![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ip2dii | Structured version Visualization version GIF version |
Description: Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip2dii.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip2dii.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip2dii.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip2dii.u | ⊢ 𝑈 ∈ CPreHilOLD |
ip2dii.a | ⊢ 𝐴 ∈ 𝑋 |
ip2dii.b | ⊢ 𝐵 ∈ 𝑋 |
ip2dii.c | ⊢ 𝐶 ∈ 𝑋 |
ip2dii.d | ⊢ 𝐷 ∈ 𝑋 |
Ref | Expression |
---|---|
ip2dii | ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip2dii.u | . . . 4 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | ip2dii.a | . . . . 5 ⊢ 𝐴 ∈ 𝑋 | |
3 | ip2dii.c | . . . . 5 ⊢ 𝐶 ∈ 𝑋 | |
4 | ip2dii.d | . . . . 5 ⊢ 𝐷 ∈ 𝑋 | |
5 | 2, 3, 4 | 3pm3.2i 1336 | . . . 4 ⊢ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) |
6 | ip2dii.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
7 | ip2dii.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
8 | ip2dii.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
9 | 6, 7, 8 | dipdi 30776 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷))) |
10 | 1, 5, 9 | mp2an 690 | . . 3 ⊢ (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) |
11 | ip2dii.b | . . . . 5 ⊢ 𝐵 ∈ 𝑋 | |
12 | 11, 3, 4 | 3pm3.2i 1336 | . . . 4 ⊢ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) |
13 | 6, 7, 8 | dipdi 30776 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
14 | 1, 12, 13 | mp2an 690 | . . 3 ⊢ (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)) |
15 | 10, 14 | oveq12i 7436 | . 2 ⊢ ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
16 | 1 | phnvi 30749 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
17 | 6, 7 | nvgcl 30553 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐶𝐺𝐷) ∈ 𝑋) |
18 | 16, 3, 4, 17 | mp3an 1458 | . . . 4 ⊢ (𝐶𝐺𝐷) ∈ 𝑋 |
19 | 2, 11, 18 | 3pm3.2i 1336 | . . 3 ⊢ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋) |
20 | 6, 7, 8 | dipdir 30775 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷)))) |
21 | 1, 19, 20 | mp2an 690 | . 2 ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) |
22 | 6, 8 | dipcl 30645 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑃𝐶) ∈ ℂ) |
23 | 16, 2, 3, 22 | mp3an 1458 | . . 3 ⊢ (𝐴𝑃𝐶) ∈ ℂ |
24 | 6, 8 | dipcl 30645 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐵𝑃𝐷) ∈ ℂ) |
25 | 16, 11, 4, 24 | mp3an 1458 | . . 3 ⊢ (𝐵𝑃𝐷) ∈ ℂ |
26 | 6, 8 | dipcl 30645 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐴𝑃𝐷) ∈ ℂ) |
27 | 16, 2, 4, 26 | mp3an 1458 | . . 3 ⊢ (𝐴𝑃𝐷) ∈ ℂ |
28 | 6, 8 | dipcl 30645 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝑃𝐶) ∈ ℂ) |
29 | 16, 11, 3, 28 | mp3an 1458 | . . 3 ⊢ (𝐵𝑃𝐶) ∈ ℂ |
30 | 23, 25, 27, 29 | add42i 11489 | . 2 ⊢ (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
31 | 15, 21, 30 | 3eqtr4i 2764 | 1 ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 (class class class)co 7424 ℂcc 11156 + caddc 11161 NrmCVeccnv 30517 +𝑣 cpv 30518 BaseSetcba 30519 ·𝑖OLDcdip 30633 CPreHilOLDccphlo 30745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 ax-mulf 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-fz 13539 df-fzo 13682 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 df-sum 15691 df-grpo 30426 df-gid 30427 df-ginv 30428 df-ablo 30478 df-vc 30492 df-nv 30525 df-va 30528 df-ba 30529 df-sm 30530 df-0v 30531 df-nmcv 30533 df-dip 30634 df-ph 30746 |
This theorem is referenced by: pythi 30783 |
Copyright terms: Public domain | W3C validator |