Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpr2 Structured version   Visualization version   GIF version

Theorem esumpr2 31436
Description: Extended sum over a pair, with a relaxed condition compared to esumpr 31435. (Contributed by Thierry Arnoux, 2-Jan-2017.)
Hypotheses
Ref Expression
esumpr.1 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
esumpr.2 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
esumpr.3 (𝜑𝐴𝑉)
esumpr.4 (𝜑𝐵𝑊)
esumpr.5 (𝜑𝐷 ∈ (0[,]+∞))
esumpr.6 (𝜑𝐸 ∈ (0[,]+∞))
esumpr2.1 (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞)))
Assertion
Ref Expression
esumpr2 (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝜑,𝑘   𝑘,𝑉   𝑘,𝑊
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem esumpr2
StepHypRef Expression
1 simpr 488 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
2 dfsn2 4538 . . . . . 6 {𝐴} = {𝐴, 𝐴}
3 preq2 4630 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
42, 3syl5req 2846 . . . . 5 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
5 esumeq1 31403 . . . . 5 ({𝐴, 𝐵} = {𝐴} → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ {𝐴}𝐶)
61, 4, 53syl 18 . . . 4 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ {𝐴}𝐶)
7 esumpr.1 . . . . . 6 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
8 esumpr.3 . . . . . 6 (𝜑𝐴𝑉)
9 esumpr.5 . . . . . 6 (𝜑𝐷 ∈ (0[,]+∞))
107, 8, 9esumsn 31434 . . . . 5 (𝜑 → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷)
1110adantr 484 . . . 4 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷)
126, 11eqtrd 2833 . . 3 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = 𝐷)
13 esumpr2.1 . . . . 5 (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞)))
14 oveq2 7143 . . . . . . 7 (𝐷 = 0 → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 0))
15 0xr 10677 . . . . . . . . 9 0 ∈ ℝ*
16 eleq1 2877 . . . . . . . . 9 (𝐷 = 0 → (𝐷 ∈ ℝ* ↔ 0 ∈ ℝ*))
1715, 16mpbiri 261 . . . . . . . 8 (𝐷 = 0 → 𝐷 ∈ ℝ*)
18 xaddid1 12622 . . . . . . . 8 (𝐷 ∈ ℝ* → (𝐷 +𝑒 0) = 𝐷)
1917, 18syl 17 . . . . . . 7 (𝐷 = 0 → (𝐷 +𝑒 0) = 𝐷)
2014, 19eqtrd 2833 . . . . . 6 (𝐷 = 0 → (𝐷 +𝑒 𝐷) = 𝐷)
21 pnfxr 10684 . . . . . . . . 9 +∞ ∈ ℝ*
22 eleq1 2877 . . . . . . . . 9 (𝐷 = +∞ → (𝐷 ∈ ℝ* ↔ +∞ ∈ ℝ*))
2321, 22mpbiri 261 . . . . . . . 8 (𝐷 = +∞ → 𝐷 ∈ ℝ*)
24 pnfnemnf 10685 . . . . . . . . 9 +∞ ≠ -∞
25 neeq1 3049 . . . . . . . . 9 (𝐷 = +∞ → (𝐷 ≠ -∞ ↔ +∞ ≠ -∞))
2624, 25mpbiri 261 . . . . . . . 8 (𝐷 = +∞ → 𝐷 ≠ -∞)
27 xaddpnf1 12607 . . . . . . . 8 ((𝐷 ∈ ℝ*𝐷 ≠ -∞) → (𝐷 +𝑒 +∞) = +∞)
2823, 26, 27syl2anc 587 . . . . . . 7 (𝐷 = +∞ → (𝐷 +𝑒 +∞) = +∞)
29 oveq2 7143 . . . . . . 7 (𝐷 = +∞ → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 +∞))
30 id 22 . . . . . . 7 (𝐷 = +∞ → 𝐷 = +∞)
3128, 29, 303eqtr4d 2843 . . . . . 6 (𝐷 = +∞ → (𝐷 +𝑒 𝐷) = 𝐷)
3220, 31jaoi 854 . . . . 5 ((𝐷 = 0 ∨ 𝐷 = +∞) → (𝐷 +𝑒 𝐷) = 𝐷)
3313, 32syl6 35 . . . 4 (𝜑 → (𝐴 = 𝐵 → (𝐷 +𝑒 𝐷) = 𝐷))
3433imp 410 . . 3 ((𝜑𝐴 = 𝐵) → (𝐷 +𝑒 𝐷) = 𝐷)
35 simpll 766 . . . . . . 7 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝜑)
36 eqeq2 2810 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝑘 = 𝐴𝑘 = 𝐵))
3736biimprd 251 . . . . . . . . 9 (𝐴 = 𝐵 → (𝑘 = 𝐵𝑘 = 𝐴))
381, 37syl 17 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → (𝑘 = 𝐵𝑘 = 𝐴))
3938imp 410 . . . . . . 7 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝑘 = 𝐴)
4035, 39, 7syl2anc 587 . . . . . 6 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝐶 = 𝐷)
41 esumpr.4 . . . . . . 7 (𝜑𝐵𝑊)
4241adantr 484 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐵𝑊)
439adantr 484 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞))
4440, 42, 43esumsn 31434 . . . . 5 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐷)
45 esumpr.2 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
46 esumpr.6 . . . . . . 7 (𝜑𝐸 ∈ (0[,]+∞))
4745, 41, 46esumsn 31434 . . . . . 6 (𝜑 → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸)
4847adantr 484 . . . . 5 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸)
4944, 48eqtr3d 2835 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐷 = 𝐸)
5049oveq2d 7151 . . 3 ((𝜑𝐴 = 𝐵) → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 𝐸))
5112, 34, 503eqtr2d 2839 . 2 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
527adantlr 714 . . 3 (((𝜑𝐴𝐵) ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷)
5345adantlr 714 . . 3 (((𝜑𝐴𝐵) ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸)
548adantr 484 . . 3 ((𝜑𝐴𝐵) → 𝐴𝑉)
5541adantr 484 . . 3 ((𝜑𝐴𝐵) → 𝐵𝑊)
569adantr 484 . . 3 ((𝜑𝐴𝐵) → 𝐷 ∈ (0[,]+∞))
5746adantr 484 . . 3 ((𝜑𝐴𝐵) → 𝐸 ∈ (0[,]+∞))
58 simpr 488 . . 3 ((𝜑𝐴𝐵) → 𝐴𝐵)
5952, 53, 54, 55, 56, 57, 58esumpr 31435 . 2 ((𝜑𝐴𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
6051, 59pm2.61dane 3074 1 (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  {csn 4525  {cpr 4527  (class class class)co 7135  0cc0 10526  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   +𝑒 cxad 12493  [,]cicc 12729  Σ*cesum 31396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-ordt 16766  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-ps 17802  df-tsr 17803  df-plusf 17843  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-subrg 19526  df-abv 19581  df-lmod 19629  df-scaf 19630  df-sra 19937  df-rgmod 19938  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-tmd 22677  df-tgp 22678  df-tsms 22732  df-trg 22765  df-xms 22927  df-ms 22928  df-tms 22929  df-nm 23189  df-ngp 23190  df-nrg 23192  df-nlm 23193  df-ii 23482  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-esum 31397
This theorem is referenced by:  measxun2  31579  measssd  31584  carsgclctun  31689
  Copyright terms: Public domain W3C validator