| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | rgenw 3048 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
| 3 | 2 | rgenw 3048 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: porpss 7663 fnmpoi 8005 mptmpoopabbrd 8015 relmpoopab 8027 cantnfvalf 9561 ixxf 13258 fzf 13414 fzof 13559 rexfiuz 15255 sadcf 16364 prdsvallem 17358 prdsds 17368 homfeq 17600 comfeq 17612 wunnat 17866 eldmcoa 17972 catcfuccl 18025 relxpchom 18087 catcxpccl 18113 plusffval 18520 grpsubfval 18862 lsmass 19548 efgval2 19603 dmdprd 19879 dprdval 19884 scaffval 20783 ipffval 21555 psdmul 22051 eltx 23453 xkotf 23470 txcnp 23505 txcnmpt 23509 txrest 23516 txlm 23533 txflf 23891 dscmet 24458 xrtgioo 24693 ishtpy 24869 opnmblALT 25502 zsoring 28301 tglnfn 28492 wwlksonvtx 29800 wspthnonp 29804 clwwlknondisj 30055 hlimreui 31183 aciunf1lem 32606 ofoprabco 32608 lsmssass 33340 dya2iocct 34254 icoreresf 37336 curfv 37590 ptrest 37609 poimirlem26 37636 rrnval 37817 atpsubN 39742 clsk3nimkb 44023 2arymaptf1 48648 |
| Copyright terms: Public domain | W3C validator |