| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pythi | Structured version Visualization version GIF version | ||
| Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pyth.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| pyth.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| pyth.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| pyth.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| pythi.u | ⊢ 𝑈 ∈ CPreHilOLD |
| pythi.a | ⊢ 𝐴 ∈ 𝑋 |
| pythi.b | ⊢ 𝐵 ∈ 𝑋 |
| Ref | Expression |
|---|---|
| pythi | ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pyth.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | pyth.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 3 | pyth.7 | . . . 4 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 4 | pythi.u | . . . 4 ⊢ 𝑈 ∈ CPreHilOLD | |
| 5 | pythi.a | . . . 4 ⊢ 𝐴 ∈ 𝑋 | |
| 6 | pythi.b | . . . 4 ⊢ 𝐵 ∈ 𝑋 | |
| 7 | 1, 2, 3, 4, 5, 6, 5, 6 | ip2dii 30830 | . . 3 ⊢ ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) |
| 8 | id 22 | . . . . . . 7 ⊢ ((𝐴𝑃𝐵) = 0 → (𝐴𝑃𝐵) = 0) | |
| 9 | 4 | phnvi 30802 | . . . . . . . . 9 ⊢ 𝑈 ∈ NrmCVec |
| 10 | 1, 3 | diporthcom 30702 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)) |
| 11 | 9, 5, 6, 10 | mp3an 1463 | . . . . . . . 8 ⊢ ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0) |
| 12 | 11 | biimpi 216 | . . . . . . 7 ⊢ ((𝐴𝑃𝐵) = 0 → (𝐵𝑃𝐴) = 0) |
| 13 | 8, 12 | oveq12d 7428 | . . . . . 6 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = (0 + 0)) |
| 14 | 00id 11415 | . . . . . 6 ⊢ (0 + 0) = 0 | |
| 15 | 13, 14 | eqtrdi 2787 | . . . . 5 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = 0) |
| 16 | 15 | oveq2d 7426 | . . . 4 ⊢ ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0)) |
| 17 | 1, 3 | dipcl 30698 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) ∈ ℂ) |
| 18 | 9, 5, 5, 17 | mp3an 1463 | . . . . . 6 ⊢ (𝐴𝑃𝐴) ∈ ℂ |
| 19 | 1, 3 | dipcl 30698 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐵) ∈ ℂ) |
| 20 | 9, 6, 6, 19 | mp3an 1463 | . . . . . 6 ⊢ (𝐵𝑃𝐵) ∈ ℂ |
| 21 | 18, 20 | addcli 11246 | . . . . 5 ⊢ ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) ∈ ℂ |
| 22 | 21 | addridi 11427 | . . . 4 ⊢ (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) |
| 23 | 16, 22 | eqtrdi 2787 | . . 3 ⊢ ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))) |
| 24 | 7, 23 | eqtrid 2783 | . 2 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))) |
| 25 | 1, 2 | nvgcl 30606 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| 26 | 9, 5, 6, 25 | mp3an 1463 | . . 3 ⊢ (𝐴𝐺𝐵) ∈ 𝑋 |
| 27 | pyth.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
| 28 | 1, 27, 3 | ipidsq 30696 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2)) |
| 29 | 9, 26, 28 | mp2an 692 | . 2 ⊢ ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2) |
| 30 | 1, 27, 3 | ipidsq 30696 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2)) |
| 31 | 9, 5, 30 | mp2an 692 | . . 3 ⊢ (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2) |
| 32 | 1, 27, 3 | ipidsq 30696 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐵) = ((𝑁‘𝐵)↑2)) |
| 33 | 9, 6, 32 | mp2an 692 | . . 3 ⊢ (𝐵𝑃𝐵) = ((𝑁‘𝐵)↑2) |
| 34 | 31, 33 | oveq12i 7422 | . 2 ⊢ ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)) |
| 35 | 24, 29, 34 | 3eqtr3g 2794 | 1 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 + caddc 11137 2c2 12300 ↑cexp 14084 NrmCVeccnv 30570 +𝑣 cpv 30571 BaseSetcba 30572 normCVcnmcv 30576 ·𝑖OLDcdip 30686 CPreHilOLDccphlo 30798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 df-grpo 30479 df-gid 30480 df-ginv 30481 df-ablo 30531 df-vc 30545 df-nv 30578 df-va 30581 df-ba 30582 df-sm 30583 df-0v 30584 df-nmcv 30586 df-dip 30687 df-ph 30799 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |