![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pythi | Structured version Visualization version GIF version |
Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pyth.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
pyth.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
pyth.6 | ⊢ 𝑁 = (normCV‘𝑈) |
pyth.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
pythi.u | ⊢ 𝑈 ∈ CPreHilOLD |
pythi.a | ⊢ 𝐴 ∈ 𝑋 |
pythi.b | ⊢ 𝐵 ∈ 𝑋 |
Ref | Expression |
---|---|
pythi | ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pyth.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | pyth.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
3 | pyth.7 | . . . 4 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
4 | pythi.u | . . . 4 ⊢ 𝑈 ∈ CPreHilOLD | |
5 | pythi.a | . . . 4 ⊢ 𝐴 ∈ 𝑋 | |
6 | pythi.b | . . . 4 ⊢ 𝐵 ∈ 𝑋 | |
7 | 1, 2, 3, 4, 5, 6, 5, 6 | ip2dii 28032 | . . 3 ⊢ ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) |
8 | id 22 | . . . . . . 7 ⊢ ((𝐴𝑃𝐵) = 0 → (𝐴𝑃𝐵) = 0) | |
9 | 4 | phnvi 28004 | . . . . . . . . 9 ⊢ 𝑈 ∈ NrmCVec |
10 | 1, 3 | diporthcom 27904 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)) |
11 | 9, 5, 6, 10 | mp3an 1572 | . . . . . . . 8 ⊢ ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0) |
12 | 11 | biimpi 206 | . . . . . . 7 ⊢ ((𝐴𝑃𝐵) = 0 → (𝐵𝑃𝐴) = 0) |
13 | 8, 12 | oveq12d 6809 | . . . . . 6 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = (0 + 0)) |
14 | 00id 10411 | . . . . . 6 ⊢ (0 + 0) = 0 | |
15 | 13, 14 | syl6eq 2821 | . . . . 5 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = 0) |
16 | 15 | oveq2d 6807 | . . . 4 ⊢ ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0)) |
17 | 1, 3 | dipcl 27900 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) ∈ ℂ) |
18 | 9, 5, 5, 17 | mp3an 1572 | . . . . . 6 ⊢ (𝐴𝑃𝐴) ∈ ℂ |
19 | 1, 3 | dipcl 27900 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐵) ∈ ℂ) |
20 | 9, 6, 6, 19 | mp3an 1572 | . . . . . 6 ⊢ (𝐵𝑃𝐵) ∈ ℂ |
21 | 18, 20 | addcli 10244 | . . . . 5 ⊢ ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) ∈ ℂ |
22 | 21 | addid1i 10423 | . . . 4 ⊢ (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) |
23 | 16, 22 | syl6eq 2821 | . . 3 ⊢ ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))) |
24 | 7, 23 | syl5eq 2817 | . 2 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))) |
25 | 1, 2 | nvgcl 27808 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
26 | 9, 5, 6, 25 | mp3an 1572 | . . 3 ⊢ (𝐴𝐺𝐵) ∈ 𝑋 |
27 | pyth.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
28 | 1, 27, 3 | ipidsq 27898 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2)) |
29 | 9, 26, 28 | mp2an 672 | . 2 ⊢ ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2) |
30 | 1, 27, 3 | ipidsq 27898 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2)) |
31 | 9, 5, 30 | mp2an 672 | . . 3 ⊢ (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2) |
32 | 1, 27, 3 | ipidsq 27898 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐵) = ((𝑁‘𝐵)↑2)) |
33 | 9, 6, 32 | mp2an 672 | . . 3 ⊢ (𝐵𝑃𝐵) = ((𝑁‘𝐵)↑2) |
34 | 31, 33 | oveq12i 6803 | . 2 ⊢ ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)) |
35 | 24, 29, 34 | 3eqtr3g 2828 | 1 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ∈ wcel 2145 ‘cfv 6029 (class class class)co 6791 ℂcc 10134 0cc0 10136 + caddc 10139 2c2 11270 ↑cexp 13060 NrmCVeccnv 27772 +𝑣 cpv 27773 BaseSetcba 27774 normCVcnmcv 27778 ·𝑖OLDcdip 27888 CPreHilOLDccphlo 28000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 ax-inf2 8700 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 ax-pre-sup 10214 ax-addf 10215 ax-mulf 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-isom 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-oadd 7715 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-sup 8502 df-oi 8569 df-card 8963 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-div 10885 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-n0 11493 df-z 11578 df-uz 11887 df-rp 12029 df-fz 12527 df-fzo 12667 df-seq 13002 df-exp 13061 df-hash 13315 df-cj 14040 df-re 14041 df-im 14042 df-sqrt 14176 df-abs 14177 df-clim 14420 df-sum 14618 df-grpo 27680 df-gid 27681 df-ginv 27682 df-ablo 27732 df-vc 27747 df-nv 27780 df-va 27783 df-ba 27784 df-sm 27785 df-0v 27786 df-nmcv 27788 df-dip 27889 df-ph 28001 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |