Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ajfuni Structured version   Visualization version   GIF version

Theorem ajfuni 28741
 Description: The adjoint function is a function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ajfuni.u 𝑈 ∈ CPreHilOLD
ajfuni.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
ajfuni Fun 𝐴

Proof of Theorem ajfuni
Dummy variables 𝑡 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funopab 6370 . . 3 (Fun {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))} ↔ ∀𝑡∃*𝑠(𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦))))
2 eqid 2758 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
3 eqid 2758 . . . . 5 (·𝑖OLD𝑈) = (·𝑖OLD𝑈)
4 ajfuni.u . . . . 5 𝑈 ∈ CPreHilOLD
52, 3, 4ajmoi 28740 . . . 4 ∃*𝑠(𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))
6 3simpc 1147 . . . . 5 ((𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦))) → (𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦))))
76moimi 2562 . . . 4 (∃*𝑠(𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦))) → ∃*𝑠(𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦))))
85, 7ax-mp 5 . . 3 ∃*𝑠(𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))
91, 8mpgbir 1801 . 2 Fun {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))}
104phnvi 28698 . . . 4 𝑈 ∈ NrmCVec
11 ajfuni.w . . . 4 𝑊 ∈ NrmCVec
12 eqid 2758 . . . . 5 (BaseSet‘𝑊) = (BaseSet‘𝑊)
13 eqid 2758 . . . . 5 (·𝑖OLD𝑊) = (·𝑖OLD𝑊)
14 ajfuni.5 . . . . 5 𝐴 = (𝑈adj𝑊)
152, 12, 3, 13, 14ajfval 28691 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))})
1610, 11, 15mp2an 691 . . 3 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))}
1716funeqi 6356 . 2 (Fun 𝐴 ↔ Fun {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ 𝑠:(BaseSet‘𝑊)⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑊)((𝑡𝑥)(·𝑖OLD𝑊)𝑦) = (𝑥(·𝑖OLD𝑈)(𝑠𝑦)))})
189, 17mpbir 234 1 Fun 𝐴
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∃*wmo 2555  ∀wral 3070  {copab 5094  Fun wfun 6329  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  NrmCVeccnv 28466  BaseSetcba 28468  ·𝑖OLDcdip 28582  adjcaj 28630  CPreHilOLDccphlo 28694 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-icc 12786  df-fz 12940  df-fzo 13083  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-sum 15091  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-cn 21927  df-cnp 21928  df-t1 22014  df-haus 22015  df-tx 22262  df-hmeo 22455  df-xms 23022  df-ms 23023  df-tms 23024  df-grpo 28375  df-gid 28376  df-ginv 28377  df-gdiv 28378  df-ablo 28427  df-vc 28441  df-nv 28474  df-va 28477  df-ba 28478  df-sm 28479  df-0v 28480  df-vs 28481  df-nmcv 28482  df-ims 28483  df-dip 28583  df-aj 28632  df-ph 28695 This theorem is referenced by:  ajfun  28742
 Copyright terms: Public domain W3C validator