Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pythi | Structured version Visualization version GIF version |
Description: The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pyth.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
pyth.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
pyth.6 | ⊢ 𝑁 = (normCV‘𝑈) |
pyth.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
pythi.u | ⊢ 𝑈 ∈ CPreHilOLD |
pythi.a | ⊢ 𝐴 ∈ 𝑋 |
pythi.b | ⊢ 𝐵 ∈ 𝑋 |
Ref | Expression |
---|---|
pythi | ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pyth.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | pyth.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
3 | pyth.7 | . . . 4 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
4 | pythi.u | . . . 4 ⊢ 𝑈 ∈ CPreHilOLD | |
5 | pythi.a | . . . 4 ⊢ 𝐴 ∈ 𝑋 | |
6 | pythi.b | . . . 4 ⊢ 𝐵 ∈ 𝑋 | |
7 | 1, 2, 3, 4, 5, 6, 5, 6 | ip2dii 29107 | . . 3 ⊢ ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) |
8 | id 22 | . . . . . . 7 ⊢ ((𝐴𝑃𝐵) = 0 → (𝐴𝑃𝐵) = 0) | |
9 | 4 | phnvi 29079 | . . . . . . . . 9 ⊢ 𝑈 ∈ NrmCVec |
10 | 1, 3 | diporthcom 28979 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0)) |
11 | 9, 5, 6, 10 | mp3an 1459 | . . . . . . . 8 ⊢ ((𝐴𝑃𝐵) = 0 ↔ (𝐵𝑃𝐴) = 0) |
12 | 11 | biimpi 215 | . . . . . . 7 ⊢ ((𝐴𝑃𝐵) = 0 → (𝐵𝑃𝐴) = 0) |
13 | 8, 12 | oveq12d 7273 | . . . . . 6 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = (0 + 0)) |
14 | 00id 11080 | . . . . . 6 ⊢ (0 + 0) = 0 | |
15 | 13, 14 | eqtrdi 2795 | . . . . 5 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝑃𝐵) + (𝐵𝑃𝐴)) = 0) |
16 | 15 | oveq2d 7271 | . . . 4 ⊢ ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0)) |
17 | 1, 3 | dipcl 28975 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) ∈ ℂ) |
18 | 9, 5, 5, 17 | mp3an 1459 | . . . . . 6 ⊢ (𝐴𝑃𝐴) ∈ ℂ |
19 | 1, 3 | dipcl 28975 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐵) ∈ ℂ) |
20 | 9, 6, 6, 19 | mp3an 1459 | . . . . . 6 ⊢ (𝐵𝑃𝐵) ∈ ℂ |
21 | 18, 20 | addcli 10912 | . . . . 5 ⊢ ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) ∈ ℂ |
22 | 21 | addid1i 11092 | . . . 4 ⊢ (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + 0) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) |
23 | 16, 22 | eqtrdi 2795 | . . 3 ⊢ ((𝐴𝑃𝐵) = 0 → (((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) + ((𝐴𝑃𝐵) + (𝐵𝑃𝐴))) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))) |
24 | 7, 23 | syl5eq 2791 | . 2 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝐴𝑃𝐴) + (𝐵𝑃𝐵))) |
25 | 1, 2 | nvgcl 28883 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
26 | 9, 5, 6, 25 | mp3an 1459 | . . 3 ⊢ (𝐴𝐺𝐵) ∈ 𝑋 |
27 | pyth.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
28 | 1, 27, 3 | ipidsq 28973 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2)) |
29 | 9, 26, 28 | mp2an 688 | . 2 ⊢ ((𝐴𝐺𝐵)𝑃(𝐴𝐺𝐵)) = ((𝑁‘(𝐴𝐺𝐵))↑2) |
30 | 1, 27, 3 | ipidsq 28973 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2)) |
31 | 9, 5, 30 | mp2an 688 | . . 3 ⊢ (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2) |
32 | 1, 27, 3 | ipidsq 28973 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝐵𝑃𝐵) = ((𝑁‘𝐵)↑2)) |
33 | 9, 6, 32 | mp2an 688 | . . 3 ⊢ (𝐵𝑃𝐵) = ((𝑁‘𝐵)↑2) |
34 | 31, 33 | oveq12i 7267 | . 2 ⊢ ((𝐴𝑃𝐴) + (𝐵𝑃𝐵)) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)) |
35 | 24, 29, 34 | 3eqtr3g 2802 | 1 ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 + caddc 10805 2c2 11958 ↑cexp 13710 NrmCVeccnv 28847 +𝑣 cpv 28848 BaseSetcba 28849 normCVcnmcv 28853 ·𝑖OLDcdip 28963 CPreHilOLDccphlo 29075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 df-dip 28964 df-ph 29076 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |