MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2dii Structured version   Visualization version   GIF version

Theorem ip2dii 30807
Description: Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip2dii.1 𝑋 = (BaseSet‘𝑈)
ip2dii.2 𝐺 = ( +𝑣𝑈)
ip2dii.7 𝑃 = (·𝑖OLD𝑈)
ip2dii.u 𝑈 ∈ CPreHilOLD
ip2dii.a 𝐴𝑋
ip2dii.b 𝐵𝑋
ip2dii.c 𝐶𝑋
ip2dii.d 𝐷𝑋
Assertion
Ref Expression
ip2dii ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶)))

Proof of Theorem ip2dii
StepHypRef Expression
1 ip2dii.u . . . 4 𝑈 ∈ CPreHilOLD
2 ip2dii.a . . . . 5 𝐴𝑋
3 ip2dii.c . . . . 5 𝐶𝑋
4 ip2dii.d . . . . 5 𝐷𝑋
52, 3, 43pm3.2i 1340 . . . 4 (𝐴𝑋𝐶𝑋𝐷𝑋)
6 ip2dii.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
7 ip2dii.2 . . . . 5 𝐺 = ( +𝑣𝑈)
8 ip2dii.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
96, 7, 8dipdi 30806 . . . 4 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐶𝑋𝐷𝑋)) → (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷)))
101, 5, 9mp2an 692 . . 3 (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷))
11 ip2dii.b . . . . 5 𝐵𝑋
1211, 3, 43pm3.2i 1340 . . . 4 (𝐵𝑋𝐶𝑋𝐷𝑋)
136, 7, 8dipdi 30806 . . . 4 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋𝐷𝑋)) → (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)))
141, 12, 13mp2an 692 . . 3 (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))
1510, 14oveq12i 7365 . 2 ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)))
161phnvi 30779 . . . . 5 𝑈 ∈ NrmCVec
176, 7nvgcl 30583 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐷𝑋) → (𝐶𝐺𝐷) ∈ 𝑋)
1816, 3, 4, 17mp3an 1463 . . . 4 (𝐶𝐺𝐷) ∈ 𝑋
192, 11, 183pm3.2i 1340 . . 3 (𝐴𝑋𝐵𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋)
206, 7, 8dipdir 30805 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))))
211, 19, 20mp2an 692 . 2 ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷)))
226, 8dipcl 30675 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑃𝐶) ∈ ℂ)
2316, 2, 3, 22mp3an 1463 . . 3 (𝐴𝑃𝐶) ∈ ℂ
246, 8dipcl 30675 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐷𝑋) → (𝐵𝑃𝐷) ∈ ℂ)
2516, 11, 4, 24mp3an 1463 . . 3 (𝐵𝑃𝐷) ∈ ℂ
266, 8dipcl 30675 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐷𝑋) → (𝐴𝑃𝐷) ∈ ℂ)
2716, 2, 4, 26mp3an 1463 . . 3 (𝐴𝑃𝐷) ∈ ℂ
286, 8dipcl 30675 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝑃𝐶) ∈ ℂ)
2916, 11, 3, 28mp3an 1463 . . 3 (𝐵𝑃𝐶) ∈ ℂ
3023, 25, 27, 29add42i 11361 . 2 (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)))
3115, 21, 303eqtr4i 2762 1 ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cc 11026   + caddc 11031  NrmCVeccnv 30547   +𝑣 cpv 30548  BaseSetcba 30549  ·𝑖OLDcdip 30663  CPreHilOLDccphlo 30775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-sum 15613  df-grpo 30456  df-gid 30457  df-ginv 30458  df-ablo 30508  df-vc 30522  df-nv 30555  df-va 30558  df-ba 30559  df-sm 30560  df-0v 30561  df-nmcv 30563  df-dip 30664  df-ph 30776
This theorem is referenced by:  pythi  30813
  Copyright terms: Public domain W3C validator