MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgen2w Structured version   Visualization version   GIF version

Theorem rgen2w 3049
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
rgenw.1 𝜑
Assertion
Ref Expression
rgen2w 𝑥𝐴𝑦𝐵 𝜑

Proof of Theorem rgen2w
StepHypRef Expression
1 rgenw.1 . . 3 𝜑
21rgenw 3048 . 2 𝑦𝐵 𝜑
32rgenw 3048 1 𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff setvar class
Syntax hints:  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795
This theorem depends on definitions:  df-bi 207  df-ral 3045
This theorem is referenced by:  porpss  7663  fnmpoi  8005  mptmpoopabbrd  8015  relmpoopab  8027  cantnfvalf  9561  ixxf  13258  fzf  13414  fzof  13559  rexfiuz  15255  sadcf  16364  prdsvallem  17358  prdsds  17368  homfeq  17600  comfeq  17612  wunnat  17866  eldmcoa  17972  catcfuccl  18025  relxpchom  18087  catcxpccl  18113  plusffval  18520  grpsubfval  18862  lsmass  19548  efgval2  19603  dmdprd  19879  dprdval  19884  scaffval  20783  ipffval  21555  psdmul  22051  eltx  23453  xkotf  23470  txcnp  23505  txcnmpt  23509  txrest  23516  txlm  23533  txflf  23891  dscmet  24458  xrtgioo  24693  ishtpy  24869  opnmblALT  25502  zsoring  28301  tglnfn  28492  wwlksonvtx  29800  wspthnonp  29804  clwwlknondisj  30055  hlimreui  31183  aciunf1lem  32606  ofoprabco  32608  lsmssass  33340  dya2iocct  34254  icoreresf  37336  curfv  37590  ptrest  37609  poimirlem26  37636  rrnval  37817  atpsubN  39742  clsk3nimkb  44023  2arymaptf1  48648
  Copyright terms: Public domain W3C validator