Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | rgenw 3075 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
3 | 2 | rgenw 3075 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 |
This theorem depends on definitions: df-bi 206 df-ral 3068 |
This theorem is referenced by: porpss 7558 fnmpoi 7883 relmpoopab 7905 cantnfvalf 9353 ixxf 13018 fzf 13172 fzof 13313 rexfiuz 14987 sadcf 16088 prdsvallem 17082 prdsds 17092 homfeq 17320 comfeq 17332 wunnat 17588 wunnatOLD 17589 eldmcoa 17696 catcfuccl 17750 catcfucclOLD 17751 relxpchom 17814 catcxpccl 17840 catcxpcclOLD 17841 plusffval 18247 grpsubfval 18538 lsmass 19190 efgval2 19245 dmdprd 19516 dprdval 19521 scaffval 20056 ipffval 20765 eltx 22627 xkotf 22644 txcnp 22679 txcnmpt 22683 txrest 22690 txlm 22707 txflf 23065 dscmet 23634 xrtgioo 23875 ishtpy 24041 opnmblALT 24672 tglnfn 26812 wwlksonvtx 28121 wspthnonp 28125 clwwlknondisj 28376 hlimreui 29502 aciunf1lem 30901 ofoprabco 30903 lsmssass 31492 dya2iocct 32147 icoreresf 35450 curfv 35684 ptrest 35703 poimirlem26 35730 rrnval 35912 atpsubN 37694 clsk3nimkb 41539 2arymaptf1 45887 |
Copyright terms: Public domain | W3C validator |