MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem4 Structured version   Visualization version   GIF version

Theorem ipasslem4 30813
Description: Lemma for ipassi 30820. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem4
StepHypRef Expression
1 nnrecre 12204 . . . . 5 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
21recnd 11178 . . . 4 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℂ)
3 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
43phnvi 30795 . . . . 5 𝑈 ∈ NrmCVec
5 ip1i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
6 ip1i.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
75, 6nvscl 30605 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
84, 7mp3an1 1450 . . . 4 (((1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
92, 8sylan 580 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
10 ipasslem1.b . . . 4 𝐵𝑋
11 ip1i.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
125, 11dipcl 30691 . . . 4 ((𝑈 ∈ NrmCVec ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋𝐵𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
134, 10, 12mp3an13 1454 . . 3 (((1 / 𝑁)𝑆𝐴) ∈ 𝑋 → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
149, 13syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
155, 11dipcl 30691 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
164, 10, 15mp3an13 1454 . . 3 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
17 mulcl 11128 . . 3 (((1 / 𝑁) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ)
182, 16, 17syl2an 596 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ)
19 nncn 12170 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2019adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ∈ ℂ)
21 nnne0 12196 . . 3 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2221adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ≠ 0)
2319, 21recidd 11929 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 · (1 / 𝑁)) = 1)
2423oveq1d 7384 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (1 · (𝐴𝑃𝐵)))
2516mullidd 11168 . . . . 5 (𝐴𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2624, 25sylan9eq 2784 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2723oveq1d 7384 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (1𝑆𝐴))
285, 6nvsid 30606 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
294, 28mpan 690 . . . . . . 7 (𝐴𝑋 → (1𝑆𝐴) = 𝐴)
3027, 29sylan9eq 2784 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = 𝐴)
312adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (1 / 𝑁) ∈ ℂ)
32 simpr 484 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝐴𝑋)
335, 6nvsass 30607 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
344, 33mpan 690 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3520, 31, 32, 34syl3anc 1373 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3630, 35eqtr3d 2766 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝐴 = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3736oveq1d 7384 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝐴𝑃𝐵) = ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵))
38 nnnn0 12425 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3938adantr 480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ∈ ℕ0)
40 ip1i.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
415, 40, 6, 11, 3, 10ipasslem1 30810 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4239, 9, 41syl2anc 584 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4326, 37, 423eqtrd 2768 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4416adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
4520, 31, 44mulassd 11173 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵))))
4643, 45eqtr3d 2766 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵))))
4714, 18, 20, 22, 46mulcanad 11789 1 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   · cmul 11049   / cdiv 11811  cn 12162  0cn0 12418  NrmCVeccnv 30563   +𝑣 cpv 30564  BaseSetcba 30565   ·𝑠OLD cns 30566  ·𝑖OLDcdip 30679  CPreHilOLDccphlo 30791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-grpo 30472  df-gid 30473  df-ginv 30474  df-ablo 30524  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-nmcv 30579  df-dip 30680  df-ph 30792
This theorem is referenced by:  ipasslem5  30814
  Copyright terms: Public domain W3C validator