| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | rgenw 3051 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
| 3 | 2 | rgenw 3051 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
| This theorem depends on definitions: df-bi 207 df-ral 3048 |
| This theorem is referenced by: porpss 7660 fnmpoi 8002 mptmpoopabbrd 8012 relmpoopab 8024 cantnfvalf 9555 ixxf 13255 fzf 13411 fzof 13556 rexfiuz 15255 sadcf 16364 prdsvallem 17358 prdsds 17368 homfeq 17600 comfeq 17612 wunnat 17866 eldmcoa 17972 catcfuccl 18025 relxpchom 18087 catcxpccl 18113 plusffval 18554 grpsubfval 18896 lsmass 19581 efgval2 19636 dmdprd 19912 dprdval 19917 scaffval 20813 ipffval 21585 psdmul 22081 eltx 23483 xkotf 23500 txcnp 23535 txcnmpt 23539 txrest 23546 txlm 23563 txflf 23921 dscmet 24487 xrtgioo 24722 ishtpy 24898 opnmblALT 25531 zsoring 28332 tglnfn 28525 wwlksonvtx 29833 wspthnonp 29837 clwwlknondisj 30091 hlimreui 31219 aciunf1lem 32644 ofoprabco 32646 lsmssass 33367 dya2iocct 34293 icoreresf 37396 curfv 37639 ptrest 37658 poimirlem26 37685 rrnval 37866 atpsubN 39851 clsk3nimkb 44132 2arymaptf1 48753 |
| Copyright terms: Public domain | W3C validator |