MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythi Structured version   Visualization version   GIF version

Theorem pythi 30830
Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
pyth.1 𝑋 = (BaseSet‘𝑈)
pyth.2 𝐺 = ( +𝑣𝑈)
pyth.6 𝑁 = (normCV𝑈)
pyth.7 𝑃 = (·𝑖OLD𝑈)
pythi.u 𝑈 ∈ CPreHilOLD
pythi.a 𝐴𝑋
pythi.b 𝐵𝑋
Assertion
Ref Expression
pythi ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))

Proof of Theorem pythi
StepHypRef Expression
1 pyth.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 pyth.2 . . . 4 𝐺 = ( +𝑣𝑈)
3 pyth.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
4 pythi.u . . . 4 𝑈 ∈ CPreHilOLD
5 pythi.a . . . 4 𝐴𝑋
6 pythi.b . . . 4 𝐵𝑋
71, 2, 3, 4, 5, 6, 5, 6ip2dii 30824 . . 3 ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)))
8 id 22 . . . . . . 7 ((𝐴𝑃𝐵) = 0 → (𝐴𝑃𝐵) = 0)
94phnvi 30796 . . . . . . . . 9 𝑈 ∈ NrmCVec
101, 3diporthcom 30696 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0))
119, 5, 6, 10mp3an 1463 . . . . . . . 8 ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)
1211biimpi 216 . . . . . . 7 ((𝐴𝑃𝐵) = 0 → (𝐵𝑃𝐴) = 0)
138, 12oveq12d 7364 . . . . . 6 ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = (0 + 0))
14 00id 11288 . . . . . 6 (0 + 0) = 0
1513, 14eqtrdi 2782 . . . . 5 ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = 0)
1615oveq2d 7362 . . . 4 ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0))
171, 3dipcl 30692 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝑃𝐴) ∈ ℂ)
189, 5, 5, 17mp3an 1463 . . . . . 6 (𝐴𝑃𝐴) ∈ ℂ
191, 3dipcl 30692 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐵𝑋) → (𝐵𝑃𝐵) ∈ ℂ)
209, 6, 6, 19mp3an 1463 . . . . . 6 (𝐵𝑃𝐵) ∈ ℂ
2118, 20addcli 11118 . . . . 5 ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) ∈ ℂ
2221addridi 11300 . . . 4 (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))
2316, 22eqtrdi 2782 . . 3 ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)))
247, 23eqtrid 2778 . 2 ((𝐴𝑃𝐵) = 0 → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)))
251, 2nvgcl 30600 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
269, 5, 6, 25mp3an 1463 . . 3 (𝐴𝐺𝐵) ∈ 𝑋
27 pyth.6 . . . 4 𝑁 = (normCV𝑈)
281, 27, 3ipidsq 30690 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
299, 26, 28mp2an 692 . 2 ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2)
301, 27, 3ipidsq 30690 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
319, 5, 30mp2an 692 . . 3 (𝐴𝑃𝐴) = ((𝑁𝐴)↑2)
321, 27, 3ipidsq 30690 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝑃𝐵) = ((𝑁𝐵)↑2))
339, 6, 32mp2an 692 . . 3 (𝐵𝑃𝐵) = ((𝑁𝐵)↑2)
3431, 33oveq12i 7358 . 2 ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))
3524, 29, 343eqtr3g 2789 1 ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006   + caddc 11009  2c2 12180  cexp 13968  NrmCVeccnv 30564   +𝑣 cpv 30565  BaseSetcba 30566  normCVcnmcv 30570  ·𝑖OLDcdip 30680  CPreHilOLDccphlo 30792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-grpo 30473  df-gid 30474  df-ginv 30475  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580  df-dip 30681  df-ph 30793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator