Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpr2 Structured version   Visualization version   GIF version

Theorem esumpr2 34068
Description: Extended sum over a pair, with a relaxed condition compared to esumpr 34067. (Contributed by Thierry Arnoux, 2-Jan-2017.)
Hypotheses
Ref Expression
esumpr.1 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
esumpr.2 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
esumpr.3 (𝜑𝐴𝑉)
esumpr.4 (𝜑𝐵𝑊)
esumpr.5 (𝜑𝐷 ∈ (0[,]+∞))
esumpr.6 (𝜑𝐸 ∈ (0[,]+∞))
esumpr2.1 (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞)))
Assertion
Ref Expression
esumpr2 (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝜑,𝑘   𝑘,𝑉   𝑘,𝑊
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem esumpr2
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
2 dfsn2 4639 . . . . . 6 {𝐴} = {𝐴, 𝐴}
3 preq2 4734 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
42, 3eqtr2id 2790 . . . . 5 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
5 esumeq1 34035 . . . . 5 ({𝐴, 𝐵} = {𝐴} → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ {𝐴}𝐶)
61, 4, 53syl 18 . . . 4 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ {𝐴}𝐶)
7 esumpr.1 . . . . . 6 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
8 esumpr.3 . . . . . 6 (𝜑𝐴𝑉)
9 esumpr.5 . . . . . 6 (𝜑𝐷 ∈ (0[,]+∞))
107, 8, 9esumsn 34066 . . . . 5 (𝜑 → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷)
1110adantr 480 . . . 4 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷)
126, 11eqtrd 2777 . . 3 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = 𝐷)
13 esumpr2.1 . . . . 5 (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞)))
14 oveq2 7439 . . . . . . 7 (𝐷 = 0 → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 0))
15 0xr 11308 . . . . . . . . 9 0 ∈ ℝ*
16 eleq1 2829 . . . . . . . . 9 (𝐷 = 0 → (𝐷 ∈ ℝ* ↔ 0 ∈ ℝ*))
1715, 16mpbiri 258 . . . . . . . 8 (𝐷 = 0 → 𝐷 ∈ ℝ*)
18 xaddrid 13283 . . . . . . . 8 (𝐷 ∈ ℝ* → (𝐷 +𝑒 0) = 𝐷)
1917, 18syl 17 . . . . . . 7 (𝐷 = 0 → (𝐷 +𝑒 0) = 𝐷)
2014, 19eqtrd 2777 . . . . . 6 (𝐷 = 0 → (𝐷 +𝑒 𝐷) = 𝐷)
21 pnfxr 11315 . . . . . . . . 9 +∞ ∈ ℝ*
22 eleq1 2829 . . . . . . . . 9 (𝐷 = +∞ → (𝐷 ∈ ℝ* ↔ +∞ ∈ ℝ*))
2321, 22mpbiri 258 . . . . . . . 8 (𝐷 = +∞ → 𝐷 ∈ ℝ*)
24 pnfnemnf 11316 . . . . . . . . 9 +∞ ≠ -∞
25 neeq1 3003 . . . . . . . . 9 (𝐷 = +∞ → (𝐷 ≠ -∞ ↔ +∞ ≠ -∞))
2624, 25mpbiri 258 . . . . . . . 8 (𝐷 = +∞ → 𝐷 ≠ -∞)
27 xaddpnf1 13268 . . . . . . . 8 ((𝐷 ∈ ℝ*𝐷 ≠ -∞) → (𝐷 +𝑒 +∞) = +∞)
2823, 26, 27syl2anc 584 . . . . . . 7 (𝐷 = +∞ → (𝐷 +𝑒 +∞) = +∞)
29 oveq2 7439 . . . . . . 7 (𝐷 = +∞ → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 +∞))
30 id 22 . . . . . . 7 (𝐷 = +∞ → 𝐷 = +∞)
3128, 29, 303eqtr4d 2787 . . . . . 6 (𝐷 = +∞ → (𝐷 +𝑒 𝐷) = 𝐷)
3220, 31jaoi 858 . . . . 5 ((𝐷 = 0 ∨ 𝐷 = +∞) → (𝐷 +𝑒 𝐷) = 𝐷)
3313, 32syl6 35 . . . 4 (𝜑 → (𝐴 = 𝐵 → (𝐷 +𝑒 𝐷) = 𝐷))
3433imp 406 . . 3 ((𝜑𝐴 = 𝐵) → (𝐷 +𝑒 𝐷) = 𝐷)
35 simpll 767 . . . . . . 7 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝜑)
36 eqeq2 2749 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝑘 = 𝐴𝑘 = 𝐵))
3736biimprd 248 . . . . . . . . 9 (𝐴 = 𝐵 → (𝑘 = 𝐵𝑘 = 𝐴))
381, 37syl 17 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → (𝑘 = 𝐵𝑘 = 𝐴))
3938imp 406 . . . . . . 7 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝑘 = 𝐴)
4035, 39, 7syl2anc 584 . . . . . 6 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝐶 = 𝐷)
41 esumpr.4 . . . . . . 7 (𝜑𝐵𝑊)
4241adantr 480 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐵𝑊)
439adantr 480 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞))
4440, 42, 43esumsn 34066 . . . . 5 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐷)
45 esumpr.2 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
46 esumpr.6 . . . . . . 7 (𝜑𝐸 ∈ (0[,]+∞))
4745, 41, 46esumsn 34066 . . . . . 6 (𝜑 → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸)
4847adantr 480 . . . . 5 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸)
4944, 48eqtr3d 2779 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐷 = 𝐸)
5049oveq2d 7447 . . 3 ((𝜑𝐴 = 𝐵) → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 𝐸))
5112, 34, 503eqtr2d 2783 . 2 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
527adantlr 715 . . 3 (((𝜑𝐴𝐵) ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷)
5345adantlr 715 . . 3 (((𝜑𝐴𝐵) ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸)
548adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐴𝑉)
5541adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐵𝑊)
569adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐷 ∈ (0[,]+∞))
5746adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐸 ∈ (0[,]+∞))
58 simpr 484 . . 3 ((𝜑𝐴𝐵) → 𝐴𝐵)
5952, 53, 54, 55, 56, 57, 58esumpr 34067 . 2 ((𝜑𝐴𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
6051, 59pm2.61dane 3029 1 (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  {csn 4626  {cpr 4628  (class class class)co 7431  0cc0 11155  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   +𝑒 cxad 13152  [,]cicc 13390  Σ*cesum 34028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-ordt 17546  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-ps 18611  df-tsr 18612  df-plusf 18652  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-subrng 20546  df-subrg 20570  df-abv 20810  df-lmod 20860  df-scaf 20861  df-sra 21172  df-rgmod 21173  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-tmd 24080  df-tgp 24081  df-tsms 24135  df-trg 24168  df-xms 24330  df-ms 24331  df-tms 24332  df-nm 24595  df-ngp 24596  df-nrg 24598  df-nlm 24599  df-ii 24903  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-esum 34029
This theorem is referenced by:  measxun2  34211  measssd  34216  carsgclctun  34323
  Copyright terms: Public domain W3C validator