![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipasslem4 | Structured version Visualization version GIF version |
Description: Lemma for ipassi 29612. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 |
Ref | Expression |
---|---|
ipasslem4 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnrecre 12153 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) | |
2 | 1 | recnd 11141 | . . . 4 ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℂ) |
3 | ip1i.9 | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
4 | 3 | phnvi 29587 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
5 | ip1i.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | ip1i.4 | . . . . . 6 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
7 | 5, 6 | nvscl 29397 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) |
8 | 4, 7 | mp3an1 1448 | . . . 4 ⊢ (((1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) |
9 | 2, 8 | sylan 580 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) |
10 | ipasslem1.b | . . . 4 ⊢ 𝐵 ∈ 𝑋 | |
11 | ip1i.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
12 | 5, 11 | dipcl 29483 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ) |
13 | 4, 10, 12 | mp3an13 1452 | . . 3 ⊢ (((1 / 𝑁)𝑆𝐴) ∈ 𝑋 → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ) |
14 | 9, 13 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ) |
15 | 5, 11 | dipcl 29483 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
16 | 4, 10, 15 | mp3an13 1452 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴𝑃𝐵) ∈ ℂ) |
17 | mulcl 11093 | . . 3 ⊢ (((1 / 𝑁) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ) | |
18 | 2, 16, 17 | syl2an 596 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ) |
19 | nncn 12119 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
20 | 19 | adantr 481 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝑁 ∈ ℂ) |
21 | nnne0 12145 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
22 | 21 | adantr 481 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝑁 ≠ 0) |
23 | 19, 21 | recidd 11884 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 · (1 / 𝑁)) = 1) |
24 | 23 | oveq1d 7366 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (1 · (𝐴𝑃𝐵))) |
25 | 16 | mulid2d 11131 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵)) |
26 | 24, 25 | sylan9eq 2797 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵)) |
27 | 23 | oveq1d 7366 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (1𝑆𝐴)) |
28 | 5, 6 | nvsid 29398 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
29 | 4, 28 | mpan 688 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (1𝑆𝐴) = 𝐴) |
30 | 27, 29 | sylan9eq 2797 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = 𝐴) |
31 | 2 | adantr 481 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (1 / 𝑁) ∈ ℂ) |
32 | simpr 485 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
33 | 5, 6 | nvsass 29399 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
34 | 4, 33 | mpan 688 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
35 | 20, 31, 32, 34 | syl3anc 1371 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
36 | 30, 35 | eqtr3d 2779 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝐴 = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
37 | 36 | oveq1d 7366 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐵) = ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵)) |
38 | nnnn0 12378 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
39 | 38 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝑁 ∈ ℕ0) |
40 | ip1i.2 | . . . . . 6 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
41 | 5, 40, 6, 11, 3, 10 | ipasslem1 29602 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵))) |
42 | 39, 9, 41 | syl2anc 584 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵))) |
43 | 26, 37, 42 | 3eqtrd 2781 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵))) |
44 | 16 | adantl 482 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
45 | 20, 31, 44 | mulassd 11136 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵)))) |
46 | 43, 45 | eqtr3d 2779 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵)))) |
47 | 14, 18, 20, 22, 46 | mulcanad 11748 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ‘cfv 6493 (class class class)co 7351 ℂcc 11007 0cc0 11009 1c1 11010 · cmul 11014 / cdiv 11770 ℕcn 12111 ℕ0cn0 12371 NrmCVeccnv 29355 +𝑣 cpv 29356 BaseSetcba 29357 ·𝑠OLD cns 29358 ·𝑖OLDcdip 29471 CPreHilOLDccphlo 29583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-inf2 9535 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-isom 6502 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-om 7795 df-1st 7913 df-2nd 7914 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-1o 8404 df-er 8606 df-en 8842 df-dom 8843 df-sdom 8844 df-fin 8845 df-sup 9336 df-oi 9404 df-card 9833 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-div 11771 df-nn 12112 df-2 12174 df-3 12175 df-4 12176 df-n0 12372 df-z 12458 df-uz 12722 df-rp 12870 df-fz 13379 df-fzo 13522 df-seq 13861 df-exp 13922 df-hash 14185 df-cj 14944 df-re 14945 df-im 14946 df-sqrt 15080 df-abs 15081 df-clim 15330 df-sum 15531 df-grpo 29264 df-gid 29265 df-ginv 29266 df-ablo 29316 df-vc 29330 df-nv 29363 df-va 29366 df-ba 29367 df-sm 29368 df-0v 29369 df-nmcv 29371 df-dip 29472 df-ph 29584 |
This theorem is referenced by: ipasslem5 29606 |
Copyright terms: Public domain | W3C validator |