Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwrssmgc Structured version   Visualization version   GIF version

Theorem pwrssmgc 32926
Description: Given a function 𝐹, exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
pwrssmgc.1 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (𝐹𝑛))
pwrssmgc.2 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚})
pwrssmgc.3 𝑉 = (toInc‘𝒫 𝑌)
pwrssmgc.4 𝑊 = (toInc‘𝒫 𝑋)
pwrssmgc.5 (𝜑𝑋𝐴)
pwrssmgc.6 (𝜑𝑌𝐵)
pwrssmgc.7 (𝜑𝐹:𝑋𝑌)
Assertion
Ref Expression
pwrssmgc (𝜑𝐺(𝑉MGalConn𝑊)𝐻)
Distinct variable groups:   𝑚,𝐹,𝑦   𝑛,𝐹   𝑚,𝑉,𝑦   𝑛,𝑉   𝑚,𝑊,𝑦   𝑛,𝑊   𝑚,𝑋   𝑛,𝑋   𝑚,𝑌,𝑦   𝑛,𝑌   𝜑,𝑦,𝑚   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑦,𝑚,𝑛)   𝐵(𝑦,𝑚,𝑛)   𝐺(𝑦,𝑚,𝑛)   𝐻(𝑦,𝑚,𝑛)   𝑋(𝑦)

Proof of Theorem pwrssmgc
Dummy variables 𝑖 𝑗 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwrssmgc.5 . . . . . . 7 (𝜑𝑋𝐴)
21adantr 480 . . . . . 6 ((𝜑𝑛 ∈ 𝒫 𝑌) → 𝑋𝐴)
3 cnvimass 6053 . . . . . . . 8 (𝐹𝑛) ⊆ dom 𝐹
4 pwrssmgc.7 . . . . . . . 8 (𝜑𝐹:𝑋𝑌)
53, 4fssdm 6707 . . . . . . 7 (𝜑 → (𝐹𝑛) ⊆ 𝑋)
65adantr 480 . . . . . 6 ((𝜑𝑛 ∈ 𝒫 𝑌) → (𝐹𝑛) ⊆ 𝑋)
72, 6sselpwd 5283 . . . . 5 ((𝜑𝑛 ∈ 𝒫 𝑌) → (𝐹𝑛) ∈ 𝒫 𝑋)
8 pwrssmgc.1 . . . . 5 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (𝐹𝑛))
97, 8fmptd 7086 . . . 4 (𝜑𝐺:𝒫 𝑌⟶𝒫 𝑋)
10 pwrssmgc.6 . . . . . 6 (𝜑𝑌𝐵)
11 pwexg 5333 . . . . . 6 (𝑌𝐵 → 𝒫 𝑌 ∈ V)
12 pwrssmgc.3 . . . . . . 7 𝑉 = (toInc‘𝒫 𝑌)
1312ipobas 18490 . . . . . 6 (𝒫 𝑌 ∈ V → 𝒫 𝑌 = (Base‘𝑉))
1410, 11, 133syl 18 . . . . 5 (𝜑 → 𝒫 𝑌 = (Base‘𝑉))
15 pwexg 5333 . . . . . 6 (𝑋𝐴 → 𝒫 𝑋 ∈ V)
16 pwrssmgc.4 . . . . . . 7 𝑊 = (toInc‘𝒫 𝑋)
1716ipobas 18490 . . . . . 6 (𝒫 𝑋 ∈ V → 𝒫 𝑋 = (Base‘𝑊))
181, 15, 173syl 18 . . . . 5 (𝜑 → 𝒫 𝑋 = (Base‘𝑊))
1914, 18feq23d 6683 . . . 4 (𝜑 → (𝐺:𝒫 𝑌⟶𝒫 𝑋𝐺:(Base‘𝑉)⟶(Base‘𝑊)))
209, 19mpbid 232 . . 3 (𝜑𝐺:(Base‘𝑉)⟶(Base‘𝑊))
2110adantr 480 . . . . . 6 ((𝜑𝑚 ∈ 𝒫 𝑋) → 𝑌𝐵)
22 ssrab2 4043 . . . . . . 7 {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ⊆ 𝑌
2322a1i 11 . . . . . 6 ((𝜑𝑚 ∈ 𝒫 𝑋) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ⊆ 𝑌)
2421, 23sselpwd 5283 . . . . 5 ((𝜑𝑚 ∈ 𝒫 𝑋) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ∈ 𝒫 𝑌)
25 pwrssmgc.2 . . . . 5 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚})
2624, 25fmptd 7086 . . . 4 (𝜑𝐻:𝒫 𝑋⟶𝒫 𝑌)
2718, 14feq23d 6683 . . . 4 (𝜑 → (𝐻:𝒫 𝑋⟶𝒫 𝑌𝐻:(Base‘𝑊)⟶(Base‘𝑉)))
2826, 27mpbid 232 . . 3 (𝜑𝐻:(Base‘𝑊)⟶(Base‘𝑉))
2920, 28jca 511 . 2 (𝜑 → (𝐺:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐻:(Base‘𝑊)⟶(Base‘𝑉)))
30 sneq 4599 . . . . . . . . . . . 12 (𝑦 = 𝑗 → {𝑦} = {𝑗})
3130imaeq2d 6031 . . . . . . . . . . 11 (𝑦 = 𝑗 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑗}))
3231sseq1d 3978 . . . . . . . . . 10 (𝑦 = 𝑗 → ((𝐹 “ {𝑦}) ⊆ 𝑣 ↔ (𝐹 “ {𝑗}) ⊆ 𝑣))
33 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑢 ∈ (Base‘𝑉))
3414ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑌 = (Base‘𝑉))
3533, 34eleqtrrd 2831 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑢 ∈ 𝒫 𝑌)
3635adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢 ∈ 𝒫 𝑌)
3736elpwid 4572 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢𝑌)
3837sselda 3946 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → 𝑗𝑌)
394ffund 6692 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
4039ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → Fun 𝐹)
41 snssi 4772 . . . . . . . . . . . . 13 (𝑗𝑢 → {𝑗} ⊆ 𝑢)
4241adantl 481 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → {𝑗} ⊆ 𝑢)
43 sspreima 7040 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ {𝑗} ⊆ 𝑢) → (𝐹 “ {𝑗}) ⊆ (𝐹𝑢))
4440, 42, 43syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹 “ {𝑗}) ⊆ (𝐹𝑢))
45 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹𝑢) ⊆ 𝑣)
4644, 45sstrd 3957 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹 “ {𝑗}) ⊆ 𝑣)
4732, 38, 46elrabd 3661 . . . . . . . . 9 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → 𝑗 ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
4847ex 412 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → (𝑗𝑢𝑗 ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
4948ssrdv 3952 . . . . . . 7 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
50 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
514ffnd 6689 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝑋)
5251ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝐹 Fn 𝑋)
53 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖 ∈ (𝐹𝑢))
54 elpreima 7030 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝑋 → (𝑖 ∈ (𝐹𝑢) ↔ (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢)))
5554biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝑖 ∈ (𝐹𝑢)) → (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢))
5652, 53, 55syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢))
5756simprd 495 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) ∈ 𝑢)
5850, 57sseldd 3947 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
59 sneq 4599 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑖) → {𝑦} = {(𝐹𝑖)})
6059imaeq2d 6031 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑖) → (𝐹 “ {𝑦}) = (𝐹 “ {(𝐹𝑖)}))
6160sseq1d 3978 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑖) → ((𝐹 “ {𝑦}) ⊆ 𝑣 ↔ (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣))
6261elrab 3659 . . . . . . . . . . . 12 ((𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ↔ ((𝐹𝑖) ∈ 𝑌 ∧ (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣))
6362simprbi 496 . . . . . . . . . . 11 ((𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} → (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣)
6458, 63syl 17 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣)
6556simpld 494 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖𝑋)
66 eqidd 2730 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) = (𝐹𝑖))
67 fniniseg 7032 . . . . . . . . . . . 12 (𝐹 Fn 𝑋 → (𝑖 ∈ (𝐹 “ {(𝐹𝑖)}) ↔ (𝑖𝑋 ∧ (𝐹𝑖) = (𝐹𝑖))))
6867biimpar 477 . . . . . . . . . . 11 ((𝐹 Fn 𝑋 ∧ (𝑖𝑋 ∧ (𝐹𝑖) = (𝐹𝑖))) → 𝑖 ∈ (𝐹 “ {(𝐹𝑖)}))
6952, 65, 66, 68syl12anc 836 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖 ∈ (𝐹 “ {(𝐹𝑖)}))
7064, 69sseldd 3947 . . . . . . . . 9 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖𝑣)
7170ex 412 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) → (𝑖 ∈ (𝐹𝑢) → 𝑖𝑣))
7271ssrdv 3952 . . . . . . 7 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) → (𝐹𝑢) ⊆ 𝑣)
7349, 72impbida 800 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐹𝑢) ⊆ 𝑣𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
74 simpr 484 . . . . . . . . 9 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑛 = 𝑢) → 𝑛 = 𝑢)
7574imaeq2d 6031 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑛 = 𝑢) → (𝐹𝑛) = (𝐹𝑢))
764, 1fexd 7201 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
77 cnvexg 7900 . . . . . . . . . 10 (𝐹 ∈ V → 𝐹 ∈ V)
78 imaexg 7889 . . . . . . . . . 10 (𝐹 ∈ V → (𝐹𝑢) ∈ V)
7976, 77, 783syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑢) ∈ V)
8079ad2antrr 726 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐹𝑢) ∈ V)
818, 75, 35, 80fvmptd2 6976 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐺𝑢) = (𝐹𝑢))
8281sseq1d 3978 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢) ⊆ 𝑣 ↔ (𝐹𝑢) ⊆ 𝑣))
83 simpr 484 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → 𝑚 = 𝑣)
8483sseq2d 3979 . . . . . . . . 9 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → ((𝐹 “ {𝑦}) ⊆ 𝑚 ↔ (𝐹 “ {𝑦}) ⊆ 𝑣))
8584rabbidv 3413 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} = {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
86 simpr 484 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
871, 15syl 17 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑋 ∈ V)
8887ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑋 ∈ V)
8988, 17syl 17 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑋 = (Base‘𝑊))
9086, 89eleqtrrd 2831 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ 𝒫 𝑋)
9110ad2antrr 726 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑌𝐵)
92 ssrab2 4043 . . . . . . . . . 10 {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ⊆ 𝑌
9392a1i 11 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ⊆ 𝑌)
9491, 93sselpwd 5283 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ∈ 𝒫 𝑌)
9525, 85, 90, 94fvmptd2 6976 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐻𝑣) = {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
9695sseq2d 3979 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑢 ⊆ (𝐻𝑣) ↔ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
9773, 82, 963bitr4d 311 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢) ⊆ 𝑣𝑢 ⊆ (𝐻𝑣)))
989ad2antrr 726 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝐺:𝒫 𝑌⟶𝒫 𝑋)
9998, 35ffvelcdmd 7057 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐺𝑢) ∈ 𝒫 𝑋)
100 eqid 2729 . . . . . . 7 (le‘𝑊) = (le‘𝑊)
10116, 100ipole 18493 . . . . . 6 ((𝒫 𝑋 ∈ V ∧ (𝐺𝑢) ∈ 𝒫 𝑋𝑣 ∈ 𝒫 𝑋) → ((𝐺𝑢)(le‘𝑊)𝑣 ↔ (𝐺𝑢) ⊆ 𝑣))
10288, 99, 90, 101syl3anc 1373 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢)(le‘𝑊)𝑣 ↔ (𝐺𝑢) ⊆ 𝑣))
10310, 11syl 17 . . . . . . 7 (𝜑 → 𝒫 𝑌 ∈ V)
104103ad2antrr 726 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑌 ∈ V)
10526ad2antrr 726 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝐻:𝒫 𝑋⟶𝒫 𝑌)
106105, 90ffvelcdmd 7057 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐻𝑣) ∈ 𝒫 𝑌)
107 eqid 2729 . . . . . . 7 (le‘𝑉) = (le‘𝑉)
10812, 107ipole 18493 . . . . . 6 ((𝒫 𝑌 ∈ V ∧ 𝑢 ∈ 𝒫 𝑌 ∧ (𝐻𝑣) ∈ 𝒫 𝑌) → (𝑢(le‘𝑉)(𝐻𝑣) ↔ 𝑢 ⊆ (𝐻𝑣)))
109104, 35, 106, 108syl3anc 1373 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑢(le‘𝑉)(𝐻𝑣) ↔ 𝑢 ⊆ (𝐻𝑣)))
11097, 102, 1093bitr4d 311 . . . 4 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
111110anasss 466 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑉) ∧ 𝑣 ∈ (Base‘𝑊))) → ((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
112111ralrimivva 3180 . 2 (𝜑 → ∀𝑢 ∈ (Base‘𝑉)∀𝑣 ∈ (Base‘𝑊)((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
113 eqid 2729 . . 3 (Base‘𝑉) = (Base‘𝑉)
114 eqid 2729 . . 3 (Base‘𝑊) = (Base‘𝑊)
115 eqid 2729 . . 3 (𝑉MGalConn𝑊) = (𝑉MGalConn𝑊)
11612ipopos 18495 . . . 4 𝑉 ∈ Poset
117 posprs 18277 . . . 4 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
118116, 117mp1i 13 . . 3 (𝜑𝑉 ∈ Proset )
11916ipopos 18495 . . . 4 𝑊 ∈ Poset
120 posprs 18277 . . . 4 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
121119, 120mp1i 13 . . 3 (𝜑𝑊 ∈ Proset )
122113, 114, 107, 100, 115, 118, 121mgcval 32913 . 2 (𝜑 → (𝐺(𝑉MGalConn𝑊)𝐻 ↔ ((𝐺:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐻:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑢 ∈ (Base‘𝑉)∀𝑣 ∈ (Base‘𝑊)((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))))
12329, 112, 122mpbir2and 713 1 (𝜑𝐺(𝑉MGalConn𝑊)𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  cmpt 5188  ccnv 5637  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227   Proset cproset 18253  Posetcpo 18268  toInccipo 18486  MGalConncmgc 32905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-tset 17239  df-ple 17240  df-ocomp 17241  df-proset 18255  df-poset 18274  df-ipo 18487  df-mgc 32907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator