Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwrssmgc Structured version   Visualization version   GIF version

Theorem pwrssmgc 32899
Description: Given a function 𝐹, exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
pwrssmgc.1 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (𝐹𝑛))
pwrssmgc.2 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚})
pwrssmgc.3 𝑉 = (toInc‘𝒫 𝑌)
pwrssmgc.4 𝑊 = (toInc‘𝒫 𝑋)
pwrssmgc.5 (𝜑𝑋𝐴)
pwrssmgc.6 (𝜑𝑌𝐵)
pwrssmgc.7 (𝜑𝐹:𝑋𝑌)
Assertion
Ref Expression
pwrssmgc (𝜑𝐺(𝑉MGalConn𝑊)𝐻)
Distinct variable groups:   𝑚,𝐹,𝑦   𝑛,𝐹   𝑚,𝑉,𝑦   𝑛,𝑉   𝑚,𝑊,𝑦   𝑛,𝑊   𝑚,𝑋   𝑛,𝑋   𝑚,𝑌,𝑦   𝑛,𝑌   𝜑,𝑦,𝑚   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑦,𝑚,𝑛)   𝐵(𝑦,𝑚,𝑛)   𝐺(𝑦,𝑚,𝑛)   𝐻(𝑦,𝑚,𝑛)   𝑋(𝑦)

Proof of Theorem pwrssmgc
Dummy variables 𝑖 𝑗 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwrssmgc.5 . . . . . . 7 (𝜑𝑋𝐴)
21adantr 480 . . . . . 6 ((𝜑𝑛 ∈ 𝒫 𝑌) → 𝑋𝐴)
3 cnvimass 6042 . . . . . . . 8 (𝐹𝑛) ⊆ dom 𝐹
4 pwrssmgc.7 . . . . . . . 8 (𝜑𝐹:𝑋𝑌)
53, 4fssdm 6689 . . . . . . 7 (𝜑 → (𝐹𝑛) ⊆ 𝑋)
65adantr 480 . . . . . 6 ((𝜑𝑛 ∈ 𝒫 𝑌) → (𝐹𝑛) ⊆ 𝑋)
72, 6sselpwd 5278 . . . . 5 ((𝜑𝑛 ∈ 𝒫 𝑌) → (𝐹𝑛) ∈ 𝒫 𝑋)
8 pwrssmgc.1 . . . . 5 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (𝐹𝑛))
97, 8fmptd 7068 . . . 4 (𝜑𝐺:𝒫 𝑌⟶𝒫 𝑋)
10 pwrssmgc.6 . . . . . 6 (𝜑𝑌𝐵)
11 pwexg 5328 . . . . . 6 (𝑌𝐵 → 𝒫 𝑌 ∈ V)
12 pwrssmgc.3 . . . . . . 7 𝑉 = (toInc‘𝒫 𝑌)
1312ipobas 18466 . . . . . 6 (𝒫 𝑌 ∈ V → 𝒫 𝑌 = (Base‘𝑉))
1410, 11, 133syl 18 . . . . 5 (𝜑 → 𝒫 𝑌 = (Base‘𝑉))
15 pwexg 5328 . . . . . 6 (𝑋𝐴 → 𝒫 𝑋 ∈ V)
16 pwrssmgc.4 . . . . . . 7 𝑊 = (toInc‘𝒫 𝑋)
1716ipobas 18466 . . . . . 6 (𝒫 𝑋 ∈ V → 𝒫 𝑋 = (Base‘𝑊))
181, 15, 173syl 18 . . . . 5 (𝜑 → 𝒫 𝑋 = (Base‘𝑊))
1914, 18feq23d 6665 . . . 4 (𝜑 → (𝐺:𝒫 𝑌⟶𝒫 𝑋𝐺:(Base‘𝑉)⟶(Base‘𝑊)))
209, 19mpbid 232 . . 3 (𝜑𝐺:(Base‘𝑉)⟶(Base‘𝑊))
2110adantr 480 . . . . . 6 ((𝜑𝑚 ∈ 𝒫 𝑋) → 𝑌𝐵)
22 ssrab2 4039 . . . . . . 7 {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ⊆ 𝑌
2322a1i 11 . . . . . 6 ((𝜑𝑚 ∈ 𝒫 𝑋) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ⊆ 𝑌)
2421, 23sselpwd 5278 . . . . 5 ((𝜑𝑚 ∈ 𝒫 𝑋) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ∈ 𝒫 𝑌)
25 pwrssmgc.2 . . . . 5 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚})
2624, 25fmptd 7068 . . . 4 (𝜑𝐻:𝒫 𝑋⟶𝒫 𝑌)
2718, 14feq23d 6665 . . . 4 (𝜑 → (𝐻:𝒫 𝑋⟶𝒫 𝑌𝐻:(Base‘𝑊)⟶(Base‘𝑉)))
2826, 27mpbid 232 . . 3 (𝜑𝐻:(Base‘𝑊)⟶(Base‘𝑉))
2920, 28jca 511 . 2 (𝜑 → (𝐺:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐻:(Base‘𝑊)⟶(Base‘𝑉)))
30 sneq 4595 . . . . . . . . . . . 12 (𝑦 = 𝑗 → {𝑦} = {𝑗})
3130imaeq2d 6020 . . . . . . . . . . 11 (𝑦 = 𝑗 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑗}))
3231sseq1d 3975 . . . . . . . . . 10 (𝑦 = 𝑗 → ((𝐹 “ {𝑦}) ⊆ 𝑣 ↔ (𝐹 “ {𝑗}) ⊆ 𝑣))
33 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑢 ∈ (Base‘𝑉))
3414ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑌 = (Base‘𝑉))
3533, 34eleqtrrd 2831 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑢 ∈ 𝒫 𝑌)
3635adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢 ∈ 𝒫 𝑌)
3736elpwid 4568 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢𝑌)
3837sselda 3943 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → 𝑗𝑌)
394ffund 6674 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
4039ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → Fun 𝐹)
41 snssi 4768 . . . . . . . . . . . . 13 (𝑗𝑢 → {𝑗} ⊆ 𝑢)
4241adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → {𝑗} ⊆ 𝑢)
43 sspreima 7022 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ {𝑗} ⊆ 𝑢) → (𝐹 “ {𝑗}) ⊆ (𝐹𝑢))
4440, 42, 43syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹 “ {𝑗}) ⊆ (𝐹𝑢))
45 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹𝑢) ⊆ 𝑣)
4644, 45sstrd 3954 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹 “ {𝑗}) ⊆ 𝑣)
