((-1𝑆𝐴)𝐺𝐵) ∈ 𝑋
1047, 13, 1033pm3.2i 1337 . . . . . . 7 ((1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ ((-1𝑆𝐴)𝐺𝐵) ∈ 𝑋)
10510, 11, 15nvdi 28893 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ ((-1𝑆𝐴)𝐺𝐵) ∈ 𝑋)) → ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵))))
1066, 104, 105mp2an 688 . . . . . 6 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵))) = (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆((-1𝑆𝐴)𝐺𝐵)))
10799, 106eqtr4i 2769 . . . . 5 (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))) = ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵)))
108101, 9pm3.2i 470 . . . . . . . . 9 ((-1𝑆𝐴) ∈ 𝑋𝐵𝑋)
10944ablo4 28813 . . . . . . . . 9 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋) ∧ ((-1𝑆𝐴) ∈ 𝑋𝐵𝑋)) → ((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵)) = ((𝐴𝐺(-1𝑆𝐴))𝐺(𝐵𝐺𝐵)))
11041, 42, 108, 109mp3an 1459 . . . . . . . 8 ((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵)) = ((𝐴𝐺(-1𝑆𝐴))𝐺(𝐵𝐺𝐵))
11110, 11, 15, 50nvrinv 28914 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
1126, 8, 111mp2an 688 . . . . . . . . . 10 (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈)
113112oveq1i 7265 . . . . . . . . 9 ((𝐴𝐺(-1𝑆𝐴))𝐺(𝐵𝐺𝐵)) = ((0vec𝑈)𝐺(𝐵𝐺𝐵))
11410, 11nvgcl 28883 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐵𝑋) → (𝐵𝐺𝐵) ∈ 𝑋)
1156, 9, 9, 114mp3an 1459 . . . . . . . . . 10 (𝐵𝐺𝐵) ∈ 𝑋
11610, 11, 50nv0lid 28899 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺𝐵) ∈ 𝑋) → ((0vec𝑈)𝐺(𝐵𝐺𝐵)) = (𝐵𝐺𝐵))
1176, 115, 116mp2an 688 . . . . . . . . 9 ((0vec𝑈)𝐺(𝐵𝐺𝐵)) = (𝐵𝐺𝐵)
118113, 117eqtri 2766 . . . . . . . 8 ((𝐴𝐺(-1𝑆𝐴))𝐺(𝐵𝐺𝐵)) = (𝐵𝐺𝐵)
11939, 47, 44vc2OLD 28831 . . . . . . . . 9 (((1st𝑈) ∈ CVecOLD𝐵𝑋) → (𝐵𝐺𝐵) = (2𝑆𝐵))
12038, 9, 119mp2an 688 . . . . . . . 8 (𝐵𝐺𝐵) = (2𝑆𝐵)
121110, 118, 1203eqtri 2770 . . . . . . 7 ((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵)) = (2𝑆𝐵)
122121oveq2i 7266 . . . . . 6 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵))) = ((1 / 2)𝑆(2𝑆𝐵))
1237, 1, 93pm3.2i 1337 . . . . . . 7 ((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐵𝑋)
12410, 15nvsass 28891 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐵𝑋)) → (((1 / 2) · 2)𝑆𝐵) = ((1 / 2)𝑆(2𝑆𝐵)))
1256, 123, 124mp2an 688 . . . . . 6 (((1 / 2) · 2)𝑆𝐵) = ((1 / 2)𝑆(2𝑆𝐵))
12668oveq1i 7265 . . . . . 6 (((1 / 2) · 2)𝑆𝐵) = (1𝑆𝐵)
127122, 125, 1263eqtr2i 2772 . . . . 5 ((1 / 2)𝑆((𝐴𝐺𝐵)𝐺((-1𝑆𝐴)𝐺𝐵))) = (1𝑆𝐵)
128107, 127, 923eqtri 2770 . . . 4 (((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))) = 𝐵
129128oveq1i 7265 . . 3 ((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))𝑃𝐶) = (𝐵𝑃𝐶)
13074, 129oveq12i 7267 . 2 (((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵))))𝑃𝐶) + ((((1 / 2)𝑆(𝐴𝐺𝐵))𝐺(-1𝑆((1 / 2)𝑆(𝐴𝐺(-1𝑆𝐵)))))𝑃𝐶)) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))
13127, 35, 1303eqtr2i 2772 1 ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  1st c1st 7802  cc 10800  1c1 10803   + caddc 10805   · cmul 10807  -cneg 11136   / cdiv 11562  2c2 11958  AbelOpcablo 28807  CVecOLDcvc 28821  NrmCVeccnv 28847   +𝑣 cpv 28848  BaseSetcba 28849   ·𝑠OLD cns 28850  0veccn0v 28851  ·𝑖OLDcdip 28963  CPreHilOLDccphlo 29075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-dip 28964  df-ph 29076
This theorem is referenced by:  ipdiri  29093
  Copyright terms: Public domain W3C validator