![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | rgenw 3100 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
3 | 2 | rgenw 3100 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 |
This theorem depends on definitions: df-bi 199 df-ral 3093 |
This theorem is referenced by: porpss 7273 fnmpoi 7578 relmpoopab 7599 cantnfvalf 8924 ixxf 12567 fzf 12715 fzof 12854 rexfiuz 14571 sadcf 15665 prdsval 16587 prdsds 16596 homfeq 16825 comfeq 16837 wunnat 17087 eldmcoa 17186 catcfuccl 17230 relxpchom 17292 catcxpccl 17318 plusffval 17718 grpsubfval 17937 lsmass 18557 efgval2 18611 dmdprd 18873 dprdval 18878 scaffval 19377 ipffval 20497 eltx 21883 xkotf 21900 txcnp 21935 txcnmpt 21939 txrest 21946 txlm 21963 txflf 22321 dscmet 22888 xrtgioo 23120 ishtpy 23282 opnmblALT 23910 tglnfn 26038 wwlksonvtx 27344 wspthnonp 27348 clwwlknondisj 27642 hlimreui 28798 aciunf1lem 30172 ofoprabco 30174 dya2iocct 31183 icoreresf 34075 curfv 34313 ptrest 34332 poimirlem26 34359 rrnval 34547 atpsubN 36334 clsk3nimkb 39753 |
Copyright terms: Public domain | W3C validator |