4732, 38, 46elrabd 3658 . . . . . . . . 9 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → 𝑗 ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
4847ex 412 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → (𝑗𝑢𝑗 ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
4948ssrdv 3949 . . . . . . 7 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
50 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
514ffnd 6671 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝑋)
5251ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝐹 Fn 𝑋)
53 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖 ∈ (𝐹𝑢))
54 elpreima 7012 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝑋 → (𝑖 ∈ (𝐹𝑢) ↔ (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢)))
5554biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝑖 ∈ (𝐹𝑢)) → (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢))
5652, 53, 55syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢))
5756simprd 495 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) ∈ 𝑢)
5850, 57sseldd 3944 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
59 sneq 4595 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑖) → {𝑦} = {(𝐹𝑖)})
6059imaeq2d 6020 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑖) → (𝐹 “ {𝑦}) = (𝐹 “ {(𝐹𝑖)}))
6160sseq1d 3975 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑖) → ((𝐹 “ {𝑦}) ⊆ 𝑣 ↔ (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣))
6261elrab 3656 . . . . . . . . . . . 12 ((𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ↔ ((𝐹𝑖) ∈ 𝑌 ∧ (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣))
6362simprbi 496 . . . . . . . . . . 11 ((𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} → (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣)
6458, 63syl 17 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣)
6556simpld 494 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖𝑋)
66 eqidd 2730 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) = (𝐹𝑖))
67 fniniseg 7014 . . . . . . . . . . . 12 (𝐹 Fn 𝑋 → (𝑖 ∈ (𝐹 “ {(𝐹𝑖)}) ↔ (𝑖𝑋 ∧ (𝐹𝑖) = (𝐹𝑖))))
6867biimpar 477 . . . . . . . . . . 11 ((𝐹 Fn 𝑋 ∧ (𝑖𝑋 ∧ (𝐹𝑖) = (𝐹𝑖))) → 𝑖 ∈ (𝐹 “ {(𝐹𝑖)}))
6952, 65, 66, 68syl12anc 836 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖 ∈ (𝐹 “ {(𝐹𝑖)}))
7064, 69sseldd 3944 . . . . . . . . 9 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖𝑣)
7170ex 412 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) → (𝑖 ∈ (𝐹𝑢) → 𝑖𝑣))
7271ssrdv 3949 . . . . . . 7 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) → (𝐹𝑢) ⊆ 𝑣)
7349, 72impbida 800 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐹𝑢) ⊆ 𝑣𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
74 simpr 484 . . . . . . . . 9 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑛 = 𝑢) → 𝑛 = 𝑢)
7574imaeq2d 6020 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑛 = 𝑢) → (𝐹𝑛) = (𝐹𝑢))
764, 1fexd 7183 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
77 cnvexg 7880 . . . . . . . . . 10 (𝐹 ∈ V → 𝐹 ∈ V)
78 imaexg 7869 . . . . . . . . . 10 (𝐹 ∈ V → (𝐹𝑢) ∈ V)
7976, 77, 783syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑢) ∈ V)
8079ad2antrr 726 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐹𝑢) ∈ V)
818, 75, 35, 80fvmptd2 6958 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐺𝑢) = (𝐹𝑢))
8281sseq1d 3975 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢) ⊆ 𝑣 ↔ (𝐹𝑢) ⊆ 𝑣))
83 simpr 484 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → 𝑚 = 𝑣)
8483sseq2d 3976 . . . . . . . . 9 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → ((𝐹 “ {𝑦}) ⊆ 𝑚 ↔ (𝐹 “ {𝑦}) ⊆ 𝑣))
8584rabbidv 3410 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} = {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
86 simpr 484 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
871, 15syl 17 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑋 ∈ V)
8887ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑋 ∈ V)
8988, 17syl 17 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑋 = (Base‘𝑊))
9086, 89eleqtrrd 2831 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ 𝒫 𝑋)
9110ad2antrr 726 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑌𝐵)
92 ssrab2 4039 . . . . . . . . . 10 {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ⊆ 𝑌
9392a1i 11 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ⊆ 𝑌)
9491, 93sselpwd 5278 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ∈ 𝒫 𝑌)
9525, 85, 90, 94fvmptd2 6958 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐻𝑣) = {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
9695sseq2d 3976 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑢 ⊆ (𝐻𝑣) ↔ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
9773, 82, 963bitr4d 311 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢) ⊆ 𝑣𝑢 ⊆ (𝐻𝑣)))
989ad2antrr 726 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝐺:𝒫 𝑌⟶𝒫 𝑋)
9998, 35ffvelcdmd 7039 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐺𝑢) ∈ 𝒫 𝑋)
100 eqid 2729 . . . . . . 7 (le‘𝑊) = (le‘𝑊)
10116, 100ipole 18469 . . . . . 6 ((𝒫 𝑋 ∈ V ∧ (𝐺𝑢) ∈ 𝒫 𝑋𝑣 ∈ 𝒫 𝑋) → ((𝐺𝑢)(le‘𝑊)𝑣 ↔ (𝐺𝑢) ⊆ 𝑣))
10288, 99, 90, 101syl3anc 1373 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢)(le‘𝑊)𝑣 ↔ (𝐺𝑢) ⊆ 𝑣))
10310, 11syl 17 . . . . . . 7 (𝜑 → 𝒫 𝑌 ∈ V)
104103ad2antrr 726 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑌 ∈ V)
10526ad2antrr 726 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝐻:𝒫 𝑋⟶𝒫 𝑌)
106105, 90ffvelcdmd 7039 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐻𝑣) ∈ 𝒫 𝑌)
107 eqid 2729 . . . . . . 7 (le‘𝑉) = (le‘𝑉)
10812, 107ipole 18469 . . . . . 6 ((𝒫 𝑌 ∈ V ∧ 𝑢 ∈ 𝒫 𝑌 ∧ (𝐻𝑣) ∈ 𝒫 𝑌) → (𝑢(le‘𝑉)(𝐻𝑣) ↔ 𝑢 ⊆ (𝐻𝑣)))
109104, 35, 106, 108syl3anc 1373 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑢(le‘𝑉)(𝐻𝑣) ↔ 𝑢 ⊆ (𝐻𝑣)))
11097, 102, 1093bitr4d 311 . . . 4 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
111110anasss 466 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑉) ∧ 𝑣 ∈ (Base‘𝑊))) → ((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
112111ralrimivva 3178 . 2 (𝜑 → ∀𝑢 ∈ (Base‘𝑉)∀𝑣 ∈ (Base‘𝑊)((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
113 eqid 2729 . . 3 (Base‘𝑉) = (Base‘𝑉)
114 eqid 2729 . . 3 (Base‘𝑊) = (Base‘𝑊)
115 eqid 2729 . . 3 (𝑉MGalConn𝑊) = (𝑉MGalConn𝑊)
11612ipopos 18471 . . . 4 𝑉 ∈ Poset
117 posprs 18253 . . . 4 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
118116, 117mp1i 13 . . 3 (𝜑𝑉 ∈ Proset )
11916ipopos 18471 . . . 4 𝑊 ∈ Poset
120 posprs 18253 . . . 4 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
121119, 120mp1i 13 . . 3 (𝜑𝑊 ∈ Proset )
122113, 114, 107, 100, 115, 118, 121mgcval 32886 . 2 (𝜑 → (𝐺(𝑉MGalConn𝑊)𝐻 ↔ ((𝐺:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐻:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑢 ∈ (Base‘𝑉)∀𝑣 ∈ (Base‘𝑊)((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))))
12329, 112, 122mpbir2and 713 1 (𝜑𝐺(𝑉MGalConn𝑊)𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  Vcvv 3444  wss 3911  𝒫 cpw 4559  {csn 4585   class class class wbr 5102  cmpt 5183  ccnv 5630  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203   Proset cproset 18229  Posetcpo 18244  toInccipo 18462  MGalConncmgc 32878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-tset 17215  df-ple 17216  df-ocomp 17217  df-proset 18231  df-poset 18250  df-ipo 18463  df-mgc 32880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator