| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pythi | Structured version Visualization version GIF version | ||
| Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pyth.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| pyth.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| pyth.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| pyth.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| pythi.u | ⊢ 𝑈 ∈ CPreHilOLD |
| pythi.a | ⊢ 𝐴 ∈ 𝑋 |
| pythi.b | ⊢ 𝐵 ∈ 𝑋 |
| Ref | Expression |
|---|---|
| pythi | ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pyth.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | pyth.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 3 | pyth.7 | . . . 4 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 4 | pythi.u | . . . 4 ⊢ 𝑈 ∈ CPreHilOLD | |
| 5 | pythi.a | . . . 4 ⊢ 𝐴 ∈ 𝑋 | |
| 6 | pythi.b | . . . 4 ⊢ 𝐵 ∈ 𝑋 | |
| 7 | 1, 2, 3, 4, 5, 6, 5, 6 | ip2dii 30810 | . . 3 ⊢ ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) |
| 8 | id 22 | . . . . . . 7 ⊢ ((𝐴𝑃𝐵) = 0 → (𝐴𝑃𝐵) = 0) | |
| 9 | 4 | phnvi 30782 | . . . . . . . . 9 ⊢ 𝑈 ∈ NrmCVec |
| 10 | 1, 3 | diporthcom 30682 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)) |
| 11 | 9, 5, 6, 10 | mp3an 1462 | . . . . . . . 8 ⊢ ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0) |
| 12 | 11 | biimpi 216 | . . . . . . 7 ⊢ ((𝐴𝑃𝐵) = 0 → (𝐵𝑃𝐴) = 0) |
| 13 | 8, 12 | oveq12d 7432 | . . . . . 6 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = (0 + 0)) |
| 14 | 00id 11419 | . . . . . 6 ⊢ (0 + 0) = 0 | |
| 15 | 13, 14 | eqtrdi 2785 | . . . . 5 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = 0) |
| 16 | 15 | oveq2d 7430 | . . . 4 ⊢ ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0)) |
| 17 | 1, 3 | dipcl 30678 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) ∈ ℂ) |
| 18 | 9, 5, 5, 17 | mp3an 1462 | . . . . . 6 ⊢ (𝐴𝑃𝐴) ∈ ℂ |
| 19 | 1, 3 | dipcl 30678 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐵) ∈ ℂ) |
| 20 | 9, 6, 6, 19 | mp3an 1462 | . . . . . 6 ⊢ (𝐵𝑃𝐵) ∈ ℂ |
| 21 | 18, 20 | addcli 11250 | . . . . 5 ⊢ ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) ∈ ℂ |
| 22 | 21 | addridi 11431 | . . . 4 ⊢ (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) |
| 23 | 16, 22 | eqtrdi 2785 | . . 3 ⊢ ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))) |
| 24 | 7, 23 | eqtrid 2781 | . 2 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))) |
| 25 | 1, 2 | nvgcl 30586 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| 26 | 9, 5, 6, 25 | mp3an 1462 | . . 3 ⊢ (𝐴𝐺𝐵) ∈ 𝑋 |
| 27 | pyth.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
| 28 | 1, 27, 3 | ipidsq 30676 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2)) |
| 29 | 9, 26, 28 | mp2an 692 | . 2 ⊢ ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2) |
| 30 | 1, 27, 3 | ipidsq 30676 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2)) |
| 31 | 9, 5, 30 | mp2an 692 | . . 3 ⊢ (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2) |
| 32 | 1, 27, 3 | ipidsq 30676 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐵) = ((𝑁‘𝐵)↑2)) |
| 33 | 9, 6, 32 | mp2an 692 | . . 3 ⊢ (𝐵𝑃𝐵) = ((𝑁‘𝐵)↑2) |
| 34 | 31, 33 | oveq12i 7426 | . 2 ⊢ ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)) |
| 35 | 24, 29, 34 | 3eqtr3g 2792 | 1 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ‘cfv 6542 (class class class)co 7414 ℂcc 11136 0cc0 11138 + caddc 11141 2c2 12304 ↑cexp 14085 NrmCVeccnv 30550 +𝑣 cpv 30551 BaseSetcba 30552 normCVcnmcv 30556 ·𝑖OLDcdip 30666 CPreHilOLDccphlo 30778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-n0 12511 df-z 12598 df-uz 12862 df-rp 13018 df-fz 13531 df-fzo 13678 df-seq 14026 df-exp 14086 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-sum 15706 df-grpo 30459 df-gid 30460 df-ginv 30461 df-ablo 30511 df-vc 30525 df-nv 30558 df-va 30561 df-ba 30562 df-sm 30563 df-0v 30564 df-nmcv 30566 df-dip 30667 df-ph 30779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |