Proof of Theorem siii
Step | Hyp | Ref
| Expression |
1 | | oveq2 6912 |
. . . . 5
⊢ (𝐵 = (0vec‘𝑈) → (𝐴𝑃𝐵) = (𝐴𝑃(0vec‘𝑈))) |
2 | | siii.9 |
. . . . . . 7
⊢ 𝑈 ∈
CPreHilOLD |
3 | 2 | phnvi 28225 |
. . . . . 6
⊢ 𝑈 ∈ NrmCVec |
4 | | siii.a |
. . . . . 6
⊢ 𝐴 ∈ 𝑋 |
5 | | siii.1 |
. . . . . . 7
⊢ 𝑋 = (BaseSet‘𝑈) |
6 | | eqid 2824 |
. . . . . . 7
⊢
(0vec‘𝑈) = (0vec‘𝑈) |
7 | | siii.7 |
. . . . . . 7
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
8 | 5, 6, 7 | dip0r 28126 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃(0vec‘𝑈)) = 0) |
9 | 3, 4, 8 | mp2an 685 |
. . . . 5
⊢ (𝐴𝑃(0vec‘𝑈)) = 0 |
10 | 1, 9 | syl6eq 2876 |
. . . 4
⊢ (𝐵 = (0vec‘𝑈) → (𝐴𝑃𝐵) = 0) |
11 | 10 | abs00bd 14407 |
. . 3
⊢ (𝐵 = (0vec‘𝑈) → (abs‘(𝐴𝑃𝐵)) = 0) |
12 | | siii.6 |
. . . . . 6
⊢ 𝑁 =
(normCV‘𝑈) |
13 | 5, 12 | nvge0 28082 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
14 | 3, 4, 13 | mp2an 685 |
. . . 4
⊢ 0 ≤
(𝑁‘𝐴) |
15 | | siii.b |
. . . . 5
⊢ 𝐵 ∈ 𝑋 |
16 | 5, 12 | nvge0 28082 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝑁‘𝐵)) |
17 | 3, 15, 16 | mp2an 685 |
. . . 4
⊢ 0 ≤
(𝑁‘𝐵) |
18 | 5, 12, 3, 4 | nvcli 28071 |
. . . . 5
⊢ (𝑁‘𝐴) ∈ ℝ |
19 | 5, 12, 3, 15 | nvcli 28071 |
. . . . 5
⊢ (𝑁‘𝐵) ∈ ℝ |
20 | 18, 19 | mulge0i 10898 |
. . . 4
⊢ ((0 ≤
(𝑁‘𝐴) ∧ 0 ≤ (𝑁‘𝐵)) → 0 ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) |
21 | 14, 17, 20 | mp2an 685 |
. . 3
⊢ 0 ≤
((𝑁‘𝐴) · (𝑁‘𝐵)) |
22 | 11, 21 | syl6eqbr 4911 |
. 2
⊢ (𝐵 = (0vec‘𝑈) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) |
23 | 19 | recni 10370 |
. . . . . . . . . . 11
⊢ (𝑁‘𝐵) ∈ ℂ |
24 | 23 | sqeq0i 13238 |
. . . . . . . . . 10
⊢ (((𝑁‘𝐵)↑2) = 0 ↔ (𝑁‘𝐵) = 0) |
25 | 5, 6, 12 | nvz 28078 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐵) = 0 ↔ 𝐵 = (0vec‘𝑈))) |
26 | 3, 15, 25 | mp2an 685 |
. . . . . . . . . 10
⊢ ((𝑁‘𝐵) = 0 ↔ 𝐵 = (0vec‘𝑈)) |
27 | 24, 26 | bitri 267 |
. . . . . . . . 9
⊢ (((𝑁‘𝐵)↑2) = 0 ↔ 𝐵 = (0vec‘𝑈)) |
28 | 27 | necon3bii 3050 |
. . . . . . . 8
⊢ (((𝑁‘𝐵)↑2) ≠ 0 ↔ 𝐵 ≠ (0vec‘𝑈)) |
29 | 5, 7 | dipcl 28121 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝑃𝐴) ∈ ℂ) |
30 | 3, 15, 4, 29 | mp3an 1591 |
. . . . . . . . 9
⊢ (𝐵𝑃𝐴) ∈ ℂ |
31 | 19 | resqcli 13242 |
. . . . . . . . . 10
⊢ ((𝑁‘𝐵)↑2) ∈ ℝ |
32 | 31 | recni 10370 |
. . . . . . . . 9
⊢ ((𝑁‘𝐵)↑2) ∈ ℂ |
33 | 30, 32 | divcan1zi 11086 |
. . . . . . . 8
⊢ (((𝑁‘𝐵)↑2) ≠ 0 → (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)) = (𝐵𝑃𝐴)) |
34 | 28, 33 | sylbir 227 |
. . . . . . 7
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)) = (𝐵𝑃𝐴)) |
35 | 5, 7 | dipcj 28123 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)) |
36 | 3, 4, 15, 35 | mp3an 1591 |
. . . . . . 7
⊢
(∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴) |
37 | 34, 36 | syl6eqr 2878 |
. . . . . 6
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)) = (∗‘(𝐴𝑃𝐵))) |
38 | 37 | oveq2d 6920 |
. . . . 5
⊢ (𝐵 ≠
(0vec‘𝑈)
→ ((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2))) = ((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵)))) |
39 | 38 | fveq2d 6436 |
. . . 4
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)))) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵))))) |
40 | 5, 7 | dipcl 28121 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) ∈ ℂ) |
41 | 3, 4, 15, 40 | mp3an 1591 |
. . . . 5
⊢ (𝐴𝑃𝐵) ∈ ℂ |
42 | | absval 14354 |
. . . . 5
⊢ ((𝐴𝑃𝐵) ∈ ℂ → (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵))))) |
43 | 41, 42 | ax-mp 5 |
. . . 4
⊢
(abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵)))) |
44 | 39, 43 | syl6reqr 2879 |
. . 3
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2))))) |
45 | 34 | eqcomd 2830 |
. . . 4
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2))) |
46 | 30, 32 | divclzi 11085 |
. . . . . 6
