Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ip2dii | Structured version Visualization version GIF version |
Description: Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip2dii.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip2dii.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
ip2dii.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip2dii.u | ⊢ 𝑈 ∈ CPreHilOLD |
ip2dii.a | ⊢ 𝐴 ∈ 𝑋 |
ip2dii.b | ⊢ 𝐵 ∈ 𝑋 |
ip2dii.c | ⊢ 𝐶 ∈ 𝑋 |
ip2dii.d | ⊢ 𝐷 ∈ 𝑋 |
Ref | Expression |
---|---|
ip2dii | ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip2dii.u | . . . 4 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | ip2dii.a | . . . . 5 ⊢ 𝐴 ∈ 𝑋 | |
3 | ip2dii.c | . . . . 5 ⊢ 𝐶 ∈ 𝑋 | |
4 | ip2dii.d | . . . . 5 ⊢ 𝐷 ∈ 𝑋 | |
5 | 2, 3, 4 | 3pm3.2i 1337 | . . . 4 ⊢ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) |
6 | ip2dii.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
7 | ip2dii.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
8 | ip2dii.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
9 | 6, 7, 8 | dipdi 29106 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷))) |
10 | 1, 5, 9 | mp2an 688 | . . 3 ⊢ (𝐴𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) |
11 | ip2dii.b | . . . . 5 ⊢ 𝐵 ∈ 𝑋 | |
12 | 11, 3, 4 | 3pm3.2i 1337 | . . . 4 ⊢ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) |
13 | 6, 7, 8 | dipdi 29106 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
14 | 1, 12, 13 | mp2an 688 | . . 3 ⊢ (𝐵𝑃(𝐶𝐺𝐷)) = ((𝐵𝑃𝐶) + (𝐵𝑃𝐷)) |
15 | 10, 14 | oveq12i 7267 | . 2 ⊢ ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
16 | 1 | phnvi 29079 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
17 | 6, 7 | nvgcl 28883 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐶𝐺𝐷) ∈ 𝑋) |
18 | 16, 3, 4, 17 | mp3an 1459 | . . . 4 ⊢ (𝐶𝐺𝐷) ∈ 𝑋 |
19 | 2, 11, 18 | 3pm3.2i 1337 | . . 3 ⊢ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋) |
20 | 6, 7, 8 | dipdir 29105 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐶𝐺𝐷) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷)))) |
21 | 1, 19, 20 | mp2an 688 | . 2 ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = ((𝐴𝑃(𝐶𝐺𝐷)) + (𝐵𝑃(𝐶𝐺𝐷))) |
22 | 6, 8 | dipcl 28975 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑃𝐶) ∈ ℂ) |
23 | 16, 2, 3, 22 | mp3an 1459 | . . 3 ⊢ (𝐴𝑃𝐶) ∈ ℂ |
24 | 6, 8 | dipcl 28975 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐵𝑃𝐷) ∈ ℂ) |
25 | 16, 11, 4, 24 | mp3an 1459 | . . 3 ⊢ (𝐵𝑃𝐷) ∈ ℂ |
26 | 6, 8 | dipcl 28975 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → (𝐴𝑃𝐷) ∈ ℂ) |
27 | 16, 2, 4, 26 | mp3an 1459 | . . 3 ⊢ (𝐴𝑃𝐷) ∈ ℂ |
28 | 6, 8 | dipcl 28975 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝑃𝐶) ∈ ℂ) |
29 | 16, 11, 3, 28 | mp3an 1459 | . . 3 ⊢ (𝐵𝑃𝐶) ∈ ℂ |
30 | 23, 25, 27, 29 | add42i 11130 | . 2 ⊢ (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) = (((𝐴𝑃𝐶) + (𝐴𝑃𝐷)) + ((𝐵𝑃𝐶) + (𝐵𝑃𝐷))) |
31 | 15, 21, 30 | 3eqtr4i 2776 | 1 ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 + caddc 10805 NrmCVeccnv 28847 +𝑣 cpv 28848 BaseSetcba 28849 ·𝑖OLDcdip 28963 CPreHilOLDccphlo 29075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 df-dip 28964 df-ph 29076 |
This theorem is referenced by: pythi 29113 |
Copyright terms: Public domain | W3C validator |