| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pythi | Structured version Visualization version GIF version | ||
| Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pyth.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| pyth.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| pyth.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| pyth.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| pythi.u | ⊢ 𝑈 ∈ CPreHilOLD |
| pythi.a | ⊢ 𝐴 ∈ 𝑋 |
| pythi.b | ⊢ 𝐵 ∈ 𝑋 |
| Ref | Expression |
|---|---|
| pythi | ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pyth.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | pyth.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 3 | pyth.7 | . . . 4 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 4 | pythi.u | . . . 4 ⊢ 𝑈 ∈ CPreHilOLD | |
| 5 | pythi.a | . . . 4 ⊢ 𝐴 ∈ 𝑋 | |
| 6 | pythi.b | . . . 4 ⊢ 𝐵 ∈ 𝑋 | |
| 7 | 1, 2, 3, 4, 5, 6, 5, 6 | ip2dii 30779 | . . 3 ⊢ ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) |
| 8 | id 22 | . . . . . . 7 ⊢ ((𝐴𝑃𝐵) = 0 → (𝐴𝑃𝐵) = 0) | |
| 9 | 4 | phnvi 30751 | . . . . . . . . 9 ⊢ 𝑈 ∈ NrmCVec |
| 10 | 1, 3 | diporthcom 30651 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)) |
| 11 | 9, 5, 6, 10 | mp3an 1463 | . . . . . . . 8 ⊢ ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0) |
| 12 | 11 | biimpi 216 | . . . . . . 7 ⊢ ((𝐴𝑃𝐵) = 0 → (𝐵𝑃𝐴) = 0) |
| 13 | 8, 12 | oveq12d 7407 | . . . . . 6 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = (0 + 0)) |
| 14 | 00id 11355 | . . . . . 6 ⊢ (0 + 0) = 0 | |
| 15 | 13, 14 | eqtrdi 2781 | . . . . 5 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = 0) |
| 16 | 15 | oveq2d 7405 | . . . 4 ⊢ ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0)) |
| 17 | 1, 3 | dipcl 30647 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) ∈ ℂ) |
| 18 | 9, 5, 5, 17 | mp3an 1463 | . . . . . 6 ⊢ (𝐴𝑃𝐴) ∈ ℂ |
| 19 | 1, 3 | dipcl 30647 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐵) ∈ ℂ) |
| 20 | 9, 6, 6, 19 | mp3an 1463 | . . . . . 6 ⊢ (𝐵𝑃𝐵) ∈ ℂ |
| 21 | 18, 20 | addcli 11186 | . . . . 5 ⊢ ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) ∈ ℂ |
| 22 | 21 | addridi 11367 | . . . 4 ⊢ (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) |
| 23 | 16, 22 | eqtrdi 2781 | . . 3 ⊢ ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))) |
| 24 | 7, 23 | eqtrid 2777 | . 2 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))) |
| 25 | 1, 2 | nvgcl 30555 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| 26 | 9, 5, 6, 25 | mp3an 1463 | . . 3 ⊢ (𝐴𝐺𝐵) ∈ 𝑋 |
| 27 | pyth.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
| 28 | 1, 27, 3 | ipidsq 30645 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2)) |
| 29 | 9, 26, 28 | mp2an 692 | . 2 ⊢ ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2) |
| 30 | 1, 27, 3 | ipidsq 30645 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2)) |
| 31 | 9, 5, 30 | mp2an 692 | . . 3 ⊢ (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2) |
| 32 | 1, 27, 3 | ipidsq 30645 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐵) = ((𝑁‘𝐵)↑2)) |
| 33 | 9, 6, 32 | mp2an 692 | . . 3 ⊢ (𝐵𝑃𝐵) = ((𝑁‘𝐵)↑2) |
| 34 | 31, 33 | oveq12i 7401 | . 2 ⊢ ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)) |
| 35 | 24, 29, 34 | 3eqtr3g 2788 | 1 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 0cc0 11074 + caddc 11077 2c2 12242 ↑cexp 14032 NrmCVeccnv 30519 +𝑣 cpv 30520 BaseSetcba 30521 normCVcnmcv 30525 ·𝑖OLDcdip 30635 CPreHilOLDccphlo 30747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 ax-mulf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-fz 13475 df-fzo 13622 df-seq 13973 df-exp 14033 df-hash 14302 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-clim 15460 df-sum 15659 df-grpo 30428 df-gid 30429 df-ginv 30430 df-ablo 30480 df-vc 30494 df-nv 30527 df-va 30530 df-ba 30531 df-sm 30532 df-0v 30533 df-nmcv 30535 df-dip 30636 df-ph 30748 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |