| Step | Hyp | Ref
| Expression |
| 1 | | pwrssmgc.5 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 2 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝒫 𝑌) → 𝑋 ∈ 𝐴) |
| 3 | | cnvimass 6100 |
. . . . . . . 8
⊢ (◡𝐹 “ 𝑛) ⊆ dom 𝐹 |
| 4 | | pwrssmgc.7 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| 5 | 3, 4 | fssdm 6755 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹 “ 𝑛) ⊆ 𝑋) |
| 6 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝒫 𝑌) → (◡𝐹 “ 𝑛) ⊆ 𝑋) |
| 7 | 2, 6 | sselpwd 5328 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝒫 𝑌) → (◡𝐹 “ 𝑛) ∈ 𝒫 𝑋) |
| 8 | | pwrssmgc.1 |
. . . . 5
⊢ 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (◡𝐹 “ 𝑛)) |
| 9 | 7, 8 | fmptd 7134 |
. . . 4
⊢ (𝜑 → 𝐺:𝒫 𝑌⟶𝒫 𝑋) |
| 10 | | pwrssmgc.6 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 11 | | pwexg 5378 |
. . . . . 6
⊢ (𝑌 ∈ 𝐵 → 𝒫 𝑌 ∈ V) |
| 12 | | pwrssmgc.3 |
. . . . . . 7
⊢ 𝑉 = (toInc‘𝒫 𝑌) |
| 13 | 12 | ipobas 18576 |
. . . . . 6
⊢
(𝒫 𝑌 ∈
V → 𝒫 𝑌 =
(Base‘𝑉)) |
| 14 | 10, 11, 13 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝒫 𝑌 = (Base‘𝑉)) |
| 15 | | pwexg 5378 |
. . . . . 6
⊢ (𝑋 ∈ 𝐴 → 𝒫 𝑋 ∈ V) |
| 16 | | pwrssmgc.4 |
. . . . . . 7
⊢ 𝑊 = (toInc‘𝒫 𝑋) |
| 17 | 16 | ipobas 18576 |
. . . . . 6
⊢
(𝒫 𝑋 ∈
V → 𝒫 𝑋 =
(Base‘𝑊)) |
| 18 | 1, 15, 17 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝒫 𝑋 = (Base‘𝑊)) |
| 19 | 14, 18 | feq23d 6731 |
. . . 4
⊢ (𝜑 → (𝐺:𝒫 𝑌⟶𝒫 𝑋 ↔ 𝐺:(Base‘𝑉)⟶(Base‘𝑊))) |
| 20 | 9, 19 | mpbid 232 |
. . 3
⊢ (𝜑 → 𝐺:(Base‘𝑉)⟶(Base‘𝑊)) |
| 21 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝒫 𝑋) → 𝑌 ∈ 𝐵) |
| 22 | | ssrab2 4080 |
. . . . . . 7
⊢ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑚} ⊆ 𝑌 |
| 23 | 22 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝒫 𝑋) → {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑚} ⊆ 𝑌) |
| 24 | 21, 23 | sselpwd 5328 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝒫 𝑋) → {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑚} ∈ 𝒫 𝑌) |
| 25 | | pwrssmgc.2 |
. . . . 5
⊢ 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑚}) |
| 26 | 24, 25 | fmptd 7134 |
. . . 4
⊢ (𝜑 → 𝐻:𝒫 𝑋⟶𝒫 𝑌) |
| 27 | 18, 14 | feq23d 6731 |
. . . 4
⊢ (𝜑 → (𝐻:𝒫 𝑋⟶𝒫 𝑌 ↔ 𝐻:(Base‘𝑊)⟶(Base‘𝑉))) |
| 28 | 26, 27 | mpbid 232 |
. . 3
⊢ (𝜑 → 𝐻:(Base‘𝑊)⟶(Base‘𝑉)) |
| 29 | 20, 28 | jca 511 |
. 2
⊢ (𝜑 → (𝐺:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐻:(Base‘𝑊)⟶(Base‘𝑉))) |
| 30 | | sneq 4636 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑗 → {𝑦} = {𝑗}) |
| 31 | 30 | imaeq2d 6078 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑗 → (◡𝐹 “ {𝑦}) = (◡𝐹 “ {𝑗})) |
| 32 | 31 | sseq1d 4015 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑗 → ((◡𝐹 “ {𝑦}) ⊆ 𝑣 ↔ (◡𝐹 “ {𝑗}) ⊆ 𝑣)) |
| 33 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑢 ∈ (Base‘𝑉)) |
| 34 | 14 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑌 = (Base‘𝑉)) |
| 35 | 33, 34 | eleqtrrd 2844 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑢 ∈ 𝒫 𝑌) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (◡𝐹 “ 𝑢) ⊆ 𝑣) → 𝑢 ∈ 𝒫 𝑌) |
| 37 | 36 | elpwid 4609 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (◡𝐹 “ 𝑢) ⊆ 𝑣) → 𝑢 ⊆ 𝑌) |
| 38 | 37 | sselda 3983 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (◡𝐹 “ 𝑢) ⊆ 𝑣) ∧ 𝑗 ∈ 𝑢) → 𝑗 ∈ 𝑌) |
| 39 | 4 | ffund 6740 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun 𝐹) |
| 40 | 39 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (◡𝐹 “ 𝑢) ⊆ 𝑣) ∧ 𝑗 ∈ 𝑢) → Fun 𝐹) |
| 41 | | snssi 4808 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ 𝑢 → {𝑗} ⊆ 𝑢) |
| 42 | 41 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (◡𝐹 “ 𝑢) ⊆ 𝑣) ∧ 𝑗 ∈ 𝑢) → {𝑗} ⊆ 𝑢) |
| 43 | | sspreima 7088 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ {𝑗} ⊆ 𝑢) → (◡𝐹 “ {𝑗}) ⊆ (◡𝐹 “ 𝑢)) |
| 44 | 40, 42, 43 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (◡𝐹 “ 𝑢) ⊆ 𝑣) ∧ 𝑗 ∈ 𝑢) → (◡𝐹 “ {𝑗}) ⊆ (◡𝐹 “ 𝑢)) |
| 45 | | simplr 769 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (◡𝐹 “ 𝑢) ⊆ 𝑣) ∧ 𝑗 ∈ 𝑢) → (◡𝐹 “ 𝑢) ⊆ 𝑣) |
| 46 | 44, 45 | sstrd 3994 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (◡𝐹 “ 𝑢) ⊆ 𝑣) ∧ 𝑗 ∈ 𝑢) → (◡𝐹 “ {𝑗}) ⊆ 𝑣) |
| 47 | 32, 38, 46 | elrabd 3694 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (◡𝐹 “ 𝑢) ⊆ 𝑣) ∧ 𝑗 ∈ 𝑢) → 𝑗 ∈ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) |
| 48 | 47 | ex 412 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (◡𝐹 “ 𝑢) ⊆ 𝑣) → (𝑗 ∈ 𝑢 → 𝑗 ∈ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣})) |
| 49 | 48 | ssrdv 3989 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (◡𝐹 “ 𝑢) ⊆ 𝑣) → 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) |
| 50 | | simplr 769 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (◡𝐹 “ 𝑢)) → 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) |
| 51 | 4 | ffnd 6737 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 52 | 51 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (◡𝐹 “ 𝑢)) → 𝐹 Fn 𝑋) |
| 53 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (◡𝐹 “ 𝑢)) → 𝑖 ∈ (◡𝐹 “ 𝑢)) |
| 54 | | elpreima 7078 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 Fn 𝑋 → (𝑖 ∈ (◡𝐹 “ 𝑢) ↔ (𝑖 ∈ 𝑋 ∧ (𝐹‘𝑖) ∈ 𝑢))) |
| 55 | 54 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn 𝑋 ∧ 𝑖 ∈ (◡𝐹 “ 𝑢)) → (𝑖 ∈ 𝑋 ∧ (𝐹‘𝑖) ∈ 𝑢)) |
| 56 | 52, 53, 55 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (◡𝐹 “ 𝑢)) → (𝑖 ∈ 𝑋 ∧ (𝐹‘𝑖) ∈ 𝑢)) |
| 57 | 56 | simprd 495 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (◡𝐹 “ 𝑢)) → (𝐹‘𝑖) ∈ 𝑢) |
| 58 | 50, 57 | sseldd 3984 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (◡𝐹 “ 𝑢)) → (𝐹‘𝑖) ∈ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) |
| 59 | | sneq 4636 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝐹‘𝑖) → {𝑦} = {(𝐹‘𝑖)}) |
| 60 | 59 | imaeq2d 6078 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐹‘𝑖) → (◡𝐹 “ {𝑦}) = (◡𝐹 “ {(𝐹‘𝑖)})) |
| 61 | 60 | sseq1d 4015 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘𝑖) → ((◡𝐹 “ {𝑦}) ⊆ 𝑣 ↔ (◡𝐹 “ {(𝐹‘𝑖)}) ⊆ 𝑣)) |
| 62 | 61 | elrab 3692 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑖) ∈ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣} ↔ ((𝐹‘𝑖) ∈ 𝑌 ∧ (◡𝐹 “ {(𝐹‘𝑖)}) ⊆ 𝑣)) |
