Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpr2 Structured version   Visualization version   GIF version

Theorem esumpr2 33053
Description: Extended sum over a pair, with a relaxed condition compared to esumpr 33052. (Contributed by Thierry Arnoux, 2-Jan-2017.)
Hypotheses
Ref Expression
esumpr.1 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
esumpr.2 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
esumpr.3 (𝜑𝐴𝑉)
esumpr.4 (𝜑𝐵𝑊)
esumpr.5 (𝜑𝐷 ∈ (0[,]+∞))
esumpr.6 (𝜑𝐸 ∈ (0[,]+∞))
esumpr2.1 (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞)))
Assertion
Ref Expression
esumpr2 (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝜑,𝑘   𝑘,𝑉   𝑘,𝑊
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem esumpr2
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
2 dfsn2 4640 . . . . . 6 {𝐴} = {𝐴, 𝐴}
3 preq2 4737 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
42, 3eqtr2id 2785 . . . . 5 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
5 esumeq1 33020 . . . . 5 ({𝐴, 𝐵} = {𝐴} → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ {𝐴}𝐶)
61, 4, 53syl 18 . . . 4 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ {𝐴}𝐶)
7 esumpr.1 . . . . . 6 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
8 esumpr.3 . . . . . 6 (𝜑𝐴𝑉)
9 esumpr.5 . . . . . 6 (𝜑𝐷 ∈ (0[,]+∞))
107, 8, 9esumsn 33051 . . . . 5 (𝜑 → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷)
1110adantr 481 . . . 4 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷)
126, 11eqtrd 2772 . . 3 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = 𝐷)
13 esumpr2.1 . . . . 5 (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞)))
14 oveq2 7413 . . . . . . 7 (𝐷 = 0 → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 0))
15 0xr 11257 . . . . . . . . 9 0 ∈ ℝ*
16 eleq1 2821 . . . . . . . . 9 (𝐷 = 0 → (𝐷 ∈ ℝ* ↔ 0 ∈ ℝ*))
1715, 16mpbiri 257 . . . . . . . 8 (𝐷 = 0 → 𝐷 ∈ ℝ*)
18 xaddrid 13216 . . . . . . . 8 (𝐷 ∈ ℝ* → (𝐷 +𝑒 0) = 𝐷)
1917, 18syl 17 . . . . . . 7 (𝐷 = 0 → (𝐷 +𝑒 0) = 𝐷)
2014, 19eqtrd 2772 . . . . . 6 (𝐷 = 0 → (𝐷 +𝑒 𝐷) = 𝐷)
21 pnfxr 11264 . . . . . . . . 9 +∞ ∈ ℝ*
22 eleq1 2821 . . . . . . . . 9 (𝐷 = +∞ → (𝐷 ∈ ℝ* ↔ +∞ ∈ ℝ*))
2321, 22mpbiri 257 . . . . . . . 8 (𝐷 = +∞ → 𝐷 ∈ ℝ*)
24 pnfnemnf 11265 . . . . . . . . 9 +∞ ≠ -∞
25 neeq1 3003 . . . . . . . . 9 (𝐷 = +∞ → (𝐷 ≠ -∞ ↔ +∞ ≠ -∞))
2624, 25mpbiri 257 . . . . . . . 8 (𝐷 = +∞ → 𝐷 ≠ -∞)
27 xaddpnf1 13201 . . . . . . . 8 ((𝐷 ∈ ℝ*𝐷 ≠ -∞) → (𝐷 +𝑒 +∞) = +∞)
2823, 26, 27syl2anc 584 . . . . . . 7 (𝐷 = +∞ → (𝐷 +𝑒 +∞) = +∞)
29 oveq2 7413 . . . . . . 7 (𝐷 = +∞ → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 +∞))
30 id 22 . . . . . . 7 (𝐷 = +∞ → 𝐷 = +∞)
3128, 29, 303eqtr4d 2782 . . . . . 6 (𝐷 = +∞ → (𝐷 +𝑒 𝐷) = 𝐷)
3220, 31jaoi 855 . . . . 5 ((𝐷 = 0 ∨ 𝐷 = +∞) → (𝐷 +𝑒 𝐷) = 𝐷)
3313, 32syl6 35 . . . 4 (𝜑 → (𝐴 = 𝐵 → (𝐷 +𝑒 𝐷) = 𝐷))
3433imp 407 . . 3 ((𝜑𝐴 = 𝐵) → (𝐷 +𝑒 𝐷) = 𝐷)
35 simpll 765 . . . . . . 7 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝜑)