⊢ (((𝑁‘𝐵)↑2) ≠ 0 → ((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) ∈ ℂ) |
47 | 28, 46 | sylbir 227 |
. . . . 5
⊢ (𝐵 ≠
(0vec‘𝑈)
→ ((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) ∈ ℂ) |
48 | 5, 7 | ipipcj 28124 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2)) |
49 | 3, 4, 15, 48 | mp3an 1591 |
. . . . . . . . 9
⊢ ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2) |
50 | 41, 30, 49 | mulcomli 10365 |
. . . . . . . 8
⊢ ((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) = ((abs‘(𝐴𝑃𝐵))↑2) |
51 | 50 | oveq1i 6914 |
. . . . . . 7
⊢ (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁‘𝐵)↑2)) = (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2)) |
52 | | div23 11028 |
. . . . . . . . . 10
⊢ (((𝐵𝑃𝐴) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ ∧ (((𝑁‘𝐵)↑2) ∈ ℂ ∧ ((𝑁‘𝐵)↑2) ≠ 0)) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁‘𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵))) |
53 | 30, 41, 52 | mp3an12 1581 |
. . . . . . . . 9
⊢ ((((𝑁‘𝐵)↑2) ∈ ℂ ∧ ((𝑁‘𝐵)↑2) ≠ 0) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁‘𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵))) |
54 | 32, 53 | mpan 683 |
. . . . . . . 8
⊢ (((𝑁‘𝐵)↑2) ≠ 0 → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁‘𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵))) |
55 | 28, 54 | sylbir 227 |
. . . . . . 7
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁‘𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵))) |
56 | 51, 55 | syl5reqr 2875 |
. . . . . 6
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵)) = (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2))) |
57 | 41 | abscli 14510 |
. . . . . . . . 9
⊢
(abs‘(𝐴𝑃𝐵)) ∈ ℝ |
58 | 57 | resqcli 13242 |
. . . . . . . 8
⊢
((abs‘(𝐴𝑃𝐵))↑2) ∈ ℝ |
59 | 58, 31 | redivclzi 11116 |
. . . . . . 7
⊢ (((𝑁‘𝐵)↑2) ≠ 0 → (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2)) ∈ ℝ) |
60 | 28, 59 | sylbir 227 |
. . . . . 6
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2)) ∈ ℝ) |
61 | 56, 60 | eqeltrd 2905 |
. . . . 5
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵)) ∈ ℝ) |
62 | 26 | necon3bii 3050 |
. . . . . . . 8
⊢ ((𝑁‘𝐵) ≠ 0 ↔ 𝐵 ≠ (0vec‘𝑈)) |
63 | 19 | sqgt0i 13243 |
. . . . . . . 8
⊢ ((𝑁‘𝐵) ≠ 0 → 0 < ((𝑁‘𝐵)↑2)) |
64 | 62, 63 | sylbir 227 |
. . . . . . 7
⊢ (𝐵 ≠
(0vec‘𝑈)
→ 0 < ((𝑁‘𝐵)↑2)) |
65 | 57 | sqge0i 13244 |
. . . . . . . 8
⊢ 0 ≤
((abs‘(𝐴𝑃𝐵))↑2) |
66 | | divge0 11221 |
. . . . . . . 8
⊢
(((((abs‘(𝐴𝑃𝐵))↑2) ∈ ℝ ∧ 0 ≤
((abs‘(𝐴𝑃𝐵))↑2)) ∧ (((𝑁‘𝐵)↑2) ∈ ℝ ∧ 0 <
((𝑁‘𝐵)↑2))) → 0 ≤
(((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2))) |
67 | 58, 65, 66 | mpanl12 695 |
. . . . . . 7
⊢ ((((𝑁‘𝐵)↑2) ∈ ℝ ∧ 0 <
((𝑁‘𝐵)↑2)) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2))) |
68 | 31, 64, 67 | sylancr 583 |
. . . . . 6
⊢ (𝐵 ≠
(0vec‘𝑈)
→ 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁‘𝐵)↑2))) |
69 | 68, 56 | breqtrrd 4900 |
. . . . 5
⊢ (𝐵 ≠
(0vec‘𝑈)
→ 0 ≤ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵))) |
70 | | eqid 2824 |
. . . . . 6
⊢ (
−𝑣 ‘𝑈) = ( −𝑣
‘𝑈) |
71 | | eqid 2824 |
. . . . . 6
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
72 | 5, 12, 7, 2, 4, 15,
70, 71 | siilem2 28261 |
. . . . 5
⊢ ((((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) ∈ ℂ ∧ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)))) |
73 | 47, 61, 69, 72 | syl3anc 1496 |
. . . 4
⊢ (𝐵 ≠
(0vec‘𝑈)
→ ((𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)))) |
74 | 45, 73 | mpd 15 |
. . 3
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁‘𝐵)↑2)) · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) |
75 | 44, 74 | eqbrtrd 4894 |
. 2
⊢ (𝐵 ≠
(0vec‘𝑈)
→ (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) |
76 | 22, 75 | pm2.61ine 3081 |
1
⊢
(abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)) |