MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ajfuni Structured version   Visualization version   GIF version

Theorem ajfuni 30805
Description: The adjoint function is a function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ajfuni.5 𝐴 = (𝑈adj𝑊)
ajfuni.u 𝑈 ∈ CPreHilOLD
ajfuni.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
ajfuni Fun 𝐴

Proof of Theorem ajfuni
Dummy variables 𝑡 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funopab 6580 . . 3 (Fun {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))} ↔ ∀𝑡∃*𝑠(𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦))))
2 eqid 2734 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
3 eqid 2734 . . . . 5 (·𝑖OLD𝑈) = (·𝑖OLD𝑈)
4 ajfuni.u . . . . 5 𝑈 ∈ CPreHilOLD
52, 3, 4ajmoi 30804 . . . 4 ∃*𝑠(𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))
6 3simpc 1150 . . . . 5 ((𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦))) → (𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦))))
76moimi 2543 . . . 4 (∃*𝑠(𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦))) → ∃*𝑠(𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦))))
85, 7ax-mp 5 . . 3 ∃*𝑠(𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))
91, 8mpgbir 1798 . 2 Fun {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))}
104phnvi 30762 . . . 4 𝑈 ∈ NrmCVec
11 ajfuni.w . . . 4 𝑊 ∈ NrmCVec
12 eqid 2734 . . . . 5 (BaseSet‘𝑊) = (BaseSet‘𝑊)
13 eqid 2734 . . . . 5 (·𝑖OLD𝑊) = (·𝑖OLD𝑊)
14 ajfuni.5 . . . . 5 𝐴 = (𝑈adj𝑊)
152, 12, 3, 13, 14ajfval 30755 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))})
1610, 11, 15mp2an 692 . . 3 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))}
1716funeqi 6566 . 2 (Fun 𝐴 ↔ Fun {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))})
189, 17mpbir 231 1 Fun 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1539  wcel 2107  ∃*wmo 2536  wral 3050  {copab 5185  Fun wfun 6534  wf 6536  cfv 6540  (class class class)co 7412  NrmCVeccnv 30530  BaseSetcba 30532  ·𝑖OLDcdip 30646  adjcaj 30694  CPreHilOLDccphlo 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214  ax-addf 11215  ax-mulf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7678  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8726  df-map 8849  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9383  df-fi 9432  df-sup 9463  df-inf 9464  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-3 12311  df-4 12312  df-5 12313  df-6 12314  df-7 12315  df-8 12316  df-9 12317  df-n0 12509  df-z 12596  df-dec 12716  df-uz 12860  df-q 12972  df-rp 13016  df-xneg 13135  df-xadd 13136  df-xmul 13137  df-ioo 13372  df-icc 13375  df-fz 13529  df-fzo 13676  df-seq 14024  df-exp 14084  df-hash 14351  df-cj 15119  df-re 15120  df-im 15121  df-sqrt 15255  df-abs 15256  df-clim 15505  df-sum 15704  df-struct 17165  df-sets 17182  df-slot 17200  df-ndx 17212  df-base 17229  df-ress 17252  df-plusg 17285  df-mulr 17286  df-starv 17287  df-sca 17288  df-vsca 17289  df-ip 17290  df-tset 17291  df-ple 17292  df-ds 17294  df-unif 17295  df-hom 17296  df-cco 17297  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18621  df-sgrp 18700  df-mnd 18716  df-submnd 18765  df-mulg 19054  df-cntz 19303  df-cmn 19767  df-psmet 21317  df-xmet 21318  df-met 21319  df-bl 21320  df-mopn 21321  df-cnfld 21326  df-top 22847  df-topon 22864  df-topsp 22886  df-bases 22899  df-cld 22972  df-ntr 22973  df-cls 22974  df-cn 23180  df-cnp 23181  df-t1 23267  df-haus 23268  df-tx 23515  df-hmeo 23708  df-xms 24274  df-ms 24275  df-tms 24276  df-grpo 30439  df-gid 30440  df-ginv 30441  df-gdiv 30442  df-ablo 30491  df-vc 30505  df-nv 30538  df-va 30541  df-ba 30542  df-sm 30543  df-0v 30544  df-vs 30545  df-nmcv 30546  df-ims 30547  df-dip 30647  df-aj 30696  df-ph 30759
This theorem is referenced by:  ajfun  30806
  Copyright terms: Public domain W3C validator