Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpr2 Structured version   Visualization version   GIF version

Theorem esumpr2 34057
Description: Extended sum over a pair, with a relaxed condition compared to esumpr 34056. (Contributed by Thierry Arnoux, 2-Jan-2017.)
Hypotheses
Ref Expression
esumpr.1 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
esumpr.2 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
esumpr.3 (𝜑𝐴𝑉)
esumpr.4 (𝜑𝐵𝑊)
esumpr.5 (𝜑𝐷 ∈ (0[,]+∞))
esumpr.6 (𝜑𝐸 ∈ (0[,]+∞))
esumpr2.1 (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞)))
Assertion
Ref Expression
esumpr2 (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝜑,𝑘   𝑘,𝑉   𝑘,𝑊
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem esumpr2
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
2 dfsn2 4602 . . . . . 6 {𝐴} = {𝐴, 𝐴}
3 preq2 4698 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
42, 3eqtr2id 2777 . . . . 5 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
5 esumeq1 34024 . . . . 5 ({𝐴, 𝐵} = {𝐴} → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ {𝐴}𝐶)
61, 4, 53syl 18 . . . 4 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ {𝐴}𝐶)
7 esumpr.1 . . . . . 6 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
8 esumpr.3 . . . . . 6 (𝜑𝐴𝑉)
9 esumpr.5 . . . . . 6 (𝜑𝐷 ∈ (0[,]+∞))
107, 8, 9esumsn 34055 . . . . 5 (𝜑 → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷)
1110adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷)
126, 11eqtrd 2764 . . 3 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = 𝐷)
13 esumpr2.1 . . . . 5 (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞)))
14 oveq2 7395 . . . . . . 7 (𝐷 = 0 → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 0))
15 0xr 11221 . . . . . . . . 9 0 ∈ ℝ*
16 eleq1 2816 . . . . . . . . 9 (𝐷 = 0 → (𝐷 ∈ ℝ* ↔ 0 ∈ ℝ*))
1715, 16mpbiri 258 . . . . . . . 8 (𝐷 = 0 → 𝐷 ∈ ℝ*)
18 xaddrid 13201 . . . . . . . 8 (𝐷 ∈ ℝ* → (𝐷 +𝑒 0) = 𝐷)
1917, 18syl 17 . . . . . . 7 (𝐷 = 0 → (𝐷 +𝑒 0) = 𝐷)
2014, 19eqtrd 2764 . . . . . 6 (𝐷 = 0 → (𝐷 +𝑒 𝐷) = 𝐷)
21 pnfxr 11228 . . . . . . . . 9 +∞ ∈ ℝ*
22 eleq1 2816 . . . . . . . . 9 (𝐷 = +∞ → (𝐷 ∈ ℝ* ↔ +∞ ∈ ℝ*))
2321, 22mpbiri 258 . . . . . . . 8 (𝐷 = +∞ → 𝐷 ∈ ℝ*)
24 pnfnemnf 11229 . . . . . . . . 9 +∞ ≠ -∞
25 neeq1 2987 . . . . . . . . 9 (𝐷 = +∞ → (𝐷 ≠ -∞ ↔ +∞ ≠ -∞))
2624, 25mpbiri 258 . . . . . . . 8 (𝐷 = +∞ → 𝐷 ≠ -∞)
27 xaddpnf1 13186 . . . . . . . 8 ((𝐷 ∈ ℝ*𝐷 ≠ -∞) → (𝐷 +𝑒 +∞) = +∞)
2823, 26, 27syl2anc 584 . . . . . . 7 (𝐷 = +∞ → (𝐷 +𝑒 +∞) = +∞)
29 oveq2 7395 . . . . . . 7 (𝐷 = +∞ → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 +∞))
30 id 22 . . . . . . 7 (𝐷 = +∞ → 𝐷 = +∞)
3128, 29, 303eqtr4d 2774 . . . . . 6 (𝐷 = +∞ → (𝐷 +𝑒 𝐷) = 𝐷)
3220, 31jaoi 857 . . . . 5 ((𝐷 = 0 ∨ 𝐷 = +∞) → (𝐷 +𝑒 𝐷) = 𝐷)
3313, 32syl6 35 . . . 4 (𝜑 → (𝐴 = 𝐵 → (𝐷 +𝑒 𝐷) = 𝐷))
3433imp 406 . . 3 ((𝜑𝐴 = 𝐵) → (𝐷 +𝑒 𝐷) = 𝐷)
35 simpll 766 . . . . . . 7 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝜑)
36 eqeq2 2741 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝑘 = 𝐴𝑘 = 𝐵))
3736biimprd 248 . . . . . . . . 9 (𝐴 = 𝐵 → (𝑘 = 𝐵𝑘 = 𝐴))
381, 37syl 17 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → (𝑘 = 𝐵𝑘 = 𝐴))
3938imp 406 . . . . . . 7 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝑘 = 𝐴)
4035, 39, 7syl2anc 584 . . . . . 6 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝐶 = 𝐷)
41 esumpr.4 . . . . . . 7 (𝜑𝐵𝑊)
4241adantr 480 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐵𝑊)
439adantr 480 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞))
4440, 42, 43esumsn 34055 . . . . 5 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐷)
45 esumpr.2 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
46 esumpr.6 . . . . . . 7 (𝜑𝐸 ∈ (0[,]+∞))
4745, 41, 46esumsn 34055 . . . . . 6 (𝜑 → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸)
4847adantr 480 . . . . 5 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸)
4944, 48eqtr3d 2766 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐷 = 𝐸)
5049oveq2d 7403 . . 3 ((𝜑𝐴 = 𝐵) → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 𝐸))
5112, 34, 503eqtr2d 2770 . 2 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
527adantlr 715 . . 3 (((𝜑𝐴𝐵) ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷)
5345adantlr 715 . . 3 (((𝜑𝐴𝐵) ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸)
548adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐴𝑉)
5541adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐵𝑊)
569adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐷 ∈ (0[,]+∞))
5746adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐸 ∈ (0[,]+∞))
58 simpr 484 . . 3 ((𝜑𝐴𝐵) → 𝐴𝐵)
5952, 53, 54, 55, 56, 57, 58esumpr 34056 . 2 ((𝜑𝐴𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
6051, 59pm2.61dane 3012 1 (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  {csn 4589  {cpr 4591  (class class class)co 7387  0cc0 11068  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   +𝑒 cxad 13070  [,]cicc 13309  Σ*cesum 34017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-ordt 17464  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-ps 18525  df-tsr 18526  df-plusf 18566  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-abv 20718  df-lmod 20768  df-scaf 20769  df-sra 21080  df-rgmod 21081  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-tmd 23959  df-tgp 23960  df-tsms 24014  df-trg 24047  df-xms 24208  df-ms 24209  df-tms 24210  df-nm 24470  df-ngp 24471  df-nrg 24473  df-nlm 24474  df-ii 24770  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-esum 34018
This theorem is referenced by:  measxun2  34200  measssd  34205  carsgclctun  34312
  Copyright terms: Public domain W3C validator