MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem4 Structured version   Visualization version   GIF version

Theorem ipasslem4 30814
Description: Lemma for ipassi 30821. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem4
StepHypRef Expression
1 nnrecre 12167 . . . . 5 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
21recnd 11140 . . . 4 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℂ)
3 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
43phnvi 30796 . . . . 5 𝑈 ∈ NrmCVec
5 ip1i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
6 ip1i.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
75, 6nvscl 30606 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
84, 7mp3an1 1450 . . . 4 (((1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
92, 8sylan 580 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
10 ipasslem1.b . . . 4 𝐵𝑋
11 ip1i.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
125, 11dipcl 30692 . . . 4 ((𝑈 ∈ NrmCVec ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋𝐵𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
134, 10, 12mp3an13 1454 . . 3 (((1 / 𝑁)𝑆𝐴) ∈ 𝑋 → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
149, 13syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
155, 11dipcl 30692 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
164, 10, 15mp3an13 1454 . . 3 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
17 mulcl 11090 . . 3 (((1 / 𝑁) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ)
182, 16, 17syl2an 596 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ)
19 nncn 12133 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2019adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ∈ ℂ)
21 nnne0 12159 . . 3 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2221adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ≠ 0)
2319, 21recidd 11892 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 · (1 / 𝑁)) = 1)
2423oveq1d 7361 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (1 · (𝐴𝑃𝐵)))
2516mullidd 11130 . . . . 5 (𝐴𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2624, 25sylan9eq 2786 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2723oveq1d 7361 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (1𝑆𝐴))
285, 6nvsid 30607 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
294, 28mpan 690 . . . . . . 7 (𝐴𝑋 → (1𝑆𝐴) = 𝐴)
3027, 29sylan9eq 2786 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = 𝐴)
312adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (1 / 𝑁) ∈ ℂ)
32 simpr 484 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝐴𝑋)
335, 6nvsass 30608 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
344, 33mpan 690 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3520, 31, 32, 34syl3anc 1373 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3630, 35eqtr3d 2768 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝐴 = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3736oveq1d 7361 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝐴𝑃𝐵) = ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵))
38 nnnn0 12388 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3938adantr 480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ∈ ℕ0)
40 ip1i.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
415, 40, 6, 11, 3, 10ipasslem1 30811 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4239, 9, 41syl2anc 584 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4326, 37, 423eqtrd 2770 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4416adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
4520, 31, 44mulassd 11135 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵))))
4643, 45eqtr3d 2768 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵))))
4714, 18, 20, 22, 46mulcanad 11752 1 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   · cmul 11011   / cdiv 11774  cn 12125  0cn0 12381  NrmCVeccnv 30564   +𝑣 cpv 30565  BaseSetcba 30566   ·𝑠OLD cns 30567  ·𝑖OLDcdip 30680  CPreHilOLDccphlo 30792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-grpo 30473  df-gid 30474  df-ginv 30475  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580  df-dip 30681  df-ph 30793
This theorem is referenced by:  ipasslem5  30815
  Copyright terms: Public domain W3C validator