| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | rgenw 3048 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
| 3 | 2 | rgenw 3048 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: porpss 7703 fnmpoi 8049 mptmpoopabbrd 8059 relmpoopab 8073 cantnfvalf 9618 ixxf 13316 fzf 13472 fzof 13617 rexfiuz 15314 sadcf 16423 prdsvallem 17417 prdsds 17427 homfeq 17655 comfeq 17667 wunnat 17921 eldmcoa 18027 catcfuccl 18080 relxpchom 18142 catcxpccl 18168 plusffval 18573 grpsubfval 18915 lsmass 19599 efgval2 19654 dmdprd 19930 dprdval 19935 scaffval 20786 ipffval 21557 psdmul 22053 eltx 23455 xkotf 23472 txcnp 23507 txcnmpt 23511 txrest 23518 txlm 23535 txflf 23893 dscmet 24460 xrtgioo 24695 ishtpy 24871 opnmblALT 25504 tglnfn 28474 wwlksonvtx 29785 wspthnonp 29789 clwwlknondisj 30040 hlimreui 31168 aciunf1lem 32586 ofoprabco 32588 lsmssass 33373 dya2iocct 34271 icoreresf 37340 curfv 37594 ptrest 37613 poimirlem26 37640 rrnval 37821 atpsubN 39747 clsk3nimkb 44029 2arymaptf1 48642 |
| Copyright terms: Public domain | W3C validator |