![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | rgenw 3071 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
3 | 2 | rgenw 3071 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 |
This theorem depends on definitions: df-bi 207 df-ral 3068 |
This theorem is referenced by: porpss 7762 fnmpoi 8111 mptmpoopabbrd 8121 relmpoopab 8135 cantnfvalf 9734 ixxf 13417 fzf 13571 fzof 13713 rexfiuz 15396 sadcf 16499 prdsvallem 17514 prdsds 17524 homfeq 17752 comfeq 17764 wunnat 18024 wunnatOLD 18025 eldmcoa 18132 catcfuccl 18186 catcfucclOLD 18187 relxpchom 18250 catcxpccl 18276 catcxpcclOLD 18277 plusffval 18684 grpsubfval 19023 lsmass 19711 efgval2 19766 dmdprd 20042 dprdval 20047 scaffval 20900 ipffval 21689 psdmul 22193 eltx 23597 xkotf 23614 txcnp 23649 txcnmpt 23653 txrest 23660 txlm 23677 txflf 24035 dscmet 24606 xrtgioo 24847 ishtpy 25023 opnmblALT 25657 tglnfn 28573 wwlksonvtx 29888 wspthnonp 29892 clwwlknondisj 30143 hlimreui 31271 aciunf1lem 32680 ofoprabco 32682 lsmssass 33395 dya2iocct 34245 icoreresf 37318 curfv 37560 ptrest 37579 poimirlem26 37606 rrnval 37787 atpsubN 39710 clsk3nimkb 44002 2arymaptf1 48387 |
Copyright terms: Public domain | W3C validator |