| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | rgenw 3055 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
| 3 | 2 | rgenw 3055 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3052 |
| This theorem is referenced by: porpss 7721 fnmpoi 8069 mptmpoopabbrd 8079 relmpoopab 8093 cantnfvalf 9679 ixxf 13372 fzf 13528 fzof 13673 rexfiuz 15366 sadcf 16472 prdsvallem 17468 prdsds 17478 homfeq 17706 comfeq 17718 wunnat 17972 eldmcoa 18078 catcfuccl 18131 relxpchom 18193 catcxpccl 18219 plusffval 18624 grpsubfval 18966 lsmass 19650 efgval2 19705 dmdprd 19981 dprdval 19986 scaffval 20837 ipffval 21608 psdmul 22104 eltx 23506 xkotf 23523 txcnp 23558 txcnmpt 23562 txrest 23569 txlm 23586 txflf 23944 dscmet 24511 xrtgioo 24746 ishtpy 24922 opnmblALT 25556 tglnfn 28526 wwlksonvtx 29837 wspthnonp 29841 clwwlknondisj 30092 hlimreui 31220 aciunf1lem 32640 ofoprabco 32642 lsmssass 33417 dya2iocct 34312 icoreresf 37370 curfv 37624 ptrest 37643 poimirlem26 37670 rrnval 37851 atpsubN 39772 clsk3nimkb 44064 2arymaptf1 48633 |
| Copyright terms: Public domain | W3C validator |