| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | rgenw 3049 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
| 3 | 2 | rgenw 3049 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3046 |
| This theorem is referenced by: porpss 7706 fnmpoi 8052 mptmpoopabbrd 8062 relmpoopab 8076 cantnfvalf 9625 ixxf 13323 fzf 13479 fzof 13624 rexfiuz 15321 sadcf 16430 prdsvallem 17424 prdsds 17434 homfeq 17662 comfeq 17674 wunnat 17928 eldmcoa 18034 catcfuccl 18087 relxpchom 18149 catcxpccl 18175 plusffval 18580 grpsubfval 18922 lsmass 19606 efgval2 19661 dmdprd 19937 dprdval 19942 scaffval 20793 ipffval 21564 psdmul 22060 eltx 23462 xkotf 23479 txcnp 23514 txcnmpt 23518 txrest 23525 txlm 23542 txflf 23900 dscmet 24467 xrtgioo 24702 ishtpy 24878 opnmblALT 25511 tglnfn 28481 wwlksonvtx 29792 wspthnonp 29796 clwwlknondisj 30047 hlimreui 31175 aciunf1lem 32593 ofoprabco 32595 lsmssass 33380 dya2iocct 34278 icoreresf 37347 curfv 37601 ptrest 37620 poimirlem26 37647 rrnval 37828 atpsubN 39754 clsk3nimkb 44036 2arymaptf1 48646 |
| Copyright terms: Public domain | W3C validator |