| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddpnf1 | Structured version Visualization version GIF version | ||
| Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddpnf1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 11166 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 2 | xaddval 13122 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) |
| 4 | pnfnemnf 11167 | . . . . 5 ⊢ +∞ ≠ -∞ | |
| 5 | ifnefalse 4487 | . . . . 5 ⊢ (+∞ ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞) | |
| 6 | 4, 5 | mp1i 13 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞) |
| 7 | ifnefalse 4487 | . . . . 5 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ +∞ = +∞ | |
| 9 | 8 | iftruei 4482 | . . . . 5 ⊢ if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))) = +∞ |
| 10 | 7, 9 | eqtrdi 2782 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = +∞) |
| 11 | 6, 10 | ifeq12d 4497 | . . 3 ⊢ (𝐴 ≠ -∞ → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = if(𝐴 = +∞, +∞, +∞)) |
| 12 | ifid 4516 | . . 3 ⊢ if(𝐴 = +∞, +∞, +∞) = +∞ | |
| 13 | 11, 12 | eqtrdi 2782 | . 2 ⊢ (𝐴 ≠ -∞ → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = +∞) |
| 14 | 3, 13 | sylan9eq 2786 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ifcif 4475 (class class class)co 7346 0cc0 11006 + caddc 11009 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 +𝑒 cxad 13009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-pnf 11148 df-mnf 11149 df-xr 11150 df-xadd 13012 |
| This theorem is referenced by: xnn0xaddcl 13134 xaddnemnf 13135 xaddcom 13139 xnn0xadd0 13146 xnegdi 13147 xaddass 13148 xleadd1a 13152 xlt2add 13159 xsubge0 13160 xlesubadd 13162 xadddilem 13193 xrsdsreclblem 21350 isxmet2d 24243 xrge0iifhom 33948 esumpr2 34078 hasheuni 34096 carsgclctunlem2 34330 ovolsplit 46032 sge0pr 46438 sge0split 46453 sge0xadd 46479 |
| Copyright terms: Public domain | W3C validator |