Proof of Theorem siii
| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7440 |
. . . . 5
⊢ (𝐵 = (0vec‘𝑈) → (𝐴𝑃𝐵) = (𝐴𝑃(0vec‘𝑈))) |
| 2 | | siii.9 |
. . . . . . 7
⊢ 𝑈 ∈
CPreHilOLD |
| 3 | 2 | phnvi 30836 |
. . . . . 6
⊢ 𝑈 ∈ NrmCVec |
| 4 | | siii.a |
. . . . . 6
⊢ 𝐴 ∈ 𝑋 |
| 5 | | siii.1 |
. . . . . . 7
⊢ 𝑋 = (BaseSet‘𝑈) |
| 6 | | eqid 2736 |
. . . . . . 7
⊢
(0vec‘𝑈) = (0vec‘𝑈) |
| 7 | | siii.7 |
. . . . . . 7
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
| 8 | 5, 6, 7 | dip0r 30737 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃(0vec‘𝑈)) = 0) |
| 9 | 3, 4, 8 | mp2an 692 |
. . . . 5
⊢ (𝐴𝑃(0vec‘𝑈)) = 0 |
| 10 | 1, 9 | eqtrdi 2792 |
. . . 4
⊢ (𝐵 = (0vec‘𝑈) → (𝐴𝑃𝐵) = 0) |
| 11 | 10 | abs00bd 15331 |
. . 3
⊢ (𝐵 = (0vec‘𝑈) → (abs‘(𝐴𝑃𝐵)) = 0) |
| 12 | | siii.6 |
. . . . . 6
⊢ 𝑁 =
(normCV‘𝑈) |
| 13 | 5, 12 | nvge0 30693 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
| 14 | 3, 4, 13 | mp2an 692 |
. . . 4
⊢ 0 ≤
(𝑁‘𝐴) |
| 15 | | siii.b |
. . . . 5
⊢ 𝐵 ∈ 𝑋 |
| 16 | 5, 12 | nvge0 30693 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝑁‘𝐵)) |
| 17 | 3, 15, 16 | mp2an 692 |
. . . 4
⊢ 0 ≤
(𝑁‘𝐵) |
| 18 | 5, 12, 3, 4 | nvcli 30682 |
. . . . 5
⊢ (𝑁‘𝐴) ∈ ℝ |
| 19 | 5, 12, 3, 15 | nvcli 30682 |
. . . . 5
⊢ (𝑁‘𝐵) ∈ ℝ |
| 20 | 18, 19 | mulge0i 11811 |
. . . 4
⊢ ((0 ≤
(𝑁‘𝐴) ∧ 0 ≤ (𝑁‘𝐵)) → 0 ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) |
| 21 | 14, 17, 20 | mp2an 692 |
. . 3
⊢ 0 ≤
((𝑁‘𝐴) · (𝑁‘𝐵)) |
| 22 | 11, 21 | eqbrtrdi 5181 |
. 2
⊢ (𝐵 = (0vec‘𝑈) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) |
| 23 | 5, 7 | dipcl 30732 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
| 24 | 3, 4, 15, 23 | mp3an 1462 |
. . . . 5
⊢ (𝐴𝑃𝐵) ∈ ℂ |
| 25 | | absval 15278 |
. . . . 5
⊢ ((𝐴𝑃𝐵) ∈ ℂ → (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵))))) |
| 26 | 24, 25 | ax-mp 5 |
. . . 4
⊢
(abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵)))) |
| 27 | 19 | recni 11276 |
. . . . . . . . . . 11
⊢ (𝑁‘𝐵) ∈ ℂ |
| 28 | 27 | sqeq0i 14222 |
. . . . . . . . . 10
⊢ (((𝑁‘𝐵)↑2) = 0 ↔ (𝑁‘𝐵) = 0) |
| 29 | 5, 6, 12 | nvz 30689 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐵) = 0 ↔ 𝐵 = (0vec‘𝑈))) |
| 30 | 3, 15, 29 | mp2an 692 |
. . . . . . . . . 10
⊢ ((𝑁‘𝐵) = 0 ↔ 𝐵 = (0vec‘𝑈)) |
| 31 | 28, 30 | bitri 275 |
. . . . . . . . 9
⊢ (((𝑁‘𝐵)↑2) = 0 ↔ 𝐵 = (0vec‘𝑈)) |
| 32 | 31 | necon3bii 2992 |
. . . . . . . 8
⊢ (((𝑁‘𝐵)↑2) ≠ 0 ↔ 𝐵 ≠ (0vec‘𝑈)) |
| 33 | 5, 7 | dipcl 30732 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝑃𝐴) ∈ ℂ) |
| 34 | 3, 15, 4, 33 | mp3an 1462 |
. . . . . . . . 9
⊢ (𝐵𝑃𝐴) ∈ ℂ |
| 35 | 19 | resqcli 14226 |
. . . . . . . . . 10
⊢ ((𝑁‘𝐵)↑2) ∈ ℝ |
| 36 | 35 | recni 11276 |
. . . . . . . . 9
⊢ ((𝑁‘𝐵)↑2) ∈ ℂ |
| 37 | 34, 36 | divcan1zi 12004 |
. . . . . . . 8
⊢ (((𝑁‘𝐵)↑2) ≠ 0 → (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)) = (𝐵𝑃𝐴)) |
| 38 | 32, 37 | sylbir 235 |
. . . . . . 7
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)) = (𝐵𝑃𝐴)) |
| 39 | 5, 7 | dipcj 30734 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)) |
| 40 | 3, 4, 15, 39 | mp3an 1462 |
. . . . . . 7
⊢
(∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴) |
| 41 | 38, 40 | eqtr4di 2794 |
. . . . . 6
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)) = (∗‘(𝐴𝑃𝐵))) |
| 42 | 41 | oveq2d 7448 |
. . . . 5
⊢ (𝐵 ≠
(0vec‘𝑈)
→ ((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2))) = ((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵)))) |
| 43 | 42 | fveq2d 6909 |
. . . 4
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)))) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵))))) |
| 44 | 26, 43 | eqtr4id 2795 |
. . 3
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2))))) |
| 45 | 38 | eqcomd 2742 |
. . . 4
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2))) |
| 46 | 34, 36 | divclzi 12003 |
. . . . . 6
⊢ (((𝑁‘𝐵)↑2) ≠ 0 → ((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) ∈ ℂ) |
| 47 | 32, 46 | sylbir 235 |
. . . . 5
⊢ (𝐵 ≠
(0vec‘𝑈)
→ ((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) ∈ ℂ) |
| 48 | | div23 11942 |
. . . . . . . . . 10
⊢ (((𝐵𝑃𝐴) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ ∧ (((𝑁‘𝐵)↑2) ∈ ℂ ∧ ((𝑁‘𝐵)↑2) ≠ 0)) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁‘𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵))) |
| 49 | 34, 24, 48 | mp3an12 1452 |
. . . . . . . . 9
⊢ ((((𝑁‘𝐵)↑2) ∈ ℂ ∧ ((𝑁‘𝐵)↑2) ≠ 0) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁‘𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵))) |
| 50 | 36, 49 | mpan 690 |
. . . . . . . 8
⊢ (((𝑁‘𝐵)↑2) ≠ 0 → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁‘𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵))) |
| 51 | 32, 50 | sylbir 235 |
. . . . . . 7
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁‘𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵))) |
| 52 | 5, 7 | ipipcj 30735 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2)) |
| 53 | 3, 4, 15, 52 | mp3an 1462 |
. . . . . . . . 9
⊢ ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2) |
| 54 | 24, 34, 53 | mulcomli 11271 |
. . . . . . . 8
⊢ ((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) = ((abs‘(𝐴𝑃𝐵))↑2) |
| 55 | 54 | oveq1i 7442 |
. . . . . . 7
⊢ (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁‘𝐵)↑2)) = (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2)) |
| 56 | 51, 55 | eqtr3di 2791 |
. . . . . 6
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵)) = (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2))) |
| 57 | 24 | abscli 15435 |
. . . . . . . . 9
⊢
(abs‘(𝐴𝑃𝐵)) ∈ ℝ |
| 58 | 57 | resqcli 14226 |
. . . . . . . 8
⊢
((abs‘(𝐴𝑃𝐵))↑2) ∈ ℝ |
| 59 | 58, 35 | redivclzi 12034 |
. . . . . . 7
⊢ (((𝑁‘𝐵)↑2) ≠ 0 → (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2)) ∈ ℝ) |
| 60 | 32, 59 | sylbir 235 |
. . . . . 6
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2)) ∈ ℝ) |
| 61 | 56, 60 | eqeltrd 2840 |
. . . . 5
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵)) ∈ ℝ) |
| 62 | 30 | necon3bii 2992 |
. . . . . . . 8
⊢ ((𝑁‘𝐵) ≠ 0 ↔ 𝐵 ≠ (0vec‘𝑈)) |
| 63 | 19 | sqgt0i 14227 |
. . . . . . . 8
⊢ ((𝑁‘𝐵) ≠ 0 → 0 < ((𝑁‘𝐵)↑2)) |
| 64 | 62, 63 | sylbir 235 |
. . . . . . 7
⊢ (𝐵 ≠
(0vec‘𝑈)
→ 0 < ((𝑁‘𝐵)↑2)) |
| 65 | 57 | sqge0i 14228 |
. . . . . . . 8
⊢ 0 ≤
((abs‘(𝐴𝑃𝐵))↑2) |
| 66 | | divge0 12138 |
. . . . . . . 8
⊢
(((((abs‘(𝐴𝑃𝐵))↑2) ∈ ℝ ∧ 0 ≤
((abs‘(𝐴𝑃𝐵))↑2)) ∧ (((𝑁‘𝐵)↑2) ∈ ℝ ∧ 0 <
((𝑁‘𝐵)↑2))) → 0 ≤
(((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2))) |
| 67 | 58, 65, 66 | mpanl12 702 |
. . . . . . 7
⊢ ((((𝑁‘𝐵)↑2) ∈ ℝ ∧ 0 <
((𝑁‘𝐵)↑2)) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2))) |
| 68 | 35, 64, 67 | sylancr 587 |
. . . . . 6
⊢ (𝐵 ≠
(0vec‘𝑈)
→ 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2))) |
| 69 | 68, 56 | breqtrrd 5170 |
. . . . 5
⊢ (𝐵 ≠
(0vec‘𝑈)
→ 0 ≤ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵))) |
| 70 | | eqid 2736 |
. . . . . 6
⊢ (
−𝑣 ‘𝑈) = ( −𝑣
‘𝑈) |
| 71 | | eqid 2736 |
. . . . . 6
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
| 72 | 5, 12, 7, 2, 4, 15,
70, 71 | siilem2 30872 |
. . . . 5
⊢ ((((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) ∈ ℂ ∧ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)))) |
| 73 | 47, 61, 69, 72 | syl3anc 1372 |
. . . 4
⊢ (𝐵 ≠
(0vec‘𝑈)
→ ((𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)))) |
| 74 | 45, 73 | mpd 15 |
. . 3
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) |
| 75 | 44, 74 | eqbrtrd 5164 |
. 2
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) |
| 76 | 22, 75 | pm2.61ine 3024 |
1
⊢
(abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)) |