MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem4 Structured version   Visualization version   GIF version

Theorem ipasslem4 29776
Description: Lemma for ipassi 29783. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem4
StepHypRef Expression
1 nnrecre 12195 . . . . 5 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
21recnd 11183 . . . 4 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℂ)
3 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
43phnvi 29758 . . . . 5 𝑈 ∈ NrmCVec
5 ip1i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
6 ip1i.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
75, 6nvscl 29568 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
84, 7mp3an1 1448 . . . 4 (((1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
92, 8sylan 580 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
10 ipasslem1.b . . . 4 𝐵𝑋
11 ip1i.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
125, 11dipcl 29654 . . . 4 ((𝑈 ∈ NrmCVec ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋𝐵𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
134, 10, 12mp3an13 1452 . . 3 (((1 / 𝑁)𝑆𝐴) ∈ 𝑋 → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
149, 13syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
155, 11dipcl 29654 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
164, 10, 15mp3an13 1452 . . 3 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
17 mulcl 11135 . . 3 (((1 / 𝑁) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ)
182, 16, 17syl2an 596 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ)
19 nncn 12161 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2019adantr 481 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ∈ ℂ)
21 nnne0 12187 . . 3 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2221adantr 481 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ≠ 0)
2319, 21recidd 11926 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 · (1 / 𝑁)) = 1)
2423oveq1d 7372 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (1 · (𝐴𝑃𝐵)))
2516mulid2d 11173 . . . . 5 (𝐴𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2624, 25sylan9eq 2796 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2723oveq1d 7372 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (1𝑆𝐴))
285, 6nvsid 29569 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
294, 28mpan 688 . . . . . . 7 (𝐴𝑋 → (1𝑆𝐴) = 𝐴)
3027, 29sylan9eq 2796 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = 𝐴)
312adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (1 / 𝑁) ∈ ℂ)
32 simpr 485 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝐴𝑋)
335, 6nvsass 29570 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
344, 33mpan 688 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3520, 31, 32, 34syl3anc 1371 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3630, 35eqtr3d 2778 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝐴 = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3736oveq1d 7372 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝐴𝑃𝐵) = ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵))
38 nnnn0 12420 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3938adantr 481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ∈ ℕ0)
40 ip1i.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
415, 40, 6, 11, 3, 10ipasslem1 29773 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4239, 9, 41syl2anc 584 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4326, 37, 423eqtrd 2780 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4416adantl 482 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
4520, 31, 44mulassd 11178 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵))))
4643, 45eqtr3d 2778 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵))))
4714, 18, 20, 22, 46mulcanad 11790 1 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   · cmul 11056   / cdiv 11812  cn 12153  0cn0 12413  NrmCVeccnv 29526   +𝑣 cpv 29527  BaseSetcba 29528   ·𝑠OLD cns 29529  ·𝑖OLDcdip 29642  CPreHilOLDccphlo 29754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-grpo 29435  df-gid 29436  df-ginv 29437  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-nmcv 29542  df-dip 29643  df-ph 29755
This theorem is referenced by:  ipasslem5  29777
  Copyright terms: Public domain W3C validator