![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipasslem4 | Structured version Visualization version GIF version |
Description: Lemma for ipassi 28309. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip1i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ip1i.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD |
ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 |
Ref | Expression |
---|---|
ipasslem4 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnrecre 11527 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) | |
2 | 1 | recnd 10515 | . . . 4 ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℂ) |
3 | ip1i.9 | . . . . . 6 ⊢ 𝑈 ∈ CPreHilOLD | |
4 | 3 | phnvi 28284 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
5 | ip1i.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | ip1i.4 | . . . . . 6 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
7 | 5, 6 | nvscl 28094 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) |
8 | 4, 7 | mp3an1 1440 | . . . 4 ⊢ (((1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) |
9 | 2, 8 | sylan 580 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) |
10 | ipasslem1.b | . . . 4 ⊢ 𝐵 ∈ 𝑋 | |
11 | ip1i.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
12 | 5, 11 | dipcl 28180 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ) |
13 | 4, 10, 12 | mp3an13 1444 | . . 3 ⊢ (((1 / 𝑁)𝑆𝐴) ∈ 𝑋 → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ) |
14 | 9, 13 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ) |
15 | 5, 11 | dipcl 28180 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
16 | 4, 10, 15 | mp3an13 1444 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐴𝑃𝐵) ∈ ℂ) |
17 | mulcl 10467 | . . 3 ⊢ (((1 / 𝑁) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ) | |
18 | 2, 16, 17 | syl2an 595 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ) |
19 | nncn 11494 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
20 | 19 | adantr 481 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝑁 ∈ ℂ) |
21 | nnne0 11519 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
22 | 21 | adantr 481 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝑁 ≠ 0) |
23 | 19, 21 | recidd 11259 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 · (1 / 𝑁)) = 1) |
24 | 23 | oveq1d 7031 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (1 · (𝐴𝑃𝐵))) |
25 | 16 | mulid2d 10505 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵)) |
26 | 24, 25 | sylan9eq 2851 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵)) |
27 | 23 | oveq1d 7031 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (1𝑆𝐴)) |
28 | 5, 6 | nvsid 28095 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
29 | 4, 28 | mpan 686 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑋 → (1𝑆𝐴) = 𝐴) |
30 | 27, 29 | sylan9eq 2851 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = 𝐴) |
31 | 2 | adantr 481 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (1 / 𝑁) ∈ ℂ) |
32 | simpr 485 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
33 | 5, 6 | nvsass 28096 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
34 | 4, 33 | mpan 686 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
35 | 20, 31, 32, 34 | syl3anc 1364 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
36 | 30, 35 | eqtr3d 2833 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝐴 = (𝑁𝑆((1 / 𝑁)𝑆𝐴))) |
37 | 36 | oveq1d 7031 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐵) = ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵)) |
38 | nnnn0 11752 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
39 | 38 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → 𝑁 ∈ ℕ0) |
40 | ip1i.2 | . . . . . 6 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
41 | 5, 40, 6, 11, 3, 10 | ipasslem1 28299 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵))) |
42 | 39, 9, 41 | syl2anc 584 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵))) |
43 | 26, 37, 42 | 3eqtrd 2835 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵))) |
44 | 16 | adantl 482 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
45 | 20, 31, 44 | mulassd 10510 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵)))) |
46 | 43, 45 | eqtr3d 2833 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵)))) |
47 | 14, 18, 20, 22, 46 | mulcanad 11123 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 ‘cfv 6225 (class class class)co 7016 ℂcc 10381 0cc0 10383 1c1 10384 · cmul 10388 / cdiv 11145 ℕcn 11486 ℕ0cn0 11745 NrmCVeccnv 28052 +𝑣 cpv 28053 BaseSetcba 28054 ·𝑠OLD cns 28055 ·𝑖OLDcdip 28168 CPreHilOLDccphlo 28280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-inf2 8950 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-sup 8752 df-oi 8820 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-n0 11746 df-z 11830 df-uz 12094 df-rp 12240 df-fz 12743 df-fzo 12884 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-sum 14877 df-grpo 27961 df-gid 27962 df-ginv 27963 df-ablo 28013 df-vc 28027 df-nv 28060 df-va 28063 df-ba 28064 df-sm 28065 df-0v 28066 df-nmcv 28068 df-dip 28169 df-ph 28281 |
This theorem is referenced by: ipasslem5 28303 |
Copyright terms: Public domain | W3C validator |