MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siii Structured version   Visualization version   GIF version

Theorem siii 29795
Description: Inference from sii 29796. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1 𝑋 = (BaseSet‘𝑈)
siii.6 𝑁 = (normCV𝑈)
siii.7 𝑃 = (·𝑖OLD𝑈)
siii.9 𝑈 ∈ CPreHilOLD
siii.a 𝐴𝑋
siii.b 𝐵𝑋
Assertion
Ref Expression
siii (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵))

Proof of Theorem siii
StepHypRef Expression
1 oveq2 7365 . . . . 5 (𝐵 = (0vec𝑈) → (𝐴𝑃𝐵) = (𝐴𝑃(0vec𝑈)))
2 siii.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
32phnvi 29758 . . . . . 6 𝑈 ∈ NrmCVec
4 siii.a . . . . . 6 𝐴𝑋
5 siii.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
6 eqid 2736 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
7 siii.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
85, 6, 7dip0r 29659 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃(0vec𝑈)) = 0)
93, 4, 8mp2an 690 . . . . 5 (𝐴𝑃(0vec𝑈)) = 0
101, 9eqtrdi 2792 . . . 4 (𝐵 = (0vec𝑈) → (𝐴𝑃𝐵) = 0)
1110abs00bd 15176 . . 3 (𝐵 = (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) = 0)
12 siii.6 . . . . . 6 𝑁 = (normCV𝑈)
135, 12nvge0 29615 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
143, 4, 13mp2an 690 . . . 4 0 ≤ (𝑁𝐴)
15 siii.b . . . . 5 𝐵𝑋
165, 12nvge0 29615 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → 0 ≤ (𝑁𝐵))
173, 15, 16mp2an 690 . . . 4 0 ≤ (𝑁𝐵)
185, 12, 3, 4nvcli 29604 . . . . 5 (𝑁𝐴) ∈ ℝ
195, 12, 3, 15nvcli 29604 . . . . 5 (𝑁𝐵) ∈ ℝ
2018, 19mulge0i 11702 . . . 4 ((0 ≤ (𝑁𝐴) ∧ 0 ≤ (𝑁𝐵)) → 0 ≤ ((𝑁𝐴) · (𝑁𝐵)))
2114, 17, 20mp2an 690 . . 3 0 ≤ ((𝑁𝐴) · (𝑁𝐵))
2211, 21eqbrtrdi 5144 . 2 (𝐵 = (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵)))
235, 7dipcl 29654 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
243, 4, 15, 23mp3an 1461 . . . . 5 (𝐴𝑃𝐵) ∈ ℂ
25 absval 15123 . . . . 5 ((𝐴𝑃𝐵) ∈ ℂ → (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵)))))
2624, 25ax-mp 5 . . . 4 (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵))))
2719recni 11169 . . . . . . . . . . 11 (𝑁𝐵) ∈ ℂ
2827sqeq0i 14086 . . . . . . . . . 10 (((𝑁𝐵)↑2) = 0 ↔ (𝑁𝐵) = 0)
295, 6, 12nvz 29611 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((𝑁𝐵) = 0 ↔ 𝐵 = (0vec𝑈)))
303, 15, 29mp2an 690 . . . . . . . . . 10 ((𝑁𝐵) = 0 ↔ 𝐵 = (0vec𝑈))
3128, 30bitri 274 . . . . . . . . 9 (((𝑁𝐵)↑2) = 0 ↔ 𝐵 = (0vec𝑈))
3231necon3bii 2996 . . . . . . . 8 (((𝑁𝐵)↑2) ≠ 0 ↔ 𝐵 ≠ (0vec𝑈))
335, 7dipcl 29654 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) ∈ ℂ)
343, 15, 4, 33mp3an 1461 . . . . . . . . 9 (𝐵𝑃𝐴) ∈ ℂ
3519resqcli 14090 . . . . . . . . . 10 ((𝑁𝐵)↑2) ∈ ℝ
3635recni 11169 . . . . . . . . 9 ((𝑁𝐵)↑2) ∈ ℂ
3734, 36divcan1zi 11891 . . . . . . . 8 (((𝑁𝐵)↑2) ≠ 0 → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) = (𝐵𝑃𝐴))
3832, 37sylbir 234 . . . . . . 7 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) = (𝐵𝑃𝐴))
395, 7dipcj 29656 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴))
403, 4, 15, 39mp3an 1461 . . . . . . 7 (∗‘(𝐴𝑃𝐵)) = (𝐵𝑃𝐴)
4138, 40eqtr4di 2794 . . . . . 6 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) = (∗‘(𝐴𝑃𝐵)))
4241oveq2d 7373 . . . . 5 (𝐵 ≠ (0vec𝑈) → ((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2))) = ((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵))))
4342fveq2d 6846 . . . 4 (𝐵 ≠ (0vec𝑈) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) = (√‘((𝐴𝑃𝐵) · (∗‘(𝐴𝑃𝐵)))))
4426, 43eqtr4id 2795 . . 3 (𝐵 ≠ (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) = (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))))
4538eqcomd 2742 . . . 4 (𝐵 ≠ (0vec𝑈) → (𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))
4634, 36divclzi 11890 . . . . . 6 (((𝑁𝐵)↑2) ≠ 0 → ((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) ∈ ℂ)
4732, 46sylbir 234 . . . . 5 (𝐵 ≠ (0vec𝑈) → ((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) ∈ ℂ)
48 div23 11832 . . . . . . . . . 10 (((𝐵𝑃𝐴) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ ∧ (((𝑁𝐵)↑2) ∈ ℂ ∧ ((𝑁𝐵)↑2) ≠ 0)) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
4934, 24, 48mp3an12 1451 . . . . . . . . 9 ((((𝑁𝐵)↑2) ∈ ℂ ∧ ((𝑁𝐵)↑2) ≠ 0) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
5036, 49mpan 688 . . . . . . . 8 (((𝑁𝐵)↑2) ≠ 0 → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
5132, 50sylbir 234 . . . . . . 7 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
525, 7ipipcj 29657 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2))
533, 4, 15, 52mp3an 1461 . . . . . . . . 9 ((𝐴𝑃𝐵) · (𝐵𝑃𝐴)) = ((abs‘(𝐴𝑃𝐵))↑2)
5424, 34, 53mulcomli 11164 . . . . . . . 8 ((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) = ((abs‘(𝐴𝑃𝐵))↑2)
5554oveq1i 7367 . . . . . . 7 (((𝐵𝑃𝐴) · (𝐴𝑃𝐵)) / ((𝑁𝐵)↑2)) = (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2))
5651, 55eqtr3di 2791 . . . . . 6 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)) = (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
5724abscli 15280 . . . . . . . . 9 (abs‘(𝐴𝑃𝐵)) ∈ ℝ
5857resqcli 14090 . . . . . . . 8 ((abs‘(𝐴𝑃𝐵))↑2) ∈ ℝ
5958, 35redivclzi 11921 . . . . . . 7 (((𝑁𝐵)↑2) ≠ 0 → (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)) ∈ ℝ)
6032, 59sylbir 234 . . . . . 6 (𝐵 ≠ (0vec𝑈) → (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)) ∈ ℝ)
6156, 60eqeltrd 2838 . . . . 5 (𝐵 ≠ (0vec𝑈) → (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)) ∈ ℝ)
6230necon3bii 2996 . . . . . . . 8 ((𝑁𝐵) ≠ 0 ↔ 𝐵 ≠ (0vec𝑈))
6319sqgt0i 14091 . . . . . . . 8 ((𝑁𝐵) ≠ 0 → 0 < ((𝑁𝐵)↑2))
6462, 63sylbir 234 . . . . . . 7 (𝐵 ≠ (0vec𝑈) → 0 < ((𝑁𝐵)↑2))
6557sqge0i 14092 . . . . . . . 8 0 ≤ ((abs‘(𝐴𝑃𝐵))↑2)
66 divge0 12024 . . . . . . . 8 (((((abs‘(𝐴𝑃𝐵))↑2) ∈ ℝ ∧ 0 ≤ ((abs‘(𝐴𝑃𝐵))↑2)) ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 < ((𝑁𝐵)↑2))) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
6758, 65, 66mpanl12 700 . . . . . . 7 ((((𝑁𝐵)↑2) ∈ ℝ ∧ 0 < ((𝑁𝐵)↑2)) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
6835, 64, 67sylancr 587 . . . . . 6 (𝐵 ≠ (0vec𝑈) → 0 ≤ (((abs‘(𝐴𝑃𝐵))↑2) / ((𝑁𝐵)↑2)))
6968, 56breqtrrd 5133 . . . . 5 (𝐵 ≠ (0vec𝑈) → 0 ≤ (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)))
70 eqid 2736 . . . . . 6 ( −𝑣𝑈) = ( −𝑣𝑈)
71 eqid 2736 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
725, 12, 7, 2, 4, 15, 70, 71siilem2 29794 . . . . 5 ((((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) ∈ ℂ ∧ (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
7347, 61, 69, 72syl3anc 1371 . . . 4 (𝐵 ≠ (0vec𝑈) → ((𝐵𝑃𝐴) = (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵))))
7445, 73mpd 15 . . 3 (𝐵 ≠ (0vec𝑈) → (√‘((𝐴𝑃𝐵) · (((𝐵𝑃𝐴) / ((𝑁𝐵)↑2)) · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
7544, 74eqbrtrd 5127 . 2 (𝐵 ≠ (0vec𝑈) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵)))
7622, 75pm2.61ine 3028 1 (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁𝐴) · (𝑁𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   · cmul 11056   < clt 11189  cle 11190   / cdiv 11812  2c2 12208  cexp 13967  ccj 14981  csqrt 15118  abscabs 15119  NrmCVeccnv 29526  BaseSetcba 29528   ·𝑠OLD cns 29529  0veccn0v 29530  𝑣 cnsb 29531  normCVcnmcv 29532  ·𝑖OLDcdip 29642  CPreHilOLDccphlo 29754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-cn 22578  df-cnp 22579  df-t1 22665  df-haus 22666  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-dip 29643  df-ph 29755
This theorem is referenced by:  sii  29796  bcsiHIL  30122
  Copyright terms: Public domain W3C validator