MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem1 Structured version   Visualization version   GIF version

Theorem ipasslem1 30811
Description: Lemma for ipassi 30821. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 12391 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2 ax-1cn 11064 . . . . . . . . . . . 12 1 ∈ ℂ
3 ip1i.9 . . . . . . . . . . . . . 14 𝑈 ∈ CPreHilOLD
43phnvi 30796 . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
5 ip1i.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
6 ip1i.2 . . . . . . . . . . . . . 14 𝐺 = ( +𝑣𝑈)
7 ip1i.4 . . . . . . . . . . . . . 14 𝑆 = ( ·𝑠OLD𝑈)
85, 6, 7nvdir 30611 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
94, 8mpan 690 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
102, 9mp3an2 1451 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
111, 10sylan 580 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
125, 7nvsid 30607 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
134, 12mpan 690 . . . . . . . . . . . 12 (𝐴𝑋 → (1𝑆𝐴) = 𝐴)
1413adantl 481 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴𝑋) → (1𝑆𝐴) = 𝐴)
1514oveq2d 7362 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)) = ((𝑘𝑆𝐴)𝐺𝐴))
1611, 15eqtrd 2766 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺𝐴))
1716oveq1d 7361 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵))
18 ipasslem1.b . . . . . . . . . . . . 13 𝐵𝑋
19 ip1i.7 . . . . . . . . . . . . . 14 𝑃 = (·𝑖OLD𝑈)
205, 19dipcl 30692 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
214, 18, 20mp3an13 1454 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
2221mullidd 11130 . . . . . . . . . . 11 (𝐴𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2322adantl 481 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2423oveq2d 7362 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
255, 7nvscl 30606 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ℂ ∧ 𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
264, 25mp3an1 1450 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
271, 26sylan 580 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
285, 6, 7, 19, 3ipdiri 30810 . . . . . . . . . . 11 (((𝑘𝑆𝐴) ∈ 𝑋𝐴𝑋𝐵𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
2918, 28mp3an3 1452 . . . . . . . . . 10 (((𝑘𝑆𝐴) ∈ 𝑋𝐴𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
3027, 29sylancom 588 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
3124, 30eqtr4d 2769 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵))
3217, 31eqtr4d 2769 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))))
33 oveq1 7353 . . . . . . 7 (((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3432, 33sylan9eq 2786 . . . . . 6 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
35 adddir 11103 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
362, 35mp3an2 1451 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
371, 21, 36syl2an 596 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3837adantr 480 . . . . . 6 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3934, 38eqtr4d 2769 . . . . 5 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))
4039exp31 419 . . . 4 (𝑘 ∈ ℕ0 → (𝐴𝑋 → (((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
4140a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝐴𝑋 → ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (𝐴𝑋 → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
42 eqid 2731 . . . . . 6 (0vec𝑈) = (0vec𝑈)
435, 42, 19dip0l 30698 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
444, 18, 43mp2an 692 . . . 4 ((0vec𝑈)𝑃𝐵) = 0
455, 7, 42nv0 30617 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0𝑆𝐴) = (0vec𝑈))
464, 45mpan 690 . . . . 5 (𝐴𝑋 → (0𝑆𝐴) = (0vec𝑈))
4746oveq1d 7361 . . . 4 (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = ((0vec𝑈)𝑃𝐵))
4821mul02d 11311 . . . 4 (𝐴𝑋 → (0 · (𝐴𝑃𝐵)) = 0)
4944, 47, 483eqtr4a 2792 . . 3 (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵)))
50 oveq1 7353 . . . . . 6 (𝑗 = 0 → (𝑗𝑆𝐴) = (0𝑆𝐴))
5150oveq1d 7361 . . . . 5 (𝑗 = 0 → ((𝑗𝑆𝐴)𝑃𝐵) = ((0𝑆𝐴)𝑃𝐵))
52 oveq1 7353 . . . . 5 (𝑗 = 0 → (𝑗 · (𝐴𝑃𝐵)) = (0 · (𝐴𝑃𝐵)))
5351, 52eqeq12d 2747 . . . 4 (𝑗 = 0 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵))))
5453imbi2d 340 . . 3 (𝑗 = 0 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵)))))
55 oveq1 7353 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝑆𝐴) = (𝑘𝑆𝐴))
5655oveq1d 7361 . . . . 5 (𝑗 = 𝑘 → ((𝑗𝑆𝐴)𝑃𝐵) = ((𝑘𝑆𝐴)𝑃𝐵))
57 oveq1 7353 . . . . 5 (𝑗 = 𝑘 → (𝑗 · (𝐴𝑃𝐵)) = (𝑘 · (𝐴𝑃𝐵)))
5856, 57eqeq12d 2747 . . . 4 (𝑗 = 𝑘 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))))
5958imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)))))
60 oveq1 7353 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗𝑆𝐴) = ((𝑘 + 1)𝑆𝐴))
6160oveq1d 7361 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗𝑆𝐴)𝑃𝐵) = (((𝑘 + 1)𝑆𝐴)𝑃𝐵))
62 oveq1 7353 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 · (𝐴𝑃𝐵)) = ((𝑘 + 1) · (𝐴𝑃𝐵)))
6361, 62eqeq12d 2747 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵))))
6463imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
65 oveq1 7353 . . . . . 6 (𝑗 = 𝑁 → (𝑗𝑆𝐴) = (𝑁𝑆𝐴))
6665oveq1d 7361 . . . . 5 (𝑗 = 𝑁 → ((𝑗𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵))
67 oveq1 7353 . . . . 5 (𝑗 = 𝑁 → (𝑗 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵)))
6866, 67eqeq12d 2747 . . . 4 (𝑗 = 𝑁 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))))
6968imbi2d 340 . . 3 (𝑗 = 𝑁 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))))
7041, 49, 54, 59, 64, 69nn0indALT 12569 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑋 → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))))
7170imp 406 1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  0cn0 12381  NrmCVeccnv 30564   +𝑣 cpv 30565  BaseSetcba 30566   ·𝑠OLD cns 30567  0veccn0v 30568  ·𝑖OLDcdip 30680  CPreHilOLDccphlo 30792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-grpo 30473  df-gid 30474  df-ginv 30475  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580  df-dip 30681  df-ph 30793
This theorem is referenced by:  ipasslem2  30812  ipasslem3  30813  ipasslem4  30814
  Copyright terms: Public domain W3C validator