MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem1 Structured version   Visualization version   GIF version

Theorem ipasslem1 29238
Description: Lemma for ipassi 29248. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 12289 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2 ax-1cn 10975 . . . . . . . . . . . 12 1 ∈ ℂ
3 ip1i.9 . . . . . . . . . . . . . 14 𝑈 ∈ CPreHilOLD
43phnvi 29223 . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
5 ip1i.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
6 ip1i.2 . . . . . . . . . . . . . 14 𝐺 = ( +𝑣𝑈)
7 ip1i.4 . . . . . . . . . . . . . 14 𝑆 = ( ·𝑠OLD𝑈)
85, 6, 7nvdir 29038 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
94, 8mpan 688 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
102, 9mp3an2 1449 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
111, 10sylan 581 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
125, 7nvsid 29034 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
134, 12mpan 688 . . . . . . . . . . . 12 (𝐴𝑋 → (1𝑆𝐴) = 𝐴)
1413adantl 483 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴𝑋) → (1𝑆𝐴) = 𝐴)
1514oveq2d 7323 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)) = ((𝑘𝑆𝐴)𝐺𝐴))
1611, 15eqtrd 2776 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺𝐴))
1716oveq1d 7322 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵))
18 ipasslem1.b . . . . . . . . . . . . 13 𝐵𝑋
19 ip1i.7 . . . . . . . . . . . . . 14 𝑃 = (·𝑖OLD𝑈)
205, 19dipcl 29119 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
214, 18, 20mp3an13 1452 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
2221mulid2d 11039 . . . . . . . . . . 11 (𝐴𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2322adantl 483 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2423oveq2d 7323 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
255, 7nvscl 29033 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ℂ ∧ 𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
264, 25mp3an1 1448 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
271, 26sylan 581 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
285, 6, 7, 19, 3ipdiri 29237 . . . . . . . . . . 11 (((𝑘𝑆𝐴) ∈ 𝑋𝐴𝑋𝐵𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
2918, 28mp3an3 1450 . . . . . . . . . 10 (((𝑘𝑆𝐴) ∈ 𝑋𝐴𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
3027, 29sylancom 589 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
3124, 30eqtr4d 2779 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵))
3217, 31eqtr4d 2779 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))))
33 oveq1 7314 . . . . . . 7 (((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3432, 33sylan9eq 2796 . . . . . 6 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
35 adddir 11012 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
362, 35mp3an2 1449 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
371, 21, 36syl2an 597 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3837adantr 482 . . . . . 6 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3934, 38eqtr4d 2779 . . . . 5 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))
4039exp31 421 . . . 4 (𝑘 ∈ ℕ0 → (𝐴𝑋 → (((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
4140a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝐴𝑋 → ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (𝐴𝑋 → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
42 eqid 2736 . . . . . 6 (0vec𝑈) = (0vec𝑈)
435, 42, 19dip0l 29125 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
444, 18, 43mp2an 690 . . . 4 ((0vec𝑈)𝑃𝐵) = 0
455, 7, 42nv0 29044 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0𝑆𝐴) = (0vec𝑈))
464, 45mpan 688 . . . . 5 (𝐴𝑋 → (0𝑆𝐴) = (0vec𝑈))
4746oveq1d 7322 . . . 4 (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = ((0vec𝑈)𝑃𝐵))
4821mul02d 11219 . . . 4 (𝐴𝑋 → (0 · (𝐴𝑃𝐵)) = 0)
4944, 47, 483eqtr4a 2802 . . 3 (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵)))
50 oveq1 7314 . . . . . 6 (𝑗 = 0 → (𝑗𝑆𝐴) = (0𝑆𝐴))
5150oveq1d 7322 . . . . 5 (𝑗 = 0 → ((𝑗𝑆𝐴)𝑃𝐵) = ((0𝑆𝐴)𝑃𝐵))
52 oveq1 7314 . . . . 5 (𝑗 = 0 → (𝑗 · (𝐴𝑃𝐵)) = (0 · (𝐴𝑃𝐵)))
5351, 52eqeq12d 2752 . . . 4 (𝑗 = 0 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵))))
5453imbi2d 341 . . 3 (𝑗 = 0 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵)))))
55 oveq1 7314 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝑆𝐴) = (𝑘𝑆𝐴))
5655oveq1d 7322 . . . . 5 (𝑗 = 𝑘 → ((𝑗𝑆𝐴)𝑃𝐵) = ((𝑘𝑆𝐴)𝑃𝐵))
57 oveq1 7314 . . . . 5 (𝑗 = 𝑘 → (𝑗 · (𝐴𝑃𝐵)) = (𝑘 · (𝐴𝑃𝐵)))
5856, 57eqeq12d 2752 . . . 4 (𝑗 = 𝑘 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))))
5958imbi2d 341 . . 3 (𝑗 = 𝑘 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)))))
60 oveq1 7314 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗𝑆𝐴) = ((𝑘 + 1)𝑆𝐴))
6160oveq1d 7322 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗𝑆𝐴)𝑃𝐵) = (((𝑘 + 1)𝑆𝐴)𝑃𝐵))
62 oveq1 7314 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 · (𝐴𝑃𝐵)) = ((𝑘 + 1) · (𝐴𝑃𝐵)))
6361, 62eqeq12d 2752 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵))))
6463imbi2d 341 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
65 oveq1 7314 . . . . . 6 (𝑗 = 𝑁 → (𝑗𝑆𝐴) = (𝑁𝑆𝐴))
6665oveq1d 7322 . . . . 5 (𝑗 = 𝑁 → ((𝑗𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵))
67 oveq1 7314 . . . . 5 (𝑗 = 𝑁 → (𝑗 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵)))
6866, 67eqeq12d 2752 . . . 4 (𝑗 = 𝑁 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))))
6968imbi2d 341 . . 3 (𝑗 = 𝑁 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))))
7041, 49, 54, 59, 64, 69nn0indALT 12462 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑋 → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))))
7170imp 408 1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  cc 10915  0cc0 10917  1c1 10918   + caddc 10920   · cmul 10922  0cn0 12279  NrmCVeccnv 28991   +𝑣 cpv 28992  BaseSetcba 28993   ·𝑠OLD cns 28994  0veccn0v 28995  ·𝑖OLDcdip 29107  CPreHilOLDccphlo 29219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9245  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-n0 12280  df-z 12366  df-uz 12629  df-rp 12777  df-fz 13286  df-fzo 13429  df-seq 13768  df-exp 13829  df-hash 14091  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-clim 15242  df-sum 15443  df-grpo 28900  df-gid 28901  df-ginv 28902  df-ablo 28952  df-vc 28966  df-nv 28999  df-va 29002  df-ba 29003  df-sm 29004  df-0v 29005  df-nmcv 29007  df-dip 29108  df-ph 29220
This theorem is referenced by:  ipasslem2  29239  ipasslem3  29240  ipasslem4  29241
  Copyright terms: Public domain W3C validator