36 eqeq2 2744 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝑘 = 𝐴𝑘 = 𝐵))
3736biimprd 247 . . . . . . . . 9 (𝐴 = 𝐵 → (𝑘 = 𝐵𝑘 = 𝐴))
381, 37syl 17 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → (𝑘 = 𝐵𝑘 = 𝐴))
3938imp 407 . . . . . . 7 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝑘 = 𝐴)
4035, 39, 7syl2anc 584 . . . . . 6 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝐶 = 𝐷)
41 esumpr.4 . . . . . . 7 (𝜑𝐵𝑊)
4241adantr 481 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐵𝑊)
439adantr 481 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞))
4440, 42, 43esumsn 33051 . . . . 5 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐷)
45 esumpr.2 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
46 esumpr.6 . . . . . . 7 (𝜑𝐸 ∈ (0[,]+∞))
4745, 41, 46esumsn 33051 . . . . . 6 (𝜑 → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸)
4847adantr 481 . . . . 5 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸)
4944, 48eqtr3d 2774 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐷 = 𝐸)
5049oveq2d 7421 . . 3 ((𝜑𝐴 = 𝐵) → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 𝐸))
5112, 34, 503eqtr2d 2778 . 2 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
527adantlr 713 . . 3 (((𝜑𝐴𝐵) ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷)
5345adantlr 713 . . 3 (((𝜑𝐴𝐵) ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸)
548adantr 481 . . 3 ((𝜑𝐴𝐵) → 𝐴𝑉)
5541adantr 481 . . 3 ((𝜑𝐴𝐵) → 𝐵𝑊)
569adantr 481 . . 3 ((𝜑𝐴𝐵) → 𝐷 ∈ (0[,]+∞))
5746adantr 481 . . 3 ((𝜑𝐴𝐵) → 𝐸 ∈ (0[,]+∞))
58 simpr 485 . . 3 ((𝜑𝐴𝐵) → 𝐴𝐵)
5952, 53, 54, 55, 56, 57, 58esumpr 33052 . 2 ((𝜑𝐴𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
6051, 59pm2.61dane 3029 1 (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  {csn 4627  {cpr 4629  (class class class)co 7405  0cc0 11106  +∞cpnf 11241  -∞cmnf 11242  *cxr 11243   +𝑒 cxad 13086  [,]cicc 13323  Σ*cesum 33013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-ordt 17443  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-ps 18515  df-tsr 18516  df-plusf 18556  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-subrg 20353  df-abv 20417  df-lmod 20465  df-scaf 20466  df-sra 20777  df-rgmod 20778  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-fbas 20933  df-fg 20934  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-nei 22593  df-lp 22631  df-perf 22632  df-cn 22722  df-cnp 22723  df-haus 22810  df-tx 23057  df-hmeo 23250  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-tmd 23567  df-tgp 23568  df-tsms 23622  df-trg 23655  df-xms 23817  df-ms 23818  df-tms 23819  df-nm 24082  df-ngp 24083  df-nrg 24085  df-nlm 24086  df-ii 24384  df-cncf 24385  df-limc 25374  df-dv 25375  df-log 26056  df-esum 33014
This theorem is referenced by:  measxun2  33196  measssd  33201  carsgclctun  33308
  Copyright terms: Public domain W3C validator