Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | rgenw 3077 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
3 | 2 | rgenw 3077 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 |
This theorem depends on definitions: df-bi 206 df-ral 3070 |
This theorem is referenced by: porpss 7589 fnmpoi 7919 relmpoopab 7943 cantnfvalf 9432 ixxf 13098 fzf 13252 fzof 13393 rexfiuz 15068 sadcf 16169 prdsvallem 17174 prdsds 17184 homfeq 17412 comfeq 17424 wunnat 17681 wunnatOLD 17682 eldmcoa 17789 catcfuccl 17843 catcfucclOLD 17844 relxpchom 17907 catcxpccl 17933 catcxpcclOLD 17934 plusffval 18341 grpsubfval 18632 lsmass 19284 efgval2 19339 dmdprd 19610 dprdval 19615 scaffval 20150 ipffval 20862 eltx 22728 xkotf 22745 txcnp 22780 txcnmpt 22784 txrest 22791 txlm 22808 txflf 23166 dscmet 23737 xrtgioo 23978 ishtpy 24144 opnmblALT 24776 tglnfn 26917 wwlksonvtx 28229 wspthnonp 28233 clwwlknondisj 28484 hlimreui 29610 aciunf1lem 31008 ofoprabco 31010 lsmssass 31599 dya2iocct 32256 icoreresf 35532 curfv 35766 ptrest 35785 poimirlem26 35812 rrnval 35994 atpsubN 37774 clsk3nimkb 41657 2arymaptf1 46010 |
Copyright terms: Public domain | W3C validator |