Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | rgenw 3073 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
3 | 2 | rgenw 3073 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 |
This theorem depends on definitions: df-bi 210 df-ral 3066 |
This theorem is referenced by: porpss 7515 fnmpoi 7840 relmpoopab 7862 cantnfvalf 9280 ixxf 12945 fzf 13099 fzof 13240 rexfiuz 14911 sadcf 16012 prdsvallem 16959 prdsds 16969 homfeq 17197 comfeq 17209 wunnat 17463 wunnatOLD 17464 eldmcoa 17571 catcfuccl 17625 catcfucclOLD 17626 relxpchom 17688 catcxpccl 17714 catcxpcclOLD 17715 plusffval 18120 grpsubfval 18411 lsmass 19059 efgval2 19114 dmdprd 19385 dprdval 19390 scaffval 19917 ipffval 20610 eltx 22465 xkotf 22482 txcnp 22517 txcnmpt 22521 txrest 22528 txlm 22545 txflf 22903 dscmet 23470 xrtgioo 23703 ishtpy 23869 opnmblALT 24500 tglnfn 26638 wwlksonvtx 27939 wspthnonp 27943 clwwlknondisj 28194 hlimreui 29320 aciunf1lem 30719 ofoprabco 30721 lsmssass 31304 dya2iocct 31959 icoreresf 35260 curfv 35494 ptrest 35513 poimirlem26 35540 rrnval 35722 atpsubN 37504 clsk3nimkb 41327 2arymaptf1 45672 |
Copyright terms: Public domain | W3C validator |