MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siii Structured version   Visualization version   GIF version

Theorem siii 30873
Description: Inference from sii 30874. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1 𝑋 = (BaseSet‘𝑈)
siii.6 𝑁 = (normCV𝑈)
siii.7 𝑃 = (·𝑖OLD𝑈)
siii.9 𝑈 ∈ CPreHilOLD
siii.a 𝐴𝑋
siii.b 𝐵𝑋
Assertion
Ref Expression
siii (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵))

Proof of Theorem siii
StepHypRef Expression
1 oveq2 7440 . . . . 5 (𝐵 = (0vec𝑈) → (𝐴𝑃𝐵) = (𝐴𝑃(0vec𝑈)))
2 siii.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
32phnvi 30836 . . . . . 6 𝑈 ∈ NrmCVec
4 siii.a . . . . . 6 𝐴𝑋
5 siii.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
6 eqid 2736 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
7 siii.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
85, 6, 7dip0r 30737 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃(0vec𝑈)) = 0)
93, 4, 8mp2an 692 . . . . 5 (𝐴𝑃(0vec𝑈)) = 0
101, 9eqtrdi 2792 . . . 4 (𝐵 = (0vec𝑈) → (𝐴𝑃𝐵) = 0)
1110abs00bd 15331 . . 3 (𝐵 = (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) = 0)
12 siii.6 . . . . . 6 𝑁 = (normCV𝑈)
135, 12nvge0 30693 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
143, 4, 13mp2an 692 . . . 4 0 ≤ (𝑁𝐴)
15 siii.b . . . . 5 𝐵𝑋
165, 12nvge0 30693 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → 0 ≤ (𝑁𝐵))
173, 15, 16mp2an 692 . . . 4 0 ≤ (𝑁𝐵)
185, 12, 3, 4nvcli 30682 . . . . 5 (𝑁𝐴) ∈ ℝ
195, 12, 3, 15nvcli 30682 . . . . 5 (𝑁𝐵) ∈ ℝ
2018, 19mulge0i 11811 . . . 4 ((0 ≤ (𝑁𝐴) ∧ 0 ≤ (𝑁𝐵)) → 0 ≤ ((𝑁𝐴) · (𝑁𝐵)))
2114, 17, 20mp2an 692 . . 3 0 ≤ ((𝑁𝐴) · (𝑁𝐵))
2211, 21eqbrtrdi 5181 . 2 (𝐵 = (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵)))
235, 7dipcl 30732 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
243, 4, 15, 23mp3an 1462 . . . . 5 (𝐴𝑃𝐵) ∈ ℂ
25 absval 15278 . . . . 5 ((𝐴𝑃𝐵) ∈ ℂ → (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵)))))
2624, 25ax-mp 5 . . . 4 (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵))))
2719recni 11276 . . . . . . . . . . 11 (𝑁𝐵) ∈ ℂ
2827sqeq0i 14222 . . . . . . . . . 10 (((𝑁𝐵)↑2) = 0 ↔ (𝑁𝐵) = 0)
295, 6, 12nvz 30689 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((𝑁𝐵) = 0 ↔ 𝐵 = (0vec𝑈)))
303, 15, 29mp2an 692 . . . . . . . . . 10 ((𝑁𝐵) = 0 ↔ 𝐵 = (0vec𝑈))
3128, 30bitri 275 . . . . . . . . 9 (((𝑁𝐵)↑2) = 0 ↔ 𝐵 = (0vec𝑈))
3231necon3bii 2992 . . . . . . . 8 (((𝑁𝐵)↑2) ≠ 0 ↔ 𝐵 ≠ (0vec𝑈))
335, 7dipcl 30732 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) ∈ ℂ)
343, 15, 4, 33mp3an 1462 . . . . . . . . 9 (𝐵𝑃𝐴) ∈ ℂ
3519resqcli 14226 . . . . . . . . . 10 ((𝑁𝐵)↑2) ∈ ℝ
3635recni 11276 . . . . . . . . 9 ((𝑁𝐵)↑2) ∈ ℂ
3734, 36divcan1zi 12004 . . . . . . . 8 (((𝑁𝐵)↑2) ≠ 0 → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) = (𝐵𝑃𝐴))
3832, 37sylbir 235 . . . . . . 7 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) = (𝐵𝑃𝐴))
395, 7dipcj 30734 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴))
403, 4, 15, 39mp3an 1462 . . . . . . 7 (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)
4138, 40eqtr4di 2794 . . . . . 6 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) = (∗‘(𝐴𝑃𝐵)))
4241oveq2d 7448 . . . . 5 (𝐵 ≠ (0vec𝑈) → ((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2))) = ((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵))))
4342fveq2d 6909 . . . 4 (𝐵 ≠ (0vec𝑈) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵)))))
4426, 43eqtr4id 2795 . . 3 (𝐵 ≠ (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))))
4538eqcomd 2742 . . . 4 (𝐵 ≠ (0vec𝑈) → (𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))
4634, 36divclzi 12003 . . . . . 6 (((𝑁𝐵)↑2) ≠ 0 → ((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) ∈ ℂ)
4732, 46sylbir 235 . . . . 5 (𝐵 ≠ (0vec𝑈) → ((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) ∈ ℂ)
