| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpr2 | Structured version Visualization version GIF version | ||
| Description: Extended sum over a pair, with a relaxed condition compared to esumpr 34049. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| esumpr.1 | ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) |
| esumpr.2 | ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) |
| esumpr.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumpr.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| esumpr.5 | ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) |
| esumpr.6 | ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) |
| esumpr2.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞))) |
| Ref | Expression |
|---|---|
| esumpr2 | ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 2 | dfsn2 4598 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 3 | preq2 4694 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
| 4 | 2, 3 | eqtr2id 2777 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
| 5 | esumeq1 34017 | . . . . 5 ⊢ ({𝐴, 𝐵} = {𝐴} → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ {𝐴}𝐶) | |
| 6 | 1, 4, 5 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ {𝐴}𝐶) |
| 7 | esumpr.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) | |
| 8 | esumpr.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 9 | esumpr.5 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) | |
| 10 | 7, 8, 9 | esumsn 34048 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷) |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷) |
| 12 | 6, 11 | eqtrd 2764 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = 𝐷) |
| 13 | esumpr2.1 | . . . . 5 ⊢ (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞))) | |
| 14 | oveq2 7377 | . . . . . . 7 ⊢ (𝐷 = 0 → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 0)) | |
| 15 | 0xr 11197 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
| 16 | eleq1 2816 | . . . . . . . . 9 ⊢ (𝐷 = 0 → (𝐷 ∈ ℝ* ↔ 0 ∈ ℝ*)) | |
| 17 | 15, 16 | mpbiri 258 | . . . . . . . 8 ⊢ (𝐷 = 0 → 𝐷 ∈ ℝ*) |
| 18 | xaddrid 13177 | . . . . . . . 8 ⊢ (𝐷 ∈ ℝ* → (𝐷 +𝑒 0) = 𝐷) | |
| 19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ (𝐷 = 0 → (𝐷 +𝑒 0) = 𝐷) |
| 20 | 14, 19 | eqtrd 2764 | . . . . . 6 ⊢ (𝐷 = 0 → (𝐷 +𝑒 𝐷) = 𝐷) |
| 21 | pnfxr 11204 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
| 22 | eleq1 2816 | . . . . . . . . 9 ⊢ (𝐷 = +∞ → (𝐷 ∈ ℝ* ↔ +∞ ∈ ℝ*)) | |
| 23 | 21, 22 | mpbiri 258 | . . . . . . . 8 ⊢ (𝐷 = +∞ → 𝐷 ∈ ℝ*) |
| 24 | pnfnemnf 11205 | . . . . . . . . 9 ⊢ +∞ ≠ -∞ | |
| 25 | neeq1 2987 | . . . . . . . . 9 ⊢ (𝐷 = +∞ → (𝐷 ≠ -∞ ↔ +∞ ≠ -∞)) | |
| 26 | 24, 25 | mpbiri 258 | . . . . . . . 8 ⊢ (𝐷 = +∞ → 𝐷 ≠ -∞) |
| 27 | xaddpnf1 13162 | . . . . . . . 8 ⊢ ((𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞) → (𝐷 +𝑒 +∞) = +∞) | |
| 28 | 23, 26, 27 | syl2anc 584 | . . . . . . 7 ⊢ (𝐷 = +∞ → (𝐷 +𝑒 +∞) = +∞) |
| 29 | oveq2 7377 | . . . . . . 7 ⊢ (𝐷 = +∞ → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 +∞)) | |
| 30 | id 22 | . . . . . . 7 ⊢ (𝐷 = +∞ → 𝐷 = +∞) | |
| 31 | 28, 29, 30 | 3eqtr4d 2774 | . . . . . 6 ⊢ (𝐷 = +∞ → (𝐷 +𝑒 𝐷) = 𝐷) |
| 32 | 20, 31 | jaoi 857 | . . . . 5 ⊢ ((𝐷 = 0 ∨ 𝐷 = +∞) → (𝐷 +𝑒 𝐷) = 𝐷) |
| 33 | 13, 32 | syl6 35 | . . . 4 ⊢ (𝜑 → (𝐴 = 𝐵 → (𝐷 +𝑒 𝐷) = 𝐷)) |
| 34 | 33 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐷 +𝑒 𝐷) = 𝐷) |
| 35 | simpll 766 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝜑) | |
| 36 | eqeq2 2741 | . . . . . . . . . 10 ⊢ (𝐴 = 𝐵 → (𝑘 = 𝐴 ↔ 𝑘 = 𝐵)) | |
| 37 | 36 | biimprd 248 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (𝑘 = 𝐵 → 𝑘 = 𝐴)) |
| 38 | 1, 37 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝑘 = 𝐵 → 𝑘 = 𝐴)) |
| 39 | 38 | imp 406 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝑘 = 𝐴) |
| 40 | 35, 39, 7 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝐶 = 𝐷) |
| 41 | esumpr.4 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 42 | 41 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝑊) |
| 43 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
| 44 | 40, 42, 43 | esumsn 34048 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 45 | esumpr.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) | |
| 46 | esumpr.6 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) | |
| 47 | 45, 41, 46 | esumsn 34048 | . . . . . 6 ⊢ (𝜑 → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸) |
| 48 | 47 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸) |
| 49 | 44, 48 | eqtr3d 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐷 = 𝐸) |
| 50 | 49 | oveq2d 7385 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 𝐸)) |
| 51 | 12, 34, 50 | 3eqtr2d 2770 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸)) |
| 52 | 7 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) |
| 53 | 45 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) |
| 54 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑉) |
| 55 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑊) |
| 56 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐷 ∈ (0[,]+∞)) |
| 57 | 46 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐸 ∈ (0[,]+∞)) |
| 58 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) | |
| 59 | 52, 53, 54, 55, 56, 57, 58 | esumpr 34049 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸)) |
| 60 | 51, 59 | pm2.61dane 3012 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {csn 4585 {cpr 4587 (class class class)co 7369 0cc0 11044 +∞cpnf 11181 -∞cmnf 11182 ℝ*cxr 11183 +𝑒 cxad 13046 [,]cicc 13285 Σ*cesum 34010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-sin 16011 df-cos 16012 df-pi 16014 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-ordt 17440 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-ps 18507 df-tsr 18508 df-plusf 18548 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-subrng 20466 df-subrg 20490 df-abv 20729 df-lmod 20800 df-scaf 20801 df-sra 21112 df-rgmod 21113 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lp 23056 df-perf 23057 df-cn 23147 df-cnp 23148 df-haus 23235 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-tmd 23992 df-tgp 23993 df-tsms 24047 df-trg 24080 df-xms 24241 df-ms 24242 df-tms 24243 df-nm 24503 df-ngp 24504 df-nrg 24506 df-nlm 24507 df-ii 24803 df-cncf 24804 df-limc 25800 df-dv 25801 df-log 26498 df-esum 34011 |
| This theorem is referenced by: measxun2 34193 measssd 34198 carsgclctun 34305 |
| Copyright terms: Public domain | W3C validator |