MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddpnf1 Structured version   Visualization version   GIF version

Theorem xaddpnf1 12960
Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddpnf1 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)

Proof of Theorem xaddpnf1
StepHypRef Expression
1 pnfxr 11029 . . 3 +∞ ∈ ℝ*
2 xaddval 12957 . . 3 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))))
31, 2mpan2 688 . 2 (𝐴 ∈ ℝ* → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))))
4 pnfnemnf 11030 . . . . 5 +∞ ≠ -∞
5 ifnefalse 4471 . . . . 5 (+∞ ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞)
64, 5mp1i 13 . . . 4 (𝐴 ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞)
7 ifnefalse 4471 . . . . 5 (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))
8 eqid 2738 . . . . . 6 +∞ = +∞
98iftruei 4466 . . . . 5 if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))) = +∞
107, 9eqtrdi 2794 . . . 4 (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = +∞)
116, 10ifeq12d 4480 . . 3 (𝐴 ≠ -∞ → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = if(𝐴 = +∞, +∞, +∞))
12 ifid 4499 . . 3 if(𝐴 = +∞, +∞, +∞) = +∞
1311, 12eqtrdi 2794 . 2 (𝐴 ≠ -∞ → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = +∞)
143, 13sylan9eq 2798 1 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  ifcif 4459  (class class class)co 7275  0cc0 10871   + caddc 10874  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   +𝑒 cxad 12846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-i2m1 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-pnf 11011  df-mnf 11012  df-xr 11013  df-xadd 12849
This theorem is referenced by:  xnn0xaddcl  12969  xaddnemnf  12970  xaddcom  12974  xnn0xadd0  12981  xnegdi  12982  xaddass  12983  xleadd1a  12987  xlt2add  12994  xsubge0  12995  xlesubadd  12997  xadddilem  13028  xrsdsreclblem  20644  isxmet2d  23480  xrge0iifhom  31887  esumpr2  32035  hasheuni  32053  carsgclctunlem2  32286  ovolsplit  43529  sge0pr  43932  sge0split  43947  sge0xadd  43973
  Copyright terms: Public domain W3C validator