| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ip2dii | Structured version Visualization version GIF version | ||
| Description: Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip2dii.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip2dii.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| ip2dii.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip2dii.u | ⊢ 𝑈 ∈ CPreHilOLD |
| ip2dii.a | ⊢ 𝐴 ∈ 𝑋 |
| ip2dii.b | ⊢ 𝐵 ∈ 𝑋 |
| ip2dii.c | ⊢ 𝐶 ∈ 𝑋 |
| ip2dii.d | ⊢ 𝐷 ∈ 𝑋 |
| Ref | Expression |
|---|---|
| ip2dii | ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2dii.u | . . . 4 ⊢ 𝑈 ∈ CPreHilOLD | |
| 2 | ip2dii.a | . . . . 5 ⊢ 𝐴 ∈ 𝑋 | |
| 3 | ip2dii.c | . . . . 5 ⊢ 𝐶 ∈ 𝑋 | |
| 4 | ip2dii.d | . . . . 5 ⊢ 𝐷 ∈ 𝑋 | |
| 5 | 2, 3, 4 | 3pm3.2i 1340 | . . . 4 ⊢ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) |
| 6 | ip2dii.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 7 | ip2dii.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 8 | ip2dii.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 9 | 6, 7, 8 | dipdi 30779 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷))) |
| 10 | 1, 5, 9 | mp2an 692 | . . 3 ⊢ (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) |
| 11 | ip2dii.b | . . . . 5 ⊢ 𝐵 ∈ 𝑋 | |
| 12 | 11, 3, 4 | 3pm3.2i 1340 | . . . 4 ⊢ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) |
| 13 | 6, 7, 8 | dipdi 30779 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
| 14 | 1, 12, 13 | mp2an 692 | . . 3 ⊢ (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)) |
| 15 | 10, 14 | oveq12i 7402 | . 2 ⊢ ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
| 16 | 1 | phnvi 30752 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
| 17 | 6, 7 | nvgcl 30556 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐶𝐺𝐷) ∈ 𝑋) |
| 18 | 16, 3, 4, 17 | mp3an 1463 | . . . 4 ⊢ (𝐶𝐺𝐷) ∈ 𝑋 |
| 19 | 2, 11, 18 | 3pm3.2i 1340 | . . 3 ⊢ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋) |
| 20 | 6, 7, 8 | dipdir 30778 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷)))) |
| 21 | 1, 19, 20 | mp2an 692 | . 2 ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) |
| 22 | 6, 8 | dipcl 30648 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑃𝐶) ∈ ℂ) |
| 23 | 16, 2, 3, 22 | mp3an 1463 | . . 3 ⊢ (𝐴𝑃𝐶) ∈ ℂ |
| 24 | 6, 8 | dipcl 30648 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐵𝑃𝐷) ∈ ℂ) |
| 25 | 16, 11, 4, 24 | mp3an 1463 | . . 3 ⊢ (𝐵𝑃𝐷) ∈ ℂ |
| 26 | 6, 8 | dipcl 30648 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐴𝑃𝐷) ∈ ℂ) |
| 27 | 16, 2, 4, 26 | mp3an 1463 | . . 3 ⊢ (𝐴𝑃𝐷) ∈ ℂ |
| 28 | 6, 8 | dipcl 30648 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝑃𝐶) ∈ ℂ) |
| 29 | 16, 11, 3, 28 | mp3an 1463 | . . 3 ⊢ (𝐵𝑃𝐶) ∈ ℂ |
| 30 | 23, 25, 27, 29 | add42i 11407 | . 2 ⊢ (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
| 31 | 15, 21, 30 | 3eqtr4i 2763 | 1 ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 + caddc 11078 NrmCVeccnv 30520 +𝑣 cpv 30521 BaseSetcba 30522 ·𝑖OLDcdip 30636 CPreHilOLDccphlo 30748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-grpo 30429 df-gid 30430 df-ginv 30431 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-nmcv 30536 df-dip 30637 df-ph 30749 |
| This theorem is referenced by: pythi 30786 |
| Copyright terms: Public domain | W3C validator |