MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnemnf Structured version   Visualization version   GIF version

Theorem hashnemnf 14250
Description: The size of a set is never minus infinity. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Assertion
Ref Expression
hashnemnf (𝐴𝑉 → (♯‘𝐴) ≠ -∞)

Proof of Theorem hashnemnf
StepHypRef Expression
1 hashnn0pnf 14248 . 2 (𝐴𝑉 → ((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞))
2 mnfnre 11203 . . . . . 6 -∞ ∉ ℝ
3 df-nel 3047 . . . . . . 7 (-∞ ∉ ℝ ↔ ¬ -∞ ∈ ℝ)
4 nn0re 12427 . . . . . . . 8 (-∞ ∈ ℕ0 → -∞ ∈ ℝ)
54con3i 154 . . . . . . 7 (¬ -∞ ∈ ℝ → ¬ -∞ ∈ ℕ0)
63, 5sylbi 216 . . . . . 6 (-∞ ∉ ℝ → ¬ -∞ ∈ ℕ0)
72, 6ax-mp 5 . . . . 5 ¬ -∞ ∈ ℕ0
8 eleq1 2822 . . . . 5 ((♯‘𝐴) = -∞ → ((♯‘𝐴) ∈ ℕ0 ↔ -∞ ∈ ℕ0))
97, 8mtbiri 327 . . . 4 ((♯‘𝐴) = -∞ → ¬ (♯‘𝐴) ∈ ℕ0)
109necon2ai 2970 . . 3 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ≠ -∞)
11 pnfnemnf 11215 . . . 4 +∞ ≠ -∞
12 neeq1 3003 . . . 4 ((♯‘𝐴) = +∞ → ((♯‘𝐴) ≠ -∞ ↔ +∞ ≠ -∞))
1311, 12mpbiri 258 . . 3 ((♯‘𝐴) = +∞ → (♯‘𝐴) ≠ -∞)
1410, 13jaoi 856 . 2 (((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞) → (♯‘𝐴) ≠ -∞)
151, 14syl 17 1 (𝐴𝑉 → (♯‘𝐴) ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846   = wceq 1542  wcel 2107  wne 2940  wnel 3046  cfv 6497  cr 11055  +∞cpnf 11191  -∞cmnf 11192  0cn0 12418  chash 14236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-xnn0 12491  df-z 12505  df-uz 12769  df-hash 14237
This theorem is referenced by:  hashinfxadd  14291
  Copyright terms: Public domain W3C validator