MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythi Structured version   Visualization version   GIF version

Theorem pythi 28633
Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. This is Metamath 100 proof #4. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
pyth.1 𝑋 = (BaseSet‘𝑈)
pyth.2 𝐺 = ( +𝑣𝑈)
pyth.6 𝑁 = (normCV𝑈)
pyth.7 𝑃 = (·𝑖OLD𝑈)
pythi.u 𝑈 ∈ CPreHilOLD
pythi.a 𝐴𝑋
pythi.b 𝐵𝑋
Assertion
Ref Expression
pythi ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))

Proof of Theorem pythi
StepHypRef Expression
1 pyth.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 pyth.2 . . . 4 𝐺 = ( +𝑣𝑈)
3 pyth.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
4 pythi.u . . . 4 𝑈 ∈ CPreHilOLD
5 pythi.a . . . 4 𝐴𝑋
6 pythi.b . . . 4 𝐵𝑋
71, 2, 3, 4, 5, 6, 5, 6ip2dii 28627 . . 3 ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)))
8 id 22 . . . . . . 7 ((𝐴𝑃𝐵) = 0 → (𝐴𝑃𝐵) = 0)
94phnvi 28599 . . . . . . . . 9 𝑈 ∈ NrmCVec
101, 3diporthcom 28499 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0))
119, 5, 6, 10mp3an 1458 . . . . . . . 8 ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)
1211biimpi 219 . . . . . . 7 ((𝐴𝑃𝐵) = 0 → (𝐵𝑃𝐴) = 0)
138, 12oveq12d 7153 . . . . . 6 ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = (0 + 0))
14 00id 10804 . . . . . 6 (0 + 0) = 0
1513, 14eqtrdi 2849 . . . . 5 ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = 0)
1615oveq2d 7151 . . . 4 ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0))
171, 3dipcl 28495 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝑃𝐴) ∈ ℂ)
189, 5, 5, 17mp3an 1458 . . . . . 6 (𝐴𝑃𝐴) ∈ ℂ
191, 3dipcl 28495 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐵𝑋) → (𝐵𝑃𝐵) ∈ ℂ)
209, 6, 6, 19mp3an 1458 . . . . . 6 (𝐵𝑃𝐵) ∈ ℂ
2118, 20addcli 10636 . . . . 5 ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) ∈ ℂ
2221addid1i 10816 . . . 4 (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))
2316, 22eqtrdi 2849 . . 3 ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)))
247, 23syl5eq 2845 . 2 ((𝐴𝑃𝐵) = 0 → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)))
251, 2nvgcl 28403 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
269, 5, 6, 25mp3an 1458 . . 3 (𝐴𝐺𝐵) ∈ 𝑋
27 pyth.6 . . . 4 𝑁 = (normCV𝑈)
281, 27, 3ipidsq 28493 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2))
299, 26, 28mp2an 691 . 2 ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2)
301, 27, 3ipidsq 28493 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
319, 5, 30mp2an 691 . . 3 (𝐴𝑃𝐴) = ((𝑁𝐴)↑2)
321, 27, 3ipidsq 28493 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝑃𝐵) = ((𝑁𝐵)↑2))
339, 6, 32mp2an 691 . . 3 (𝐵𝑃𝐵) = ((𝑁𝐵)↑2)
3431, 33oveq12i 7147 . 2 ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))
3524, 29, 343eqtr3g 2856 1 ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526   + caddc 10529  2c2 11680  cexp 13425  NrmCVeccnv 28367   +𝑣 cpv 28368  BaseSetcba 28369  normCVcnmcv 28373  ·𝑖OLDcdip 28483  CPreHilOLDccphlo 28595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-grpo 28276  df-gid 28277  df-ginv 28278  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-nmcv 28383  df-dip 28484  df-ph 28596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator