Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwrssmgc Structured version   Visualization version   GIF version

Theorem pwrssmgc 32990
Description: Given a function 𝐹, exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
pwrssmgc.1 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (𝐹𝑛))
pwrssmgc.2 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚})
pwrssmgc.3 𝑉 = (toInc‘𝒫 𝑌)
pwrssmgc.4 𝑊 = (toInc‘𝒫 𝑋)
pwrssmgc.5 (𝜑𝑋𝐴)
pwrssmgc.6 (𝜑𝑌𝐵)
pwrssmgc.7 (𝜑𝐹:𝑋𝑌)
Assertion
Ref Expression
pwrssmgc (𝜑𝐺(𝑉MGalConn𝑊)𝐻)
Distinct variable groups:   𝑚,𝐹,𝑦   𝑛,𝐹   𝑚,𝑉,𝑦   𝑛,𝑉   𝑚,𝑊,𝑦   𝑛,𝑊   𝑚,𝑋   𝑛,𝑋   𝑚,𝑌,𝑦   𝑛,𝑌   𝜑,𝑦,𝑚   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑦,𝑚,𝑛)   𝐵(𝑦,𝑚,𝑛)   𝐺(𝑦,𝑚,𝑛)   𝐻(𝑦,𝑚,𝑛)   𝑋(𝑦)

Proof of Theorem pwrssmgc
Dummy variables 𝑖 𝑗 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwrssmgc.5 . . . . . . 7 (𝜑𝑋𝐴)
21adantr 480 . . . . . 6 ((𝜑𝑛 ∈ 𝒫 𝑌) → 𝑋𝐴)
3 cnvimass 6100 . . . . . . . 8 (𝐹𝑛) ⊆ dom 𝐹
4 pwrssmgc.7 . . . . . . . 8 (𝜑𝐹:𝑋𝑌)
53, 4fssdm 6755 . . . . . . 7 (𝜑 → (𝐹𝑛) ⊆ 𝑋)
65adantr 480 . . . . . 6 ((𝜑𝑛 ∈ 𝒫 𝑌) → (𝐹𝑛) ⊆ 𝑋)
72, 6sselpwd 5328 . . . . 5 ((𝜑𝑛 ∈ 𝒫 𝑌) → (𝐹𝑛) ∈ 𝒫 𝑋)
8 pwrssmgc.1 . . . . 5 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (𝐹𝑛))
97, 8fmptd 7134 . . . 4 (𝜑𝐺:𝒫 𝑌⟶𝒫 𝑋)
10 pwrssmgc.6 . . . . . 6 (𝜑𝑌𝐵)
11 pwexg 5378 . . . . . 6 (𝑌𝐵 → 𝒫 𝑌 ∈ V)
12 pwrssmgc.3 . . . . . . 7 𝑉 = (toInc‘𝒫 𝑌)
1312ipobas 18576 . . . . . 6 (𝒫 𝑌 ∈ V → 𝒫 𝑌 = (Base‘𝑉))
1410, 11, 133syl 18 . . . . 5 (𝜑 → 𝒫 𝑌 = (Base‘𝑉))
15 pwexg 5378 . . . . . 6 (𝑋𝐴 → 𝒫 𝑋 ∈ V)
16 pwrssmgc.4 . . . . . . 7 𝑊 = (toInc‘𝒫 𝑋)
1716ipobas 18576 . . . . . 6 (𝒫 𝑋 ∈ V → 𝒫 𝑋 = (Base‘𝑊))
181, 15, 173syl 18 . . . . 5 (𝜑 → 𝒫 𝑋 = (Base‘𝑊))
1914, 18feq23d 6731 . . . 4 (𝜑 → (𝐺:𝒫 𝑌⟶𝒫 𝑋𝐺:(Base‘𝑉)⟶(Base‘𝑊)))
209, 19mpbid 232 . . 3 (𝜑𝐺:(Base‘𝑉)⟶(Base‘𝑊))
2110adantr 480 . . . . . 6 ((𝜑𝑚 ∈ 𝒫 𝑋) → 𝑌𝐵)
22 ssrab2 4080 . . . . . . 7 {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ⊆ 𝑌
2322a1i 11 . . . . . 6 ((𝜑𝑚 ∈ 𝒫 𝑋) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ⊆ 𝑌)
2421, 23sselpwd 5328 . . . . 5 ((𝜑𝑚 ∈ 𝒫 𝑋) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ∈ 𝒫 𝑌)
25 pwrssmgc.2 . . . . 5 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚})
2624, 25fmptd 7134 . . . 4 (𝜑𝐻:𝒫 𝑋⟶𝒫 𝑌)
2718, 14feq23d 6731 . . . 4 (𝜑 → (𝐻:𝒫 𝑋⟶𝒫 𝑌𝐻:(Base‘𝑊)⟶(Base‘𝑉)))
2826, 27mpbid 232 . . 3 (𝜑𝐻:(Base‘𝑊)⟶(Base‘𝑉))
2920, 28jca 511 . 2 (𝜑 → (𝐺:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐻:(Base‘𝑊)⟶(Base‘𝑉)))
30 sneq 4636 . . . . . . . . . . . 12 (𝑦 = 𝑗 → {𝑦} = {𝑗})
3130imaeq2d 6078 . . . . . . . . . . 11 (𝑦 = 𝑗 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑗}))
3231sseq1d 4015 . . . . . . . . . 10 (𝑦 = 𝑗 → ((𝐹 “ {𝑦}) ⊆ 𝑣 ↔ (𝐹 “ {𝑗}) ⊆ 𝑣))
33 simplr 769 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑢 ∈ (Base‘𝑉))
3414ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑌 = (Base‘𝑉))
3533, 34eleqtrrd 2844 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑢 ∈ 𝒫 𝑌)
3635adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢 ∈ 𝒫 𝑌)
3736elpwid 4609 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢𝑌)
3837sselda 3983 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → 𝑗𝑌)
394ffund 6740 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
4039ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → Fun 𝐹)
41 snssi 4808 . . . . . . . . . . . . 13 (𝑗𝑢 → {𝑗} ⊆ 𝑢)
4241adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → {𝑗} ⊆ 𝑢)
43 sspreima 7088 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ {𝑗} ⊆ 𝑢) → (𝐹 “ {𝑗}) ⊆ (𝐹𝑢))
4440, 42, 43syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹 “ {𝑗}) ⊆ (𝐹𝑢))
45 simplr 769 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹𝑢) ⊆ 𝑣)
4644, 45sstrd 3994 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹 “ {𝑗}) ⊆ 𝑣)
4732, 38, 46elrabd 3694 . . . . . . . . 9 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → 𝑗 ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
4847ex 412 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → (𝑗𝑢𝑗 ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
4948ssrdv 3989 . . . . . . 7 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
50 simplr 769 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
514ffnd 6737 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝑋)
5251ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝐹 Fn 𝑋)
53 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖 ∈ (𝐹𝑢))
54 elpreima 7078 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝑋 → (𝑖 ∈ (𝐹𝑢) ↔ (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢)))
5554biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝑖 ∈ (𝐹𝑢)) → (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢))
5652, 53, 55syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢))
5756simprd 495 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) ∈ 𝑢)
5850, 57sseldd 3984 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
59 sneq 4636 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑖) → {𝑦} = {(𝐹𝑖)})
6059imaeq2d 6078 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑖) → (𝐹 “ {𝑦}) = (𝐹 “ {(𝐹𝑖)}))
6160sseq1d 4015 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑖) → ((𝐹 “ {𝑦}) ⊆ 𝑣 ↔ (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣))
6261elrab 3692 . . . . . . . . . . . 12 ((𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ↔ ((𝐹𝑖) ∈ 𝑌 ∧ (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣))
6362simprbi 496 . . . . . . . . . . 11 ((𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} → (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣)
6458, 63syl 17 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣)
6556simpld 494 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖𝑋)
66 eqidd 2738 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) = (𝐹𝑖))
67 fniniseg 7080 . . . . . . . . . . . 12 (𝐹 Fn 𝑋 → (𝑖 ∈ (𝐹 “ {(𝐹𝑖)}) ↔ (𝑖𝑋 ∧ (𝐹𝑖) = (𝐹𝑖))))
6867biimpar 477 . . . . . . . . . . 11 ((𝐹 Fn 𝑋 ∧ (𝑖𝑋 ∧ (𝐹𝑖) = (𝐹𝑖))) → 𝑖 ∈ (𝐹 “ {(𝐹𝑖)}))
6952, 65, 66, 68syl12anc 837 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖 ∈ (𝐹 “ {(𝐹𝑖)}))
7064, 69sseldd 3984 . . . . . . . . 9 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖𝑣)
7170ex 412 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) → (𝑖 ∈ (𝐹𝑢) → 𝑖𝑣))
7271ssrdv 3989 . . . . . . 7 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) → (𝐹𝑢) ⊆ 𝑣)
7349, 72impbida 801 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐹𝑢) ⊆ 𝑣𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
74 simpr 484 . . . . . . . . 9 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑛 = 𝑢) → 𝑛 = 𝑢)
7574imaeq2d 6078 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑛 = 𝑢) → (𝐹𝑛) = (𝐹𝑢))
764, 1fexd 7247 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
77 cnvexg 7946 . . . . . . . . . 10 (𝐹 ∈ V → 𝐹 ∈ V)
78 imaexg 7935 . . . . . . . . . 10 (𝐹 ∈ V → (𝐹𝑢) ∈ V)
7976, 77, 783syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑢) ∈ V)
8079ad2antrr 726 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐹𝑢) ∈ V)
818, 75, 35, 80fvmptd2 7024 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐺𝑢) = (𝐹𝑢))
8281sseq1d 4015 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢) ⊆ 𝑣 ↔ (𝐹𝑢) ⊆ 𝑣))
83 simpr 484 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → 𝑚 = 𝑣)
8483sseq2d 4016 . . . . . . . . 9 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → ((𝐹 “ {𝑦}) ⊆ 𝑚 ↔ (𝐹 “ {𝑦}) ⊆ 𝑣))
8584rabbidv 3444 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} = {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
86 simpr 484 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
871, 15syl 17 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑋 ∈ V)
8887ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑋 ∈ V)
8988, 17syl 17 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑋 = (Base‘𝑊))
9086, 89eleqtrrd 2844 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ 𝒫 𝑋)
9110ad2antrr 726 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑌𝐵)
92 ssrab2 4080 . . . . . . . . . 10 {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ⊆ 𝑌
9392a1i 11 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ⊆ 𝑌)
9491, 93sselpwd 5328 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ∈ 𝒫 𝑌)
9525, 85, 90, 94fvmptd2 7024 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐻𝑣) = {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
9695sseq2d 4016 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑢 ⊆ (𝐻𝑣) ↔ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
9773, 82, 963bitr4d 311 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢) ⊆ 𝑣𝑢 ⊆ (𝐻𝑣)))
989ad2antrr 726 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝐺:𝒫 𝑌⟶𝒫 𝑋)
9998, 35ffvelcdmd 7105 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐺𝑢) ∈ 𝒫 𝑋)
100 eqid 2737 . . . . . . 7 (le‘𝑊) = (le‘𝑊)
10116, 100ipole 18579 . . . . . 6 ((𝒫 𝑋 ∈ V ∧ (𝐺𝑢) ∈ 𝒫 𝑋𝑣 ∈ 𝒫 𝑋) → ((𝐺𝑢)(le‘𝑊)𝑣 ↔ (𝐺𝑢) ⊆ 𝑣))
10288, 99, 90, 101syl3anc 1373 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢)(le‘𝑊)𝑣 ↔ (𝐺𝑢) ⊆ 𝑣))
10310, 11syl 17 . . . . . . 7 (𝜑 → 𝒫 𝑌 ∈ V)
104103ad2antrr 726 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑌 ∈ V)
10526ad2antrr 726 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝐻:𝒫 𝑋⟶𝒫 𝑌)
106105, 90ffvelcdmd 7105 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐻𝑣) ∈ 𝒫 𝑌)
107 eqid 2737 . . . . . . 7 (le‘𝑉) = (le‘𝑉)
10812, 107ipole 18579 . . . . . 6 ((𝒫 𝑌 ∈ V ∧ 𝑢 ∈ 𝒫 𝑌 ∧ (𝐻𝑣) ∈ 𝒫 𝑌) → (𝑢(le‘𝑉)(𝐻𝑣) ↔ 𝑢 ⊆ (𝐻𝑣)))
109104, 35, 106, 108syl3anc 1373 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑢(le‘𝑉)(𝐻𝑣) ↔ 𝑢 ⊆ (𝐻𝑣)))
11097, 102, 1093bitr4d 311 . . . 4 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
111110anasss 466 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑉) ∧ 𝑣 ∈ (Base‘𝑊))) → ((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
112111ralrimivva 3202 . 2 (𝜑 → ∀𝑢 ∈ (Base‘𝑉)∀𝑣 ∈ (Base‘𝑊)((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
113 eqid 2737 . . 3 (Base‘𝑉) = (Base‘𝑉)
114 eqid 2737 . . 3 (Base‘𝑊) = (Base‘𝑊)
115 eqid 2737 . . 3 (𝑉MGalConn𝑊) = (𝑉MGalConn𝑊)
11612ipopos 18581 . . . 4 𝑉 ∈ Poset
117 posprs 18362 . . . 4 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
118116, 117mp1i 13 . . 3 (𝜑𝑉 ∈ Proset )
11916ipopos 18581 . . . 4 𝑊 ∈ Poset
120 posprs 18362 . . . 4 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
121119, 120mp1i 13 . . 3 (𝜑𝑊 ∈ Proset )
122113, 114, 107, 100, 115, 118, 121mgcval 32977 . 2 (𝜑 → (𝐺(𝑉MGalConn𝑊)𝐻 ↔ ((𝐺:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐻:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑢 ∈ (Base‘𝑉)∀𝑣 ∈ (Base‘𝑊)((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))))
12329, 112, 122mpbir2and 713 1 (𝜑𝐺(𝑉MGalConn𝑊)𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  Vcvv 3480  wss 3951  𝒫 cpw 4600  {csn 4626   class class class wbr 5143  cmpt 5225  ccnv 5684  cima 5688  Fun wfun 6555   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304   Proset cproset 18338  Posetcpo 18353  toInccipo 18572  MGalConncmgc 32969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-tset 17316  df-ple 17317  df-ocomp 17318  df-proset 18340  df-poset 18359  df-ipo 18573  df-mgc 32971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator