MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem4 Structured version   Visualization version   GIF version

Theorem ipasslem4 29097
Description: Lemma for ipassi 29104. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem4
StepHypRef Expression
1 nnrecre 11945 . . . . 5 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
21recnd 10934 . . . 4 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℂ)
3 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
43phnvi 29079 . . . . 5 𝑈 ∈ NrmCVec
5 ip1i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
6 ip1i.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
75, 6nvscl 28889 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
84, 7mp3an1 1446 . . . 4 (((1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
92, 8sylan 579 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
10 ipasslem1.b . . . 4 𝐵𝑋
11 ip1i.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
125, 11dipcl 28975 . . . 4 ((𝑈 ∈ NrmCVec ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋𝐵𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
134, 10, 12mp3an13 1450 . . 3 (((1 / 𝑁)𝑆𝐴) ∈ 𝑋 → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
149, 13syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
155, 11dipcl 28975 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
164, 10, 15mp3an13 1450 . . 3 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
17 mulcl 10886 . . 3 (((1 / 𝑁) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ)
182, 16, 17syl2an 595 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ)
19 nncn 11911 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2019adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ∈ ℂ)
21 nnne0 11937 . . 3 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2221adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ≠ 0)
2319, 21recidd 11676 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 · (1 / 𝑁)) = 1)
2423oveq1d 7270 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (1 · (𝐴𝑃𝐵)))
2516mulid2d 10924 . . . . 5 (𝐴𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2624, 25sylan9eq 2799 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2723oveq1d 7270 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (1𝑆𝐴))
285, 6nvsid 28890 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
294, 28mpan 686 . . . . . . 7 (𝐴𝑋 → (1𝑆𝐴) = 𝐴)
3027, 29sylan9eq 2799 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = 𝐴)
312adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (1 / 𝑁) ∈ ℂ)
32 simpr 484 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝐴𝑋)
335, 6nvsass 28891 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
344, 33mpan 686 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3520, 31, 32, 34syl3anc 1369 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3630, 35eqtr3d 2780 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝐴 = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3736oveq1d 7270 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝐴𝑃𝐵) = ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵))
38 nnnn0 12170 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3938adantr 480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ∈ ℕ0)
40 ip1i.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
415, 40, 6, 11, 3, 10ipasslem1 29094 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4239, 9, 41syl2anc 583 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4326, 37, 423eqtrd 2782 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4416adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
4520, 31, 44mulassd 10929 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵))))
4643, 45eqtr3d 2780 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵))))
4714, 18, 20, 22, 46mulcanad 11540 1 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807   / cdiv 11562  cn 11903  0cn0 12163  NrmCVeccnv 28847   +𝑣 cpv 28848  BaseSetcba 28849   ·𝑠OLD cns 28850  ·𝑖OLDcdip 28963  CPreHilOLDccphlo 29075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-dip 28964  df-ph 29076
This theorem is referenced by:  ipasslem5  29098
  Copyright terms: Public domain W3C validator