| 63 | 62 | simprbi 496 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑖) ∈ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣} → (◡𝐹 “ {(𝐹‘𝑖)}) ⊆ 𝑣) |
| 64 | 58, 63 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (◡𝐹 “ 𝑢)) → (◡𝐹 “ {(𝐹‘𝑖)}) ⊆ 𝑣) |
| 65 | 56 | simpld 494 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (◡𝐹 “ 𝑢)) → 𝑖 ∈ 𝑋) |
| 66 | | eqidd 2738 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (◡𝐹 “ 𝑢)) → (𝐹‘𝑖) = (𝐹‘𝑖)) |
| 67 | | fniniseg 7080 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝑋 → (𝑖 ∈ (◡𝐹 “ {(𝐹‘𝑖)}) ↔ (𝑖 ∈ 𝑋 ∧ (𝐹‘𝑖) = (𝐹‘𝑖)))) |
| 68 | 67 | biimpar 477 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝑋 ∧ (𝑖 ∈ 𝑋 ∧ (𝐹‘𝑖) = (𝐹‘𝑖))) → 𝑖 ∈ (◡𝐹 “ {(𝐹‘𝑖)})) |
| 69 | 52, 65, 66, 68 | syl12anc 837 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (◡𝐹 “ 𝑢)) → 𝑖 ∈ (◡𝐹 “ {(𝐹‘𝑖)})) |
| 70 | 64, 69 | sseldd 3984 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (◡𝐹 “ 𝑢)) → 𝑖 ∈ 𝑣) |
| 71 | 70 | ex 412 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) → (𝑖 ∈ (◡𝐹 “ 𝑢) → 𝑖 ∈ 𝑣)) |
| 72 | 71 | ssrdv 3989 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) → (◡𝐹 “ 𝑢) ⊆ 𝑣) |
| 73 | 49, 72 | impbida 801 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((◡𝐹 “ 𝑢) ⊆ 𝑣 ↔ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣})) |
| 74 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑛 = 𝑢) → 𝑛 = 𝑢) |
| 75 | 74 | imaeq2d 6078 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑛 = 𝑢) → (◡𝐹 “ 𝑛) = (◡𝐹 “ 𝑢)) |
| 76 | 4, 1 | fexd 7247 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ V) |
| 77 | | cnvexg 7946 |
. . . . . . . . . 10
⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) |
| 78 | | imaexg 7935 |
. . . . . . . . . 10
⊢ (◡𝐹 ∈ V → (◡𝐹 “ 𝑢) ∈ V) |
| 79 | 76, 77, 78 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐹 “ 𝑢) ∈ V) |
| 80 | 79 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (◡𝐹 “ 𝑢) ∈ V) |
| 81 | 8, 75, 35, 80 | fvmptd2 7024 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐺‘𝑢) = (◡𝐹 “ 𝑢)) |
| 82 | 81 | sseq1d 4015 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺‘𝑢) ⊆ 𝑣 ↔ (◡𝐹 “ 𝑢) ⊆ 𝑣)) |
| 83 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → 𝑚 = 𝑣) |
| 84 | 83 | sseq2d 4016 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → ((◡𝐹 “ {𝑦}) ⊆ 𝑚 ↔ (◡𝐹 “ {𝑦}) ⊆ 𝑣)) |
| 85 | 84 | rabbidv 3444 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑚} = {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) |
| 86 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊)) |
| 87 | 1, 15 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝒫 𝑋 ∈ V) |
| 88 | 87 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑋 ∈ V) |
| 89 | 88, 17 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑋 = (Base‘𝑊)) |
| 90 | 86, 89 | eleqtrrd 2844 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ 𝒫 𝑋) |
| 91 | 10 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑌 ∈ 𝐵) |
| 92 | | ssrab2 4080 |
. . . . . . . . . 10
⊢ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣} ⊆ 𝑌 |
| 93 | 92 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣} ⊆ 𝑌) |
| 94 | 91, 93 | sselpwd 5328 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣} ∈ 𝒫 𝑌) |
| 95 | 25, 85, 90, 94 | fvmptd2 7024 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐻‘𝑣) = {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣}) |
| 96 | 95 | sseq2d 4016 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑢 ⊆ (𝐻‘𝑣) ↔ 𝑢 ⊆ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑣})) |
| 97 | 73, 82, 96 | 3bitr4d 311 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺‘𝑢) ⊆ 𝑣 ↔ 𝑢 ⊆ (𝐻‘𝑣))) |
| 98 | 9 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝐺:𝒫 𝑌⟶𝒫 𝑋) |
| 99 | 98, 35 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐺‘𝑢) ∈ 𝒫 𝑋) |
| 100 | | eqid 2737 |
. . . . . . 7
⊢
(le‘𝑊) =
(le‘𝑊) |
| 101 | 16, 100 | ipole 18579 |
. . . . . 6
⊢
((𝒫 𝑋 ∈
V ∧ (𝐺‘𝑢) ∈ 𝒫 𝑋 ∧ 𝑣 ∈ 𝒫 𝑋) → ((𝐺‘𝑢)(le‘𝑊)𝑣 ↔ (𝐺‘𝑢) ⊆ 𝑣)) |
| 102 | 88, 99, 90, 101 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺‘𝑢)(le‘𝑊)𝑣 ↔ (𝐺‘𝑢) ⊆ 𝑣)) |
| 103 | 10, 11 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝒫 𝑌 ∈ V) |
| 104 | 103 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑌 ∈ V) |
| 105 | 26 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝐻:𝒫 𝑋⟶𝒫 𝑌) |
| 106 | 105, 90 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐻‘𝑣) ∈ 𝒫 𝑌) |
| 107 | | eqid 2737 |
. . . . . . 7
⊢
(le‘𝑉) =
(le‘𝑉) |
| 108 | 12, 107 | ipole 18579 |
. . . . . 6
⊢
((𝒫 𝑌 ∈
V ∧ 𝑢 ∈ 𝒫
𝑌 ∧ (𝐻‘𝑣) ∈ 𝒫 𝑌) → (𝑢(le‘𝑉)(𝐻‘𝑣) ↔ 𝑢 ⊆ (𝐻‘𝑣))) |
| 109 | 104, 35, 106, 108 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑢(le‘𝑉)(𝐻‘𝑣) ↔ 𝑢 ⊆ (𝐻‘𝑣))) |
| 110 | 97, 102, 109 | 3bitr4d 311 |
. . . 4
⊢ (((𝜑 ∧ 𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺‘𝑢)(le‘𝑊)𝑣 ↔ 𝑢(le‘𝑉)(𝐻‘𝑣))) |
| 111 | 110 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (Base‘𝑉) ∧ 𝑣 ∈ (Base‘𝑊))) → ((𝐺‘𝑢)(le‘𝑊)𝑣 ↔ 𝑢(le‘𝑉)(𝐻‘𝑣))) |
| 112 | 111 | ralrimivva 3202 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ (Base‘𝑉)∀𝑣 ∈ (Base‘𝑊)((𝐺‘𝑢)(le‘𝑊)𝑣 ↔ 𝑢(le‘𝑉)(𝐻‘𝑣))) |
| 113 | | eqid 2737 |
. . 3
⊢
(Base‘𝑉) =
(Base‘𝑉) |
| 114 | | eqid 2737 |
. . 3
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 115 | | eqid 2737 |
. . 3
⊢ (𝑉MGalConn𝑊) = (𝑉MGalConn𝑊) |
| 116 | 12 | ipopos 18581 |
. . . 4
⊢ 𝑉 ∈ Poset |
| 117 | | posprs 18362 |
. . . 4
⊢ (𝑉 ∈ Poset → 𝑉 ∈ Proset
) |
| 118 | 116, 117 | mp1i 13 |
. . 3
⊢ (𝜑 → 𝑉 ∈ Proset ) |
| 119 | 16 | ipopos 18581 |
. . . 4
⊢ 𝑊 ∈ Poset |
| 120 | | posprs 18362 |
. . . 4
⊢ (𝑊 ∈ Poset → 𝑊 ∈ Proset
) |
| 121 | 119, 120 | mp1i 13 |
. . 3
⊢ (𝜑 → 𝑊 ∈ Proset ) |
| 122 | 113, 114,
107, 100, 115, 118, 121 | mgcval 32977 |
. 2
⊢ (𝜑 → (𝐺(𝑉MGalConn𝑊)𝐻 ↔ ((𝐺:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐻:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑢 ∈ (Base‘𝑉)∀𝑣 ∈ (Base‘𝑊)((𝐺‘𝑢)(le‘𝑊)𝑣 ↔ 𝑢(le‘𝑉)(𝐻‘𝑣))))) |
| 123 | 29, 112, 122 | mpbir2and 713 |
1
⊢ (𝜑 → 𝐺(𝑉MGalConn𝑊)𝐻) |