| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ip2dii | Structured version Visualization version GIF version | ||
| Description: Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip2dii.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip2dii.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| ip2dii.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip2dii.u | ⊢ 𝑈 ∈ CPreHilOLD |
| ip2dii.a | ⊢ 𝐴 ∈ 𝑋 |
| ip2dii.b | ⊢ 𝐵 ∈ 𝑋 |
| ip2dii.c | ⊢ 𝐶 ∈ 𝑋 |
| ip2dii.d | ⊢ 𝐷 ∈ 𝑋 |
| Ref | Expression |
|---|---|
| ip2dii | ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2dii.u | . . . 4 ⊢ 𝑈 ∈ CPreHilOLD | |
| 2 | ip2dii.a | . . . . 5 ⊢ 𝐴 ∈ 𝑋 | |
| 3 | ip2dii.c | . . . . 5 ⊢ 𝐶 ∈ 𝑋 | |
| 4 | ip2dii.d | . . . . 5 ⊢ 𝐷 ∈ 𝑋 | |
| 5 | 2, 3, 4 | 3pm3.2i 1340 | . . . 4 ⊢ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) |
| 6 | ip2dii.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 7 | ip2dii.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 8 | ip2dii.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 9 | 6, 7, 8 | dipdi 30823 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷))) |
| 10 | 1, 5, 9 | mp2an 692 | . . 3 ⊢ (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) |
| 11 | ip2dii.b | . . . . 5 ⊢ 𝐵 ∈ 𝑋 | |
| 12 | 11, 3, 4 | 3pm3.2i 1340 | . . . 4 ⊢ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) |
| 13 | 6, 7, 8 | dipdi 30823 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
| 14 | 1, 12, 13 | mp2an 692 | . . 3 ⊢ (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)) |
| 15 | 10, 14 | oveq12i 7358 | . 2 ⊢ ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
| 16 | 1 | phnvi 30796 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
| 17 | 6, 7 | nvgcl 30600 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐶𝐺𝐷) ∈ 𝑋) |
| 18 | 16, 3, 4, 17 | mp3an 1463 | . . . 4 ⊢ (𝐶𝐺𝐷) ∈ 𝑋 |
| 19 | 2, 11, 18 | 3pm3.2i 1340 | . . 3 ⊢ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋) |
| 20 | 6, 7, 8 | dipdir 30822 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷)))) |
| 21 | 1, 19, 20 | mp2an 692 | . 2 ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) |
| 22 | 6, 8 | dipcl 30692 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑃𝐶) ∈ ℂ) |
| 23 | 16, 2, 3, 22 | mp3an 1463 | . . 3 ⊢ (𝐴𝑃𝐶) ∈ ℂ |
| 24 | 6, 8 | dipcl 30692 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐵𝑃𝐷) ∈ ℂ) |
| 25 | 16, 11, 4, 24 | mp3an 1463 | . . 3 ⊢ (𝐵𝑃𝐷) ∈ ℂ |
| 26 | 6, 8 | dipcl 30692 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐴𝑃𝐷) ∈ ℂ) |
| 27 | 16, 2, 4, 26 | mp3an 1463 | . . 3 ⊢ (𝐴𝑃𝐷) ∈ ℂ |
| 28 | 6, 8 | dipcl 30692 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝑃𝐶) ∈ ℂ) |
| 29 | 16, 11, 3, 28 | mp3an 1463 | . . 3 ⊢ (𝐵𝑃𝐶) ∈ ℂ |
| 30 | 23, 25, 27, 29 | add42i 11339 | . 2 ⊢ (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
| 31 | 15, 21, 30 | 3eqtr4i 2764 | 1 ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 + caddc 11009 NrmCVeccnv 30564 +𝑣 cpv 30565 BaseSetcba 30566 ·𝑖OLDcdip 30680 CPreHilOLDccphlo 30792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-grpo 30473 df-gid 30474 df-ginv 30475 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-nmcv 30580 df-dip 30681 df-ph 30793 |
| This theorem is referenced by: pythi 30830 |
| Copyright terms: Public domain | W3C validator |