MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem2 Structured version   Visualization version   GIF version

Theorem ipasslem2 30776
Description: Lemma for ipassi 30785. Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem2 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem2
StepHypRef Expression
1 nn0cn 12394 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
21negcld 11462 . . . 4 (𝑁 ∈ ℕ0 → -𝑁 ∈ ℂ)
3 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
43phnvi 30760 . . . . 5 𝑈 ∈ NrmCVec
5 ipasslem1.b . . . . 5 𝐵𝑋
6 ip1i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
7 ip1i.7 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
86, 7dipcl 30656 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
94, 5, 8mp3an13 1454 . . . 4 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
10 mulcl 11093 . . . 4 ((-𝑁 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → (-𝑁 · (𝐴𝑃𝐵)) ∈ ℂ)
112, 9, 10syl2an 596 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · (𝐴𝑃𝐵)) ∈ ℂ)
12 ip1i.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
136, 12nvscl 30570 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
144, 13mp3an1 1450 . . . . 5 ((-𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
152, 14sylan 580 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
166, 7dipcl 30656 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-𝑁𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
174, 5, 16mp3an13 1454 . . . 4 ((-𝑁𝑆𝐴) ∈ 𝑋 → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
1815, 17syl 17 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
19 ax-1cn 11067 . . . . . . . . . . . . 13 1 ∈ ℂ
20 mulneg2 11557 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 · -1) = -(𝑁 · 1))
2119, 20mpan2 691 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (𝑁 · -1) = -(𝑁 · 1))
22 mulrid 11113 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (𝑁 · 1) = 𝑁)
2322negeqd 11357 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → -(𝑁 · 1) = -𝑁)
2421, 23eqtr2d 2765 . . . . . . . . . . 11 (𝑁 ∈ ℂ → -𝑁 = (𝑁 · -1))
2524adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → -𝑁 = (𝑁 · -1))
2625oveq1d 7364 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) = ((𝑁 · -1)𝑆𝐴))
27 neg1cn 12113 . . . . . . . . . 10 -1 ∈ ℂ
286, 12nvsass 30572 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋)) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
294, 28mpan 690 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3027, 29mp3an2 1451 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3126, 30eqtrd 2764 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
321, 31sylan 580 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3332oveq1d 7364 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵))
346, 12nvscl 30570 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
354, 27, 34mp3an12 1453 . . . . . . 7 (𝐴𝑋 → (-1𝑆𝐴) ∈ 𝑋)
36 ip1i.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
376, 36, 12, 7, 3, 5ipasslem1 30775 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (-1𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
3835, 37sylan2 593 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
3933, 38eqtrd 2764 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
4039oveq2d 7365 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) − ((-𝑁𝑆𝐴)𝑃𝐵)) = ((-𝑁 · (𝐴𝑃𝐵)) − (𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
416, 7dipcl 30656 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
424, 5, 41mp3an13 1454 . . . . . . 7 ((-1𝑆𝐴) ∈ 𝑋 → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
4335, 42syl 17 . . . . . 6 (𝐴𝑋 → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
44 mulcl 11093 . . . . . 6 ((𝑁 ∈ ℂ ∧ ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ) → (𝑁 · ((-1𝑆𝐴)𝑃𝐵)) ∈ ℂ)
451, 43, 44syl2an 596 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → (𝑁 · ((-1𝑆𝐴)𝑃𝐵)) ∈ ℂ)
4611, 45negsubd 11481 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) − (𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
47 mulneg1 11556 . . . . . . 7 ((𝑁 ∈ ℂ ∧ ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ) → (-𝑁 · ((-1𝑆𝐴)𝑃𝐵)) = -(𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
481, 43, 47syl2an 596 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((-1𝑆𝐴)𝑃𝐵)) = -(𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
4948oveq2d 7365 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
502adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → -𝑁 ∈ ℂ)
519adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
5243adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
5350, 51, 52adddid 11139 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
546, 36, 12, 7, 3ipdiri 30774 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
555, 54mp3an3 1452 . . . . . . . . . 10 ((𝐴𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
5635, 55mpdan 687 . . . . . . . . 9 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
57 eqid 2729 . . . . . . . . . . . . 13 (0vec𝑈) = (0vec𝑈)
586, 36, 12, 57nvrinv 30595 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
594, 58mpan 690 . . . . . . . . . . 11 (𝐴𝑋 → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
6059oveq1d 7364 . . . . . . . . . 10 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec𝑈)𝑃𝐵))
616, 57, 7dip0l 30662 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
624, 5, 61mp2an 692 . . . . . . . . . 10 ((0vec𝑈)𝑃𝐵) = 0
6360, 62eqtrdi 2780 . . . . . . . . 9 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0)
6456, 63eqtr3d 2766 . . . . . . . 8 (𝐴𝑋 → ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)) = 0)
6564oveq2d 7365 . . . . . . 7 (𝐴𝑋 → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = (-𝑁 · 0))
662mul01d 11315 . . . . . . 7 (𝑁 ∈ ℕ0 → (-𝑁 · 0) = 0)
6765, 66sylan9eqr 2786 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = 0)
6853, 67eqtr3d 2766 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = 0)
6949, 68eqtr3d 2766 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = 0)
7040, 46, 693eqtr2d 2770 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) − ((-𝑁𝑆𝐴)𝑃𝐵)) = 0)
7111, 18, 70subeq0d 11483 . 2 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · (𝐴𝑃𝐵)) = ((-𝑁𝑆𝐴)𝑃𝐵))
7271eqcomd 2735 1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  -cneg 11348  0cn0 12384  NrmCVeccnv 30528   +𝑣 cpv 30529  BaseSetcba 30530   ·𝑠OLD cns 30531  0veccn0v 30532  ·𝑖OLDcdip 30644  CPreHilOLDccphlo 30756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-grpo 30437  df-gid 30438  df-ginv 30439  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-nmcv 30544  df-dip 30645  df-ph 30757
This theorem is referenced by:  ipasslem3  30777
  Copyright terms: Public domain W3C validator