MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siii Structured version   Visualization version   GIF version

Theorem siii 29503
Description: Inference from sii 29504. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1 𝑋 = (BaseSet‘𝑈)
siii.6 𝑁 = (normCV𝑈)
siii.7 𝑃 = (·𝑖OLD𝑈)
siii.9 𝑈 ∈ CPreHilOLD
siii.a 𝐴𝑋
siii.b 𝐵𝑋
Assertion
Ref Expression
siii (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵))

Proof of Theorem siii
StepHypRef Expression
1 oveq2 7345 . . . . 5 (𝐵 = (0vec𝑈) → (𝐴𝑃𝐵) = (𝐴𝑃(0vec𝑈)))
2 siii.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
32phnvi 29466 . . . . . 6 𝑈 ∈ NrmCVec
4 siii.a . . . . . 6 𝐴𝑋
5 siii.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
6 eqid 2736 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
7 siii.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
85, 6, 7dip0r 29367 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃(0vec𝑈)) = 0)
93, 4, 8mp2an 689 . . . . 5 (𝐴𝑃(0vec𝑈)) = 0
101, 9eqtrdi 2792 . . . 4 (𝐵 = (0vec𝑈) → (𝐴𝑃𝐵) = 0)
1110abs00bd 15102 . . 3 (𝐵 = (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) = 0)
12 siii.6 . . . . . 6 𝑁 = (normCV𝑈)
135, 12nvge0 29323 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
143, 4, 13mp2an 689 . . . 4 0 ≤ (𝑁𝐴)
15 siii.b . . . . 5 𝐵𝑋
165, 12nvge0 29323 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → 0 ≤ (𝑁𝐵))
173, 15, 16mp2an 689 . . . 4 0 ≤ (𝑁𝐵)
185, 12, 3, 4nvcli 29312 . . . . 5 (𝑁𝐴) ∈ ℝ
195, 12, 3, 15nvcli 29312 . . . . 5 (𝑁𝐵) ∈ ℝ
2018, 19mulge0i 11623 . . . 4 ((0 ≤ (𝑁𝐴) ∧ 0 ≤ (𝑁𝐵)) → 0 ≤ ((𝑁𝐴) · (𝑁𝐵)))
2114, 17, 20mp2an 689 . . 3 0 ≤ ((𝑁𝐴) · (𝑁𝐵))
2211, 21eqbrtrdi 5131 . 2 (𝐵 = (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵)))
235, 7dipcl 29362 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
243, 4, 15, 23mp3an 1460 . . . . 5 (𝐴𝑃𝐵) ∈ ℂ
25 absval 15048 . . . . 5 ((𝐴𝑃𝐵) ∈ ℂ → (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵)))))
2624, 25ax-mp 5 . . . 4 (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵))))
2719recni 11090 . . . . . . . . . . 11 (𝑁𝐵) ∈ ℂ
2827sqeq0i 14000 . . . . . . . . . 10 (((𝑁𝐵)↑2) = 0 ↔ (𝑁𝐵) = 0)
295, 6, 12nvz 29319 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((𝑁𝐵) = 0 ↔ 𝐵 = (0vec𝑈)))
303, 15, 29mp2an 689 . . . . . . . . . 10 ((𝑁𝐵) = 0 ↔ 𝐵 = (0vec𝑈))
3128, 30bitri 274 . . . . . . . . 9 (((𝑁𝐵)↑2) = 0 ↔ 𝐵 = (0vec𝑈))
3231necon3bii 2993 . . . . . . . 8 (((𝑁𝐵)↑2) ≠ 0 ↔ 𝐵 ≠ (0vec𝑈))
335, 7dipcl 29362 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) ∈ ℂ)
343, 15, 4, 33mp3an 1460 . . . . . . . . 9 (𝐵𝑃𝐴) ∈ ℂ
3519resqcli 14004 . . . . . . . . . 10 ((𝑁𝐵)↑2) ∈ ℝ
3635recni 11090 . . . . . . . . 9 ((𝑁𝐵)↑2) ∈ ℂ
3734, 36divcan1zi 11812 . . . . . . . 8 (((𝑁𝐵)↑2) ≠ 0 → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) = (𝐵𝑃𝐴))
3832, 37sylbir 234 . . . . . . 7 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) = (𝐵𝑃𝐴))
395, 7dipcj 29364 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴))
403, 4, 15, 39mp3an 1460 . . . . . . 7 (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)
4138, 40eqtr4di 2794 . . . . . 6 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) = (∗‘(𝐴𝑃𝐵)))
4241oveq2d 7353 . . . . 5 (𝐵 ≠ (0vec𝑈) → ((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2))) = ((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵))))
4342fveq2d 6829 . . . 4 (𝐵 ≠ (0vec𝑈) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵)))))
4426, 43eqtr4id 2795 . . 3 (𝐵 ≠ (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))))
4538eqcomd 2742 . . . 4 (𝐵 ≠ (0vec𝑈) → (𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))
4634, 36divclzi 11811 . . . . . 6 (((𝑁𝐵)↑2) ≠ 0 → ((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) ∈ ℂ)
4732, 46sylbir 234 . . . . 5 (𝐵 ≠ (0vec𝑈) → ((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) ∈ ℂ)
48 div23 11753 . . . . . . . . . 10 (((𝐵𝑃𝐴) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ ∧ (((𝑁𝐵)↑2) ∈ ℂ ∧ ((𝑁𝐵)↑2) ≠ 0)) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
