![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pythi | Structured version Visualization version GIF version |
Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space π. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pyth.1 | β’ π = (BaseSetβπ) |
pyth.2 | β’ πΊ = ( +π£ βπ) |
pyth.6 | β’ π = (normCVβπ) |
pyth.7 | β’ π = (Β·πOLDβπ) |
pythi.u | β’ π β CPreHilOLD |
pythi.a | β’ π΄ β π |
pythi.b | β’ π΅ β π |
Ref | Expression |
---|---|
pythi | β’ ((π΄ππ΅) = 0 β ((πβ(π΄πΊπ΅))β2) = (((πβπ΄)β2) + ((πβπ΅)β2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pyth.1 | . . . 4 β’ π = (BaseSetβπ) | |
2 | pyth.2 | . . . 4 β’ πΊ = ( +π£ βπ) | |
3 | pyth.7 | . . . 4 β’ π = (Β·πOLDβπ) | |
4 | pythi.u | . . . 4 β’ π β CPreHilOLD | |
5 | pythi.a | . . . 4 β’ π΄ β π | |
6 | pythi.b | . . . 4 β’ π΅ β π | |
7 | 1, 2, 3, 4, 5, 6, 5, 6 | ip2dii 30530 | . . 3 β’ ((π΄πΊπ΅)π(π΄πΊπ΅)) = (((π΄ππ΄) + (π΅ππ΅)) + ((π΄ππ΅) + (π΅ππ΄))) |
8 | id 22 | . . . . . . 7 β’ ((π΄ππ΅) = 0 β (π΄ππ΅) = 0) | |
9 | 4 | phnvi 30502 | . . . . . . . . 9 β’ π β NrmCVec |
10 | 1, 3 | diporthcom 30402 | . . . . . . . . 9 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β ((π΄ππ΅) = 0 β (π΅ππ΄) = 0)) |
11 | 9, 5, 6, 10 | mp3an 1460 | . . . . . . . 8 β’ ((π΄ππ΅) = 0 β (π΅ππ΄) = 0) |
12 | 11 | biimpi 215 | . . . . . . 7 β’ ((π΄ππ΅) = 0 β (π΅ππ΄) = 0) |
13 | 8, 12 | oveq12d 7430 | . . . . . 6 β’ ((π΄ππ΅) = 0 β ((π΄ππ΅) + (π΅ππ΄)) = (0 + 0)) |
14 | 00id 11396 | . . . . . 6 β’ (0 + 0) = 0 | |
15 | 13, 14 | eqtrdi 2787 | . . . . 5 β’ ((π΄ππ΅) = 0 β ((π΄ππ΅) + (π΅ππ΄)) = 0) |
16 | 15 | oveq2d 7428 | . . . 4 β’ ((π΄ππ΅) = 0 β (((π΄ππ΄) + (π΅ππ΅)) + ((π΄ππ΅) + (π΅ππ΄))) = (((π΄ππ΄) + (π΅ππ΅)) + 0)) |
17 | 1, 3 | dipcl 30398 | . . . . . . 7 β’ ((π β NrmCVec β§ π΄ β π β§ π΄ β π) β (π΄ππ΄) β β) |
18 | 9, 5, 5, 17 | mp3an 1460 | . . . . . 6 β’ (π΄ππ΄) β β |
19 | 1, 3 | dipcl 30398 | . . . . . . 7 β’ ((π β NrmCVec β§ π΅ β π β§ π΅ β π) β (π΅ππ΅) β β) |
20 | 9, 6, 6, 19 | mp3an 1460 | . . . . . 6 β’ (π΅ππ΅) β β |
21 | 18, 20 | addcli 11227 | . . . . 5 β’ ((π΄ππ΄) + (π΅ππ΅)) β β |
22 | 21 | addridi 11408 | . . . 4 β’ (((π΄ππ΄) + (π΅ππ΅)) + 0) = ((π΄ππ΄) + (π΅ππ΅)) |
23 | 16, 22 | eqtrdi 2787 | . . 3 β’ ((π΄ππ΅) = 0 β (((π΄ππ΄) + (π΅ππ΅)) + ((π΄ππ΅) + (π΅ππ΄))) = ((π΄ππ΄) + (π΅ππ΅))) |
24 | 7, 23 | eqtrid 2783 | . 2 β’ ((π΄ππ΅) = 0 β ((π΄πΊπ΅)π(π΄πΊπ΅)) = ((π΄ππ΄) + (π΅ππ΅))) |
25 | 1, 2 | nvgcl 30306 | . . . 4 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄πΊπ΅) β π) |
26 | 9, 5, 6, 25 | mp3an 1460 | . . 3 β’ (π΄πΊπ΅) β π |
27 | pyth.6 | . . . 4 β’ π = (normCVβπ) | |
28 | 1, 27, 3 | ipidsq 30396 | . . 3 β’ ((π β NrmCVec β§ (π΄πΊπ΅) β π) β ((π΄πΊπ΅)π(π΄πΊπ΅)) = ((πβ(π΄πΊπ΅))β2)) |
29 | 9, 26, 28 | mp2an 689 | . 2 β’ ((π΄πΊπ΅)π(π΄πΊπ΅)) = ((πβ(π΄πΊπ΅))β2) |
30 | 1, 27, 3 | ipidsq 30396 | . . . 4 β’ ((π β NrmCVec β§ π΄ β π) β (π΄ππ΄) = ((πβπ΄)β2)) |
31 | 9, 5, 30 | mp2an 689 | . . 3 β’ (π΄ππ΄) = ((πβπ΄)β2) |
32 | 1, 27, 3 | ipidsq 30396 | . . . 4 β’ ((π β NrmCVec β§ π΅ β π) β (π΅ππ΅) = ((πβπ΅)β2)) |
33 | 9, 6, 32 | mp2an 689 | . . 3 β’ (π΅ππ΅) = ((πβπ΅)β2) |
34 | 31, 33 | oveq12i 7424 | . 2 β’ ((π΄ππ΄) + (π΅ππ΅)) = (((πβπ΄)β2) + ((πβπ΅)β2)) |
35 | 24, 29, 34 | 3eqtr3g 2794 | 1 β’ ((π΄ππ΅) = 0 β ((πβ(π΄πΊπ΅))β2) = (((πβπ΄)β2) + ((πβπ΅)β2))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1540 β wcel 2105 βcfv 6543 (class class class)co 7412 βcc 11114 0cc0 11116 + caddc 11119 2c2 12274 βcexp 14034 NrmCVeccnv 30270 +π£ cpv 30271 BaseSetcba 30272 normCVcnmcv 30276 Β·πOLDcdip 30386 CPreHilOLDccphlo 30498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-fz 13492 df-fzo 13635 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-sum 15640 df-grpo 30179 df-gid 30180 df-ginv 30181 df-ablo 30231 df-vc 30245 df-nv 30278 df-va 30281 df-ba 30282 df-sm 30283 df-0v 30284 df-nmcv 30286 df-dip 30387 df-ph 30499 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |