Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwrssmgc Structured version   Visualization version   GIF version

Theorem pwrssmgc 30706
Description: Given a function 𝐹, exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
pwrssmgc.1 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (𝐹𝑛))
pwrssmgc.2 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚})
pwrssmgc.3 𝑉 = (toInc‘𝒫 𝑌)
pwrssmgc.4 𝑊 = (toInc‘𝒫 𝑋)
pwrssmgc.5 (𝜑𝑋𝐴)
pwrssmgc.6 (𝜑𝑌𝐵)
pwrssmgc.7 (𝜑𝐹:𝑋𝑌)
Assertion
Ref Expression
pwrssmgc (𝜑𝐺(𝑉MGalConn𝑊)𝐻)
Distinct variable groups:   𝑚,𝐹,𝑦   𝑛,𝐹   𝑚,𝑉,𝑦   𝑛,𝑉   𝑚,𝑊,𝑦   𝑛,𝑊   𝑚,𝑋   𝑛,𝑋   𝑚,𝑌,𝑦   𝑛,𝑌   𝜑,𝑦,𝑚   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑦,𝑚,𝑛)   𝐵(𝑦,𝑚,𝑛)   𝐺(𝑦,𝑚,𝑛)   𝐻(𝑦,𝑚,𝑛)   𝑋(𝑦)

Proof of Theorem pwrssmgc
Dummy variables 𝑖 𝑗 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwrssmgc.5 . . . . . . 7 (𝜑𝑋𝐴)
21adantr 484 . . . . . 6 ((𝜑𝑛 ∈ 𝒫 𝑌) → 𝑋𝐴)
3 cnvimass 5916 . . . . . . . 8 (𝐹𝑛) ⊆ dom 𝐹
4 pwrssmgc.7 . . . . . . . 8 (𝜑𝐹:𝑋𝑌)
53, 4fssdm 6504 . . . . . . 7 (𝜑 → (𝐹𝑛) ⊆ 𝑋)
65adantr 484 . . . . . 6 ((𝜑𝑛 ∈ 𝒫 𝑌) → (𝐹𝑛) ⊆ 𝑋)
72, 6sselpwd 5194 . . . . 5 ((𝜑𝑛 ∈ 𝒫 𝑌) → (𝐹𝑛) ∈ 𝒫 𝑋)
8 pwrssmgc.1 . . . . 5 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (𝐹𝑛))
97, 8fmptd 6855 . . . 4 (𝜑𝐺:𝒫 𝑌⟶𝒫 𝑋)
10 pwrssmgc.6 . . . . . 6 (𝜑𝑌𝐵)
11 pwexg 5244 . . . . . 6 (𝑌𝐵 → 𝒫 𝑌 ∈ V)
12 pwrssmgc.3 . . . . . . 7 𝑉 = (toInc‘𝒫 𝑌)
1312ipobas 17757 . . . . . 6 (𝒫 𝑌 ∈ V → 𝒫 𝑌 = (Base‘𝑉))
1410, 11, 133syl 18 . . . . 5 (𝜑 → 𝒫 𝑌 = (Base‘𝑉))
15 pwexg 5244 . . . . . 6 (𝑋𝐴 → 𝒫 𝑋 ∈ V)
16 pwrssmgc.4 . . . . . . 7 𝑊 = (toInc‘𝒫 𝑋)
1716ipobas 17757 . . . . . 6 (𝒫 𝑋 ∈ V → 𝒫 𝑋 = (Base‘𝑊))
181, 15, 173syl 18 . . . . 5 (𝜑 → 𝒫 𝑋 = (Base‘𝑊))
1914, 18feq23d 6482 . . . 4 (𝜑 → (𝐺:𝒫 𝑌⟶𝒫 𝑋𝐺:(Base‘𝑉)⟶(Base‘𝑊)))
209, 19mpbid 235 . . 3 (𝜑𝐺:(Base‘𝑉)⟶(Base‘𝑊))
2110adantr 484 . . . . . 6 ((𝜑𝑚 ∈ 𝒫 𝑋) → 𝑌𝐵)
22 ssrab2 4007 . . . . . . 7 {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ⊆ 𝑌
2322a1i 11 . . . . . 6 ((𝜑𝑚 ∈ 𝒫 𝑋) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ⊆ 𝑌)
2421, 23sselpwd 5194 . . . . 5 ((𝜑𝑚 ∈ 𝒫 𝑋) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ∈ 𝒫 𝑌)
25 pwrssmgc.2 . . . . 5 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚})
2624, 25fmptd 6855 . . . 4 (𝜑𝐻:𝒫 𝑋⟶𝒫 𝑌)
2718, 14feq23d 6482 . . . 4 (𝜑 → (𝐻:𝒫 𝑋⟶𝒫 𝑌𝐻:(Base‘𝑊)⟶(Base‘𝑉)))
2826, 27mpbid 235 . . 3 (𝜑𝐻:(Base‘𝑊)⟶(Base‘𝑉))
2920, 28jca 515 . 2 (𝜑 → (𝐺:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐻:(Base‘𝑊)⟶(Base‘𝑉)))
30 sneq 4535 . . . . . . . . . . . 12 (𝑦 = 𝑗 → {𝑦} = {𝑗})
3130imaeq2d 5896 . . . . . . . . . . 11 (𝑦 = 𝑗 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑗}))
3231sseq1d 3946 . . . . . . . . . 10 (𝑦 = 𝑗 → ((𝐹 “ {𝑦}) ⊆ 𝑣 ↔ (𝐹 “ {𝑗}) ⊆ 𝑣))
33 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑢 ∈ (Base‘𝑉))
3414ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑌 = (Base‘𝑉))