48 div23 11942 . . . . . . . . . 10 (((𝐵𝑃𝐴) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ ∧ (((𝑁𝐵)↑2) ∈ ℂ ∧ ((𝑁𝐵)↑2) ≠ 0)) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
4934, 24, 48mp3an12 1452 . . . . . . . . 9 ((((𝑁𝐵)↑2) ∈ ℂ ∧ ((𝑁𝐵)↑2) ≠ 0) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
5036, 49mpan 690 . . . . . . . 8 (((𝑁𝐵)↑2) ≠ 0 → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
5132, 50sylbir 235 . . . . . . 7 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
525, 7ipipcj 30735 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2))
533, 4, 15, 52mp3an 1462 . . . . . . . . 9 ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2)
5424, 34, 53mulcomli 11271 . . . . . . . 8 ((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) = ((abs‘(𝐴𝑃𝐵))↑2)
5554oveq1i 7442 . . . . . . 7 (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2))
5651, 55eqtr3di 2791 . . . . . 6 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)) = (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
5724abscli 15435 . . . . . . . . 9 (abs‘(𝐴𝑃𝐵)) ∈ ℝ
5857resqcli 14226 . . . . . . . 8 ((abs‘(𝐴𝑃𝐵))↑2) ∈ ℝ
5958, 35redivclzi 12034 . . . . . . 7 (((𝑁𝐵)↑2) ≠ 0 → (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)) ∈ ℝ)
6032, 59sylbir 235 . . . . . 6 (𝐵 ≠ (0vec𝑈) → (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)) ∈ ℝ)
6156, 60eqeltrd 2840 . . . . 5 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)) ∈ ℝ)
6230necon3bii 2992 . . . . . . . 8 ((𝑁𝐵) ≠ 0 ↔ 𝐵 ≠ (0vec𝑈))
6319sqgt0i 14227 . . . . . . . 8 ((𝑁𝐵) ≠ 0 → 0 < ((𝑁𝐵)↑2))
6462, 63sylbir 235 . . . . . . 7 (𝐵 ≠ (0vec𝑈) → 0 < ((𝑁𝐵)↑2))
6557sqge0i 14228 . . . . . . . 8 0 ≤ ((abs‘(𝐴𝑃𝐵))↑2)
66 divge0 12138 . . . . . . . 8 (((((abs‘(𝐴𝑃𝐵))↑2) ∈ ℝ ∧ 0 ≤ ((abs‘(𝐴𝑃𝐵))↑2)) ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 < ((𝑁𝐵)↑2))) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
6758, 65, 66mpanl12 702 . . . . . . 7 ((((𝑁𝐵)↑2) ∈ ℝ ∧ 0 < ((𝑁𝐵)↑2)) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
6835, 64, 67sylancr 587 . . . . . 6 (𝐵 ≠ (0vec𝑈) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
6968, 56breqtrrd 5170 . . . . 5 (𝐵 ≠ (0vec𝑈) → 0 ≤ (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
70 eqid 2736 . . . . . 6 ( −𝑣𝑈) = ( −𝑣𝑈)
71 eqid 2736 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
725, 12, 7, 2, 4, 15, 70, 71siilem2 30872 . . . . 5 ((((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) ∈ ℂ ∧ (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
7347, 61, 69, 72syl3anc 1372 . . . 4 (𝐵 ≠ (0vec𝑈) → ((𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
7445, 73mpd 15 . . 3 (𝐵 ≠ (0vec𝑈) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
7544, 74eqbrtrd 5164 . 2 (𝐵 ≠ (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵)))
7622, 75pm2.61ine 3024 1 (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156   · cmul 11161   < clt 11296  cle 11297   / cdiv 11921  2c2 12322  cexp 14103  ccj 15136  csqrt 15273  abscabs 15274  NrmCVeccnv 30604  BaseSetcba 30606   ·𝑠OLD cns 30607  0veccn0v 30608  𝑣 cnsb 30609  normCVcnmcv 30610  ·𝑖OLDcdip 30720  CPreHilOLDccphlo 30832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-icc 13395  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-cn 23236  df-cnp 23237  df-t1 23323  df-haus 23324  df-tx 23571  df-hmeo 23764  df-xms 24331  df-ms 24332  df-tms 24333  df-grpo 30513  df-gid 30514  df-ginv 30515  df-gdiv 30516  df-ablo 30565  df-vc 30579  df-nv 30612  df-va 30615  df-ba 30616  df-sm 30617  df-0v 30618  df-vs 30619  df-nmcv 30620  df-ims 30621  df-dip 30721  df-ph 30833
This theorem is referenced by:  sii  30874  bcsiHIL  31200
  Copyright terms: Public domain W3C validator