Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythi Structured version   Visualization version   GIF version

Theorem pythi 28745
 Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
pyth.1 𝑋 = (BaseSet‘𝑈)
pyth.2 𝐺 = ( +𝑣𝑈)
pyth.6 𝑁 = (normCV𝑈)
pyth.7 𝑃 = (·𝑖OLD𝑈)
pythi.u 𝑈 ∈ CPreHilOLD
pythi.a 𝐴𝑋
pythi.b 𝐵𝑋
Assertion
Ref Expression
pythi ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))

Proof of Theorem pythi
StepHypRef Expression
1 pyth.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 pyth.2 . . . 4 𝐺 = ( +𝑣𝑈)
3 pyth.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
4 pythi.u . . . 4 𝑈 ∈ CPreHilOLD
5 pythi.a . . . 4 𝐴𝑋
6 pythi.b . . . 4 𝐵𝑋
71, 2, 3, 4, 5, 6, 5, 6ip2dii 28739 . . 3 ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)))
8 id 22 . . . . . . 7 ((𝐴𝑃𝐵) = 0 → (𝐴𝑃𝐵) = 0)
94phnvi 28711 . . . . . . . . 9 𝑈 ∈ NrmCVec
101, 3diporthcom 28611 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0))
119, 5, 6, 10mp3an 1458 . . . . . . . 8 ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)
1211biimpi 219 . . . . . . 7 ((𝐴𝑃𝐵) = 0 → (𝐵𝑃𝐴) = 0)
138, 12oveq12d 7174 . . . . . 6 ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = (0 + 0))
14 00id 10866 . . . . . 6 (0 + 0) = 0
1513, 14eqtrdi 2809 . . . . 5 ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = 0)
1615oveq2d 7172 . . . 4 ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0))
171, 3dipcl 28607 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝑃𝐴) ∈ ℂ)
189, 5, 5, 17mp3an 1458 . . . . . 6 (𝐴𝑃𝐴) ∈ ℂ
191, 3dipcl 28607 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐵𝑋) → (𝐵𝑃𝐵) ∈ ℂ)
209, 6, 6, 19mp3an 1458 . . . . . 6 (𝐵𝑃𝐵) ∈ ℂ
2118, 20addcli 10698 . . . . 5 ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) ∈ ℂ
2221addid1i 10878 . . . 4 (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))
2316, 22eqtrdi 2809 . . 3 ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)))
247, 23syl5eq 2805 . 2 ((𝐴𝑃𝐵) = 0 → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)))
251, 2nvgcl 28515 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
269, 5, 6, 25mp3an 1458 . . 3 (𝐴𝐺𝐵) ∈ 𝑋
27 pyth.6 . . . 4 𝑁 = (normCV𝑈)
281, 27, 3ipidsq 28605 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
299, 26, 28mp2an 691 . 2 ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2)
301, 27, 3ipidsq 28605 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
319, 5, 30mp2an 691 . . 3 (𝐴𝑃𝐴) = ((𝑁𝐴)↑2)
321, 27, 3ipidsq 28605 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝑃𝐵) = ((𝑁𝐵)↑2))
339, 6, 32mp2an 691 . . 3 (𝐵𝑃𝐵) = ((𝑁𝐵)↑2)
3431, 33oveq12i 7168 . 2 ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))
3524, 29, 343eqtr3g 2816 1 ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111  ‘cfv 6340  (class class class)co 7156  ℂcc 10586  0cc0 10588   + caddc 10591  2c2 11742  ↑cexp 13492  NrmCVeccnv 28479   +𝑣 cpv 28480  BaseSetcba 28481  normCVcnmcv 28485  ·𝑖OLDcdip 28595  CPreHilOLDccphlo 28707 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666  ax-addf 10667  ax-mulf 10668 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-fz 12953  df-fzo 13096  df-seq 13432  df-exp 13493  df-hash 13754  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-clim 14906  df-sum 15104  df-grpo 28388  df-gid 28389  df-ginv 28390  df-ablo 28440  df-vc 28454  df-nv 28487  df-va 28490  df-ba 28491  df-sm 28492  df-0v 28493  df-nmcv 28495  df-dip 28596  df-ph 28708 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator