MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem2 Structured version   Visualization version   GIF version

Theorem ipasslem2 30851
Description: Lemma for ipassi 30860. Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem2 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem2
StepHypRef Expression
1 nn0cn 12536 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
21negcld 11607 . . . 4 (𝑁 ∈ ℕ0 → -𝑁 ∈ ℂ)
3 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
43phnvi 30835 . . . . 5 𝑈 ∈ NrmCVec
5 ipasslem1.b . . . . 5 𝐵𝑋
6 ip1i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
7 ip1i.7 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
86, 7dipcl 30731 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
94, 5, 8mp3an13 1454 . . . 4 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
10 mulcl 11239 . . . 4 ((-𝑁 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → (-𝑁 · (𝐴𝑃𝐵)) ∈ ℂ)
112, 9, 10syl2an 596 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · (𝐴𝑃𝐵)) ∈ ℂ)
12 ip1i.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
136, 12nvscl 30645 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
144, 13mp3an1 1450 . . . . 5 ((-𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
152, 14sylan 580 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
166, 7dipcl 30731 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-𝑁𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
174, 5, 16mp3an13 1454 . . . 4 ((-𝑁𝑆𝐴) ∈ 𝑋 → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
1815, 17syl 17 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
19 ax-1cn 11213 . . . . . . . . . . . . 13 1 ∈ ℂ
20 mulneg2 11700 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 · -1) = -(𝑁 · 1))
2119, 20mpan2 691 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (𝑁 · -1) = -(𝑁 · 1))
22 mulrid 11259 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (𝑁 · 1) = 𝑁)
2322negeqd 11502 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → -(𝑁 · 1) = -𝑁)
2421, 23eqtr2d 2778 . . . . . . . . . . 11 (𝑁 ∈ ℂ → -𝑁 = (𝑁 · -1))
2524adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → -𝑁 = (𝑁 · -1))
2625oveq1d 7446 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) = ((𝑁 · -1)𝑆𝐴))
27 neg1cn 12380 . . . . . . . . . 10 -1 ∈ ℂ
286, 12nvsass 30647 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋)) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
294, 28mpan 690 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3027, 29mp3an2 1451 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3126, 30eqtrd 2777 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
321, 31sylan 580 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3332oveq1d 7446 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵))
346, 12nvscl 30645 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
354, 27, 34mp3an12 1453 . . . . . . 7 (𝐴𝑋 → (-1𝑆𝐴) ∈ 𝑋)
36 ip1i.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
376, 36, 12, 7, 3, 5ipasslem1 30850 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (-1𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
3835, 37sylan2 593 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
3933, 38eqtrd 2777 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
4039oveq2d 7447 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) − ((-𝑁𝑆𝐴)𝑃𝐵)) = ((-𝑁 · (𝐴𝑃𝐵)) − (𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
416, 7dipcl 30731 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
424, 5, 41mp3an13 1454 . . . . . . 7 ((-1𝑆𝐴) ∈ 𝑋 → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
4335, 42syl 17 . . . . . 6 (𝐴𝑋 → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
44 mulcl 11239 . . . . . 6 ((𝑁 ∈ ℂ ∧ ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ) → (𝑁 · ((-1𝑆𝐴)𝑃𝐵)) ∈ ℂ)
451, 43, 44syl2an 596 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → (𝑁 · ((-1𝑆𝐴)𝑃𝐵)) ∈ ℂ)
4611, 45negsubd 11626 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) − (𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
47 mulneg1 11699 . . . . . . 7 ((𝑁 ∈ ℂ ∧ ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ) → (-𝑁 · ((-1𝑆𝐴)𝑃𝐵)) = -(𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
481, 43, 47syl2an 596 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((-1𝑆𝐴)𝑃𝐵)) = -(𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
4948oveq2d 7447 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
502adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → -𝑁 ∈ ℂ)
519adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
5243adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
5350, 51, 52adddid 11285 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
546, 36, 12, 7, 3ipdiri 30849 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
555, 54mp3an3 1452 . . . . . . . . . 10 ((𝐴𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
5635, 55mpdan 687 . . . . . . . . 9 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
57 eqid 2737 . . . . . . . . . . . . 13 (0vec𝑈) = (0vec𝑈)
586, 36, 12, 57nvrinv 30670 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
594, 58mpan 690 . . . . . . . . . . 11 (𝐴𝑋 → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
6059oveq1d 7446 . . . . . . . . . 10 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec𝑈)𝑃𝐵))
616, 57, 7dip0l 30737 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
624, 5, 61mp2an 692 . . . . . . . . . 10 ((0vec𝑈)𝑃𝐵) = 0
6360, 62eqtrdi 2793 . . . . . . . . 9 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0)
6456, 63eqtr3d 2779 . . . . . . . 8 (𝐴𝑋 → ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)) = 0)
6564oveq2d 7447 . . . . . . 7 (𝐴𝑋 → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = (-𝑁 · 0))
662mul01d 11460 . . . . . . 7 (𝑁 ∈ ℕ0 → (-𝑁 · 0) = 0)
6765, 66sylan9eqr 2799 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = 0)
6853, 67eqtr3d 2779 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = 0)
6949, 68eqtr3d 2779 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = 0)
7040, 46, 693eqtr2d 2783 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) − ((-𝑁𝑆𝐴)𝑃𝐵)) = 0)
7111, 18, 70subeq0d 11628 . 2 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · (𝐴𝑃𝐵)) = ((-𝑁𝑆𝐴)𝑃𝐵))
7271eqcomd 2743 1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  -cneg 11493  0cn0 12526  NrmCVeccnv 30603   +𝑣 cpv 30604  BaseSetcba 30605   ·𝑠OLD cns 30606  0veccn0v 30607  ·𝑖OLDcdip 30719  CPreHilOLDccphlo 30831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-grpo 30512  df-gid 30513  df-ginv 30514  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-nmcv 30619  df-dip 30720  df-ph 30832
This theorem is referenced by:  ipasslem3  30852
  Copyright terms: Public domain W3C validator