![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | rgenw 3065 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
3 | 2 | rgenw 3065 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 |
This theorem depends on definitions: df-bi 206 df-ral 3062 |
This theorem is referenced by: porpss 7716 fnmpoi 8055 relmpoopab 8079 cantnfvalf 9659 ixxf 13333 fzf 13487 fzof 13628 rexfiuz 15293 sadcf 16393 prdsvallem 17399 prdsds 17409 homfeq 17637 comfeq 17649 wunnat 17906 wunnatOLD 17907 eldmcoa 18014 catcfuccl 18068 catcfucclOLD 18069 relxpchom 18132 catcxpccl 18158 catcxpcclOLD 18159 plusffval 18566 grpsubfval 18867 lsmass 19536 efgval2 19591 dmdprd 19867 dprdval 19872 scaffval 20489 ipffval 21200 eltx 23071 xkotf 23088 txcnp 23123 txcnmpt 23127 txrest 23134 txlm 23151 txflf 23509 dscmet 24080 xrtgioo 24321 ishtpy 24487 opnmblALT 25119 tglnfn 27795 wwlksonvtx 29106 wspthnonp 29110 clwwlknondisj 29361 hlimreui 30487 aciunf1lem 31882 ofoprabco 31884 lsmssass 32507 dya2iocct 33274 icoreresf 36228 curfv 36463 ptrest 36482 poimirlem26 36509 rrnval 36690 atpsubN 38619 clsk3nimkb 42781 2arymaptf1 47329 |
Copyright terms: Public domain | W3C validator |