4934, 24, 48mp3an12 1450 . . . . . . . . 9 ((((𝑁𝐵)↑2) ∈ ℂ ∧ ((𝑁𝐵)↑2) ≠ 0) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
5036, 49mpan 687 . . . . . . . 8 (((𝑁𝐵)↑2) ≠ 0 → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
5132, 50sylbir 234 . . . . . . 7 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
525, 7ipipcj 29365 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2))
533, 4, 15, 52mp3an 1460 . . . . . . . . 9 ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2)
5424, 34, 53mulcomli 11085 . . . . . . . 8 ((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) = ((abs‘(𝐴𝑃𝐵))↑2)
5554oveq1i 7347 . . . . . . 7 (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2))
5651, 55eqtr3di 2791 . . . . . 6 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)) = (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
5724abscli 15206 . . . . . . . . 9 (abs‘(𝐴𝑃𝐵)) ∈ ℝ
5857resqcli 14004 . . . . . . . 8 ((abs‘(𝐴𝑃𝐵))↑2) ∈ ℝ
5958, 35redivclzi 11842 . . . . . . 7 (((𝑁𝐵)↑2) ≠ 0 → (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)) ∈ ℝ)
6032, 59sylbir 234 . . . . . 6 (𝐵 ≠ (0vec𝑈) → (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)) ∈ ℝ)
6156, 60eqeltrd 2837 . . . . 5 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)) ∈ ℝ)
6230necon3bii 2993 . . . . . . . 8 ((𝑁𝐵) ≠ 0 ↔ 𝐵 ≠ (0vec𝑈))
6319sqgt0i 14005 . . . . . . . 8 ((𝑁𝐵) ≠ 0 → 0 < ((𝑁𝐵)↑2))
6462, 63sylbir 234 . . . . . . 7 (𝐵 ≠ (0vec𝑈) → 0 < ((𝑁𝐵)↑2))
6557sqge0i 14006 . . . . . . . 8 0 ≤ ((abs‘(𝐴𝑃𝐵))↑2)
66 divge0 11945 . . . . . . . 8 (((((abs‘(𝐴𝑃𝐵))↑2) ∈ ℝ ∧ 0 ≤ ((abs‘(𝐴𝑃𝐵))↑2)) ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 < ((𝑁𝐵)↑2))) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
6758, 65, 66mpanl12 699 . . . . . . 7 ((((𝑁𝐵)↑2) ∈ ℝ ∧ 0 < ((𝑁𝐵)↑2)) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
6835, 64, 67sylancr 587 . . . . . 6 (𝐵 ≠ (0vec𝑈) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
6968, 56breqtrrd 5120 . . . . 5 (𝐵 ≠ (0vec𝑈) → 0 ≤ (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
70 eqid 2736 . . . . . 6 ( −𝑣𝑈) = ( −𝑣𝑈)
71 eqid 2736 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
725, 12, 7, 2, 4, 15, 70, 71siilem2 29502 . . . . 5 ((((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) ∈ ℂ ∧ (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
7347, 61, 69, 72syl3anc 1370 . . . 4 (𝐵 ≠ (0vec𝑈) → ((𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
7445, 73mpd 15 . . 3 (𝐵 ≠ (0vec𝑈) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
7544, 74eqbrtrd 5114 . 2 (𝐵 ≠ (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵)))
7622, 75pm2.61ine 3025 1 (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5092  cfv 6479  (class class class)co 7337  cc 10970  cr 10971  0cc0 10972   · cmul 10977   < clt 11110  cle 11111   / cdiv 11733  2c2 12129  cexp 13883  ccj 14906  csqrt 15043  abscabs 15044  NrmCVeccnv 29234  BaseSetcba 29236   ·𝑠OLD cns 29237  0veccn0v 29238  𝑣 cnsb 29239  normCVcnmcv 29240  ·𝑖OLDcdip 29350  CPreHilOLDccphlo 29462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-fi 9268  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-ioo 13184  df-icc 13187  df-fz 13341  df-fzo 13484  df-seq 13823  df-exp 13884  df-hash 14146  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-clim 15296  df-sum 15497  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-mulg 18797  df-cntz 19019  df-cmn 19483  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-cn 22484  df-cnp 22485  df-t1 22571  df-haus 22572  df-tx 22819  df-hmeo 23012  df-xms 23579  df-ms 23580  df-tms 23581  df-grpo 29143  df-gid 29144  df-ginv 29145  df-gdiv 29146  df-ablo 29195  df-vc 29209  df-nv 29242  df-va 29245  df-ba 29246  df-sm 29247  df-0v 29248  df-vs 29249  df-nmcv 29250  df-ims 29251  df-dip 29351  df-ph 29463
This theorem is referenced by:  sii  29504  bcsiHIL  29830
  Copyright terms: Public domain W3C validator