![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | rgenw 3066 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
3 | 2 | rgenw 3066 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: porpss 7717 fnmpoi 8056 relmpoopab 8080 cantnfvalf 9660 ixxf 13334 fzf 13488 fzof 13629 rexfiuz 15294 sadcf 16394 prdsvallem 17400 prdsds 17410 homfeq 17638 comfeq 17650 wunnat 17907 wunnatOLD 17908 eldmcoa 18015 catcfuccl 18069 catcfucclOLD 18070 relxpchom 18133 catcxpccl 18159 catcxpcclOLD 18160 plusffval 18567 grpsubfval 18868 lsmass 19537 efgval2 19592 dmdprd 19868 dprdval 19873 scaffval 20490 ipffval 21201 eltx 23072 xkotf 23089 txcnp 23124 txcnmpt 23128 txrest 23135 txlm 23152 txflf 23510 dscmet 24081 xrtgioo 24322 ishtpy 24488 opnmblALT 25120 tglnfn 27829 wwlksonvtx 29140 wspthnonp 29144 clwwlknondisj 29395 hlimreui 30523 aciunf1lem 31918 ofoprabco 31920 lsmssass 32543 dya2iocct 33310 icoreresf 36281 curfv 36516 ptrest 36535 poimirlem26 36562 rrnval 36743 atpsubN 38672 clsk3nimkb 42839 2arymaptf1 47387 |
Copyright terms: Public domain | W3C validator |