![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2w | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
rgen2w | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | rgenw 3063 | . 2 ⊢ ∀𝑦 ∈ 𝐵 𝜑 |
3 | 2 | rgenw 3063 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 |
This theorem depends on definitions: df-bi 207 df-ral 3060 |
This theorem is referenced by: porpss 7746 fnmpoi 8094 mptmpoopabbrd 8104 relmpoopab 8118 cantnfvalf 9703 ixxf 13394 fzf 13548 fzof 13693 rexfiuz 15383 sadcf 16487 prdsvallem 17501 prdsds 17511 homfeq 17739 comfeq 17751 wunnat 18011 wunnatOLD 18012 eldmcoa 18119 catcfuccl 18173 catcfucclOLD 18174 relxpchom 18237 catcxpccl 18263 catcxpcclOLD 18264 plusffval 18672 grpsubfval 19014 lsmass 19702 efgval2 19757 dmdprd 20033 dprdval 20038 scaffval 20895 ipffval 21684 psdmul 22188 eltx 23592 xkotf 23609 txcnp 23644 txcnmpt 23648 txrest 23655 txlm 23672 txflf 24030 dscmet 24601 xrtgioo 24842 ishtpy 25018 opnmblALT 25652 tglnfn 28570 wwlksonvtx 29885 wspthnonp 29889 clwwlknondisj 30140 hlimreui 31268 aciunf1lem 32679 ofoprabco 32681 lsmssass 33410 dya2iocct 34262 icoreresf 37335 curfv 37587 ptrest 37606 poimirlem26 37633 rrnval 37814 atpsubN 39736 clsk3nimkb 44030 2arymaptf1 48503 |
Copyright terms: Public domain | W3C validator |