MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythi Structured version   Visualization version   GIF version

Theorem pythi 30816
Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
pyth.1 𝑋 = (BaseSet‘𝑈)
pyth.2 𝐺 = ( +𝑣𝑈)
pyth.6 𝑁 = (normCV𝑈)
pyth.7 𝑃 = (·𝑖OLD𝑈)
pythi.u 𝑈 ∈ CPreHilOLD
pythi.a 𝐴𝑋
pythi.b 𝐵𝑋
Assertion
Ref Expression
pythi ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))

Proof of Theorem pythi
StepHypRef Expression
1 pyth.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 pyth.2 . . . 4 𝐺 = ( +𝑣𝑈)
3 pyth.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
4 pythi.u . . . 4 𝑈 ∈ CPreHilOLD
5 pythi.a . . . 4 𝐴𝑋
6 pythi.b . . . 4 𝐵𝑋
71, 2, 3, 4, 5, 6, 5, 6ip2dii 30810 . . 3 ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)))
8 id 22 . . . . . . 7 ((𝐴𝑃𝐵) = 0 → (𝐴𝑃𝐵) = 0)
94phnvi 30782 . . . . . . . . 9 𝑈 ∈ NrmCVec
101, 3diporthcom 30682 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0))
119, 5, 6, 10mp3an 1462 . . . . . . . 8 ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)
1211biimpi 216 . . . . . . 7 ((𝐴𝑃𝐵) = 0 → (𝐵𝑃𝐴) = 0)
138, 12oveq12d 7432 . . . . . 6 ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = (0 + 0))
14 00id 11419 . . . . . 6 (0 + 0) = 0
1513, 14eqtrdi 2785 . . . . 5 ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = 0)
1615oveq2d 7430 . . . 4 ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0))
171, 3dipcl 30678 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝑃𝐴) ∈ ℂ)
189, 5, 5, 17mp3an 1462 . . . . . 6 (𝐴𝑃𝐴) ∈ ℂ
191, 3dipcl 30678 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐵𝑋) → (𝐵𝑃𝐵) ∈ ℂ)
209, 6, 6, 19mp3an 1462 . . . . . 6 (𝐵𝑃𝐵) ∈ ℂ
2118, 20addcli 11250 . . . . 5 ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) ∈ ℂ
2221addridi 11431 . . . 4 (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))
2316, 22eqtrdi 2785 . . 3 ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)))
247, 23eqtrid 2781 . 2 ((𝐴𝑃𝐵) = 0 → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)))
251, 2nvgcl 30586 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
269, 5, 6, 25mp3an 1462 . . 3 (𝐴𝐺𝐵) ∈ 𝑋
27 pyth.6 . . . 4 𝑁 = (normCV𝑈)
281, 27, 3ipidsq 30676 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
299, 26, 28mp2an 692 . 2 ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2)
301, 27, 3ipidsq 30676 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
319, 5, 30mp2an 692 . . 3 (𝐴𝑃𝐴) = ((𝑁𝐴)↑2)
321, 27, 3ipidsq 30676 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝑃𝐵) = ((𝑁𝐵)↑2))
339, 6, 32mp2an 692 . . 3 (𝐵𝑃𝐵) = ((𝑁𝐵)↑2)
3431, 33oveq12i 7426 . 2 ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))
3524, 29, 343eqtr3g 2792 1 ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  cfv 6542  (class class class)co 7414  cc 11136  0cc0 11138   + caddc 11141  2c2 12304  cexp 14085  NrmCVeccnv 30550   +𝑣 cpv 30551  BaseSetcba 30552  normCVcnmcv 30556  ·𝑖OLDcdip 30666  CPreHilOLDccphlo 30778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217  ax-mulf 11218
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-n0 12511  df-z 12598  df-uz 12862  df-rp 13018  df-fz 13531  df-fzo 13678  df-seq 14026  df-exp 14086  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-grpo 30459  df-gid 30460  df-ginv 30461  df-ablo 30511  df-vc 30525  df-nv 30558  df-va 30561  df-ba 30562  df-sm 30563  df-0v 30564  df-nmcv 30566  df-dip 30667  df-ph 30779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator