| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ajfuni | Structured version Visualization version GIF version | ||
| Description: The adjoint function is a function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ajfuni.5 | ⊢ 𝐴 = (𝑈adj𝑊) |
| ajfuni.u | ⊢ 𝑈 ∈ CPreHilOLD |
| ajfuni.w | ⊢ 𝑊 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| ajfuni | ⊢ Fun 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopab 6580 | . . 3 ⊢ (Fun {〈𝑡, 𝑠〉 ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡‘𝑥)(·𝑖OLD‘𝑊)𝑦) = (𝑥(·𝑖OLD‘𝑈)(𝑠‘𝑦)))} ↔ ∀𝑡∃*𝑠(𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡‘𝑥)(·𝑖OLD‘𝑊)𝑦) = (𝑥(·𝑖OLD‘𝑈)(𝑠‘𝑦)))) | |
| 2 | eqid 2734 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 3 | eqid 2734 | . . . . 5 ⊢ (·𝑖OLD‘𝑈) = (·𝑖OLD‘𝑈) | |
| 4 | ajfuni.u | . . . . 5 ⊢ 𝑈 ∈ CPreHilOLD | |
| 5 | 2, 3, 4 | ajmoi 30804 | . . . 4 ⊢ ∃*𝑠(𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡‘𝑥)(·𝑖OLD‘𝑊)𝑦) = (𝑥(·𝑖OLD‘𝑈)(𝑠‘𝑦))) |
| 6 | 3simpc 1150 | . . . . 5 ⊢ ((𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡‘𝑥)(·𝑖OLD‘𝑊)𝑦) = (𝑥(·𝑖OLD‘𝑈)(𝑠‘𝑦))) → (𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡‘𝑥)(·𝑖OLD‘𝑊)𝑦) = (𝑥(·𝑖OLD‘𝑈)(𝑠‘𝑦)))) | |
| 7 | 6 | moimi 2543 | . . . 4 ⊢ (∃*𝑠(𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡‘𝑥)(·𝑖OLD‘𝑊)𝑦) = (𝑥(·𝑖OLD‘𝑈)(𝑠‘𝑦))) → ∃*𝑠(𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡‘𝑥)(·𝑖OLD‘𝑊)𝑦) = (𝑥(·𝑖OLD‘𝑈)(𝑠‘𝑦)))) |
| 8 | 5, 7 | ax-mp 5 | . . 3 ⊢ ∃*𝑠(𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡‘𝑥)(·𝑖OLD‘𝑊)𝑦) = (𝑥(·𝑖OLD‘𝑈)(𝑠‘𝑦))) |
| 9 | 1, 8 | mpgbir 1798 | . 2 ⊢ Fun {〈𝑡, 𝑠〉 ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡‘𝑥)(·𝑖OLD‘𝑊)𝑦) = (𝑥(·𝑖OLD‘𝑈)(𝑠‘𝑦)))} |
| 10 | 4 | phnvi 30762 | . . . 4 ⊢ 𝑈 ∈ NrmCVec |
| 11 | ajfuni.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
| 12 | eqid 2734 | . . . . 5 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
| 13 | eqid 2734 | . . . . 5 ⊢ (·𝑖OLD‘𝑊) = (·𝑖OLD‘𝑊) | |
| 14 | ajfuni.5 | . . . . 5 ⊢ 𝐴 = (𝑈adj𝑊) | |
| 15 | 2, 12, 3, 13, 14 | ajfval 30755 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {〈𝑡, 𝑠〉 ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡‘𝑥)(·𝑖OLD‘𝑊)𝑦) = (𝑥(·𝑖OLD‘𝑈)(𝑠‘𝑦)))}) |
| 16 | 10, 11, 15 | mp2an 692 | . . 3 ⊢ 𝐴 = {〈𝑡, 𝑠〉 ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡‘𝑥)(·𝑖OLD‘𝑊)𝑦) = (𝑥(·𝑖OLD‘𝑈)(𝑠‘𝑦)))} |
| 17 | 16 | funeqi 6566 | . 2 ⊢ (Fun 𝐴 ↔ Fun {〈𝑡, 𝑠〉 ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡‘𝑥)(·𝑖OLD‘𝑊)𝑦) = (𝑥(·𝑖OLD‘𝑈)(𝑠‘𝑦)))}) |
| 18 | 9, 17 | mpbir 231 | 1 ⊢ Fun 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃*wmo 2536 ∀wral 3050 {copab 5185 Fun wfun 6534 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 NrmCVeccnv 30530 BaseSetcba 30532 ·𝑖OLDcdip 30646 adjcaj 30694 CPreHilOLDccphlo 30758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 ax-mulf 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8726 df-map 8849 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9383 df-fi 9432 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-q 12972 df-rp 13016 df-xneg 13135 df-xadd 13136 df-xmul 13137 df-ioo 13372 df-icc 13375 df-fz 13529 df-fzo 13676 df-seq 14024 df-exp 14084 df-hash 14351 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-clim 15505 df-sum 15704 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-starv 17287 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ds 17294 df-unif 17295 df-hom 17296 df-cco 17297 df-rest 17437 df-topn 17438 df-0g 17456 df-gsum 17457 df-topgen 17458 df-pt 17459 df-prds 17462 df-xrs 17517 df-qtop 17522 df-imas 17523 df-xps 17525 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-submnd 18765 df-mulg 19054 df-cntz 19303 df-cmn 19767 df-psmet 21317 df-xmet 21318 df-met 21319 df-bl 21320 df-mopn 21321 df-cnfld 21326 df-top 22847 df-topon 22864 df-topsp 22886 df-bases 22899 df-cld 22972 df-ntr 22973 df-cls 22974 df-cn 23180 df-cnp 23181 df-t1 23267 df-haus 23268 df-tx 23515 df-hmeo 23708 df-xms 24274 df-ms 24275 df-tms 24276 df-grpo 30439 df-gid 30440 df-ginv 30441 df-gdiv 30442 df-ablo 30491 df-vc 30505 df-nv 30538 df-va 30541 df-ba 30542 df-sm 30543 df-0v 30544 df-vs 30545 df-nmcv 30546 df-ims 30547 df-dip 30647 df-aj 30696 df-ph 30759 |
| This theorem is referenced by: ajfun 30806 |
| Copyright terms: Public domain | W3C validator |