| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | rgenw 3048 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
| 3 | 2 | rgenw 3048 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: porpss 7683 fnmpoi 8028 mptmpoopabbrd 8038 relmpoopab 8050 cantnfvalf 9594 ixxf 13292 fzf 13448 fzof 13593 rexfiuz 15290 sadcf 16399 prdsvallem 17393 prdsds 17403 homfeq 17635 comfeq 17647 wunnat 17901 eldmcoa 18007 catcfuccl 18060 relxpchom 18122 catcxpccl 18148 plusffval 18555 grpsubfval 18897 lsmass 19583 efgval2 19638 dmdprd 19914 dprdval 19919 scaffval 20818 ipffval 21590 psdmul 22086 eltx 23488 xkotf 23505 txcnp 23540 txcnmpt 23544 txrest 23551 txlm 23568 txflf 23926 dscmet 24493 xrtgioo 24728 ishtpy 24904 opnmblALT 25537 zsoring 28336 tglnfn 28527 wwlksonvtx 29835 wspthnonp 29839 clwwlknondisj 30090 hlimreui 31218 aciunf1lem 32636 ofoprabco 32638 lsmssass 33366 dya2iocct 34264 icoreresf 37333 curfv 37587 ptrest 37606 poimirlem26 37633 rrnval 37814 atpsubN 39740 clsk3nimkb 44022 2arymaptf1 48635 |
| Copyright terms: Public domain | W3C validator |