| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ip2dii | Structured version Visualization version GIF version | ||
| Description: Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip2dii.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip2dii.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| ip2dii.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip2dii.u | ⊢ 𝑈 ∈ CPreHilOLD |
| ip2dii.a | ⊢ 𝐴 ∈ 𝑋 |
| ip2dii.b | ⊢ 𝐵 ∈ 𝑋 |
| ip2dii.c | ⊢ 𝐶 ∈ 𝑋 |
| ip2dii.d | ⊢ 𝐷 ∈ 𝑋 |
| Ref | Expression |
|---|---|
| ip2dii | ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2dii.u | . . . 4 ⊢ 𝑈 ∈ CPreHilOLD | |
| 2 | ip2dii.a | . . . . 5 ⊢ 𝐴 ∈ 𝑋 | |
| 3 | ip2dii.c | . . . . 5 ⊢ 𝐶 ∈ 𝑋 | |
| 4 | ip2dii.d | . . . . 5 ⊢ 𝐷 ∈ 𝑋 | |
| 5 | 2, 3, 4 | 3pm3.2i 1340 | . . . 4 ⊢ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) |
| 6 | ip2dii.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 7 | ip2dii.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 8 | ip2dii.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 9 | 6, 7, 8 | dipdi 30745 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷))) |
| 10 | 1, 5, 9 | mp2an 692 | . . 3 ⊢ (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) |
| 11 | ip2dii.b | . . . . 5 ⊢ 𝐵 ∈ 𝑋 | |
| 12 | 11, 3, 4 | 3pm3.2i 1340 | . . . 4 ⊢ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) |
| 13 | 6, 7, 8 | dipdi 30745 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
| 14 | 1, 12, 13 | mp2an 692 | . . 3 ⊢ (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)) |
| 15 | 10, 14 | oveq12i 7381 | . 2 ⊢ ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
| 16 | 1 | phnvi 30718 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
| 17 | 6, 7 | nvgcl 30522 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐶𝐺𝐷) ∈ 𝑋) |
| 18 | 16, 3, 4, 17 | mp3an 1463 | . . . 4 ⊢ (𝐶𝐺𝐷) ∈ 𝑋 |
| 19 | 2, 11, 18 | 3pm3.2i 1340 | . . 3 ⊢ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋) |
| 20 | 6, 7, 8 | dipdir 30744 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷)))) |
| 21 | 1, 19, 20 | mp2an 692 | . 2 ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) |
| 22 | 6, 8 | dipcl 30614 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑃𝐶) ∈ ℂ) |
| 23 | 16, 2, 3, 22 | mp3an 1463 | . . 3 ⊢ (𝐴𝑃𝐶) ∈ ℂ |
| 24 | 6, 8 | dipcl 30614 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐵𝑃𝐷) ∈ ℂ) |
| 25 | 16, 11, 4, 24 | mp3an 1463 | . . 3 ⊢ (𝐵𝑃𝐷) ∈ ℂ |
| 26 | 6, 8 | dipcl 30614 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐴𝑃𝐷) ∈ ℂ) |
| 27 | 16, 2, 4, 26 | mp3an 1463 | . . 3 ⊢ (𝐴𝑃𝐷) ∈ ℂ |
| 28 | 6, 8 | dipcl 30614 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝑃𝐶) ∈ ℂ) |
| 29 | 16, 11, 3, 28 | mp3an 1463 | . . 3 ⊢ (𝐵𝑃𝐶) ∈ ℂ |
| 30 | 23, 25, 27, 29 | add42i 11376 | . 2 ⊢ (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
| 31 | 15, 21, 30 | 3eqtr4i 2762 | 1 ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 + caddc 11047 NrmCVeccnv 30486 +𝑣 cpv 30487 BaseSetcba 30488 ·𝑖OLDcdip 30602 CPreHilOLDccphlo 30714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-grpo 30395 df-gid 30396 df-ginv 30397 df-ablo 30447 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-nmcv 30502 df-dip 30603 df-ph 30715 |
| This theorem is referenced by: pythi 30752 |
| Copyright terms: Public domain | W3C validator |