3533, 34eleqtrrd 2893 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑢 ∈ 𝒫 𝑌)
3635adantr 484 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢 ∈ 𝒫 𝑌)
3736elpwid 4508 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢𝑌)
3837sselda 3915 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → 𝑗𝑌)
394ffund 6491 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
4039ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → Fun 𝐹)
41 snssi 4701 . . . . . . . . . . . . 13 (𝑗𝑢 → {𝑗} ⊆ 𝑢)
4241adantl 485 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → {𝑗} ⊆ 𝑢)
43 sspreima 30406 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ {𝑗} ⊆ 𝑢) → (𝐹 “ {𝑗}) ⊆ (𝐹𝑢))
4440, 42, 43syl2anc 587 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹 “ {𝑗}) ⊆ (𝐹𝑢))
45 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹𝑢) ⊆ 𝑣)
4644, 45sstrd 3925 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹 “ {𝑗}) ⊆ 𝑣)
4732, 38, 46elrabd 3630 . . . . . . . . 9 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → 𝑗 ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
4847ex 416 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → (𝑗𝑢𝑗 ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
4948ssrdv 3921 . . . . . . 7 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
50 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
514ffnd 6488 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝑋)
5251ad4antr 731 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝐹 Fn 𝑋)
53 simpr 488 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖 ∈ (𝐹𝑢))
54 elpreima 6805 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝑋 → (𝑖 ∈ (𝐹𝑢) ↔ (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢)))
5554biimpa 480 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝑖 ∈ (𝐹𝑢)) → (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢))
5652, 53, 55syl2anc 587 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢))
5756simprd 499 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) ∈ 𝑢)
5850, 57sseldd 3916 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
59 sneq 4535 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑖) → {𝑦} = {(𝐹𝑖)})
6059imaeq2d 5896 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑖) → (𝐹 “ {𝑦}) = (𝐹 “ {(𝐹𝑖)}))
6160sseq1d 3946 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑖) → ((𝐹 “ {𝑦}) ⊆ 𝑣 ↔ (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣))
6261elrab 3628 . . . . . . . . . . . 12 ((𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ↔ ((𝐹𝑖) ∈ 𝑌 ∧ (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣))
6362simprbi 500 . . . . . . . . . . 11 ((𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} → (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣)
6458, 63syl 17 