Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipasslem4 | Structured version Visualization version GIF version |
Description: Lemma for ipassi 29104. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 |
Ref | Expression |
---|---|
ipasslem4 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnrecre 11945 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) | |
2 | 1 | recnd 10934 | . . . 4 ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℂ) |
3 | ip1i.9 | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
4 | 3 | phnvi 29079 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
5 | ip1i.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | ip1i.4 | . . . . . 6 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
7 | 5, 6 | nvscl 28889 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) |
8 | 4, 7 | mp3an1 1446 | . . . 4 ⊢ (((1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) |
9 | 2, 8 | sylan 579 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) |
10 | ipasslem1.b | . . . 4 ⊢ 𝐵 ∈ 𝑋 | |
11 | ip1i.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
12 | 5, 11 | dipcl 28975 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ) |
13 | 4, 10, 12 | mp3an13 1450 | . . 3 ⊢ (((1 / 𝑁)𝑆𝐴) ∈ 𝑋 → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ) |
14 | 9, 13 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ) |
15 | 5, 11 | dipcl 28975 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
16 | 4, 10, 15 | mp3an13 1450 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴𝑃𝐵) ∈ ℂ) |
17 | mulcl 10886 | . . 3 ⊢ (((1 / 𝑁) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ) | |
18 | 2, 16, 17 | syl2an 595 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ) |
19 | nncn 11911 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
20 | 19 | adantr 480 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝑁 ∈ ℂ) |
21 | nnne0 11937 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
22 | 21 | adantr 480 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝑁 ≠ 0) |
23 | 19, 21 | recidd 11676 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 · (1 / 𝑁)) = 1) |
24 | 23 | oveq1d 7270 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (1 · (𝐴𝑃𝐵))) |
25 | 16 | mulid2d 10924 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵)) |
26 | 24, 25 | sylan9eq 2799 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵)) |
27 | 23 | oveq1d 7270 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (1𝑆𝐴)) |
28 | 5, 6 | nvsid 28890 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
29 | 4, 28 | mpan 686 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (1𝑆𝐴) = 𝐴) |
30 | 27, 29 | sylan9eq 2799 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = 𝐴) |
31 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (1 / 𝑁) ∈ ℂ) |
32 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
33 | 5, 6 | nvsass 28891 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
34 | 4, 33 | mpan 686 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
35 | 20, 31, 32, 34 | syl3anc 1369 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
36 | 30, 35 | eqtr3d 2780 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝐴 = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
37 | 36 | oveq1d 7270 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐵) = ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵)) |
38 | nnnn0 12170 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
39 | 38 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝑁 ∈ ℕ0) |
40 | ip1i.2 | . . . . . 6 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
41 | 5, 40, 6, 11, 3, 10 | ipasslem1 29094 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵))) |
42 | 39, 9, 41 | syl2anc 583 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵))) |
43 | 26, 37, 42 | 3eqtrd 2782 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵))) |
44 | 16 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
45 | 20, 31, 44 | mulassd 10929 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵)))) |
46 | 43, 45 | eqtr3d 2780 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵)))) |
47 | 14, 18, 20, 22, 46 | mulcanad 11540 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 / cdiv 11562 ℕcn 11903 ℕ0cn0 12163 NrmCVeccnv 28847 +𝑣 cpv 28848 BaseSetcba 28849 ·𝑠OLD cns 28850 ·𝑖OLDcdip 28963 CPreHilOLDccphlo 29075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 df-dip 28964 df-ph 29076 |
This theorem is referenced by: ipasslem5 29098 |
Copyright terms: Public domain | W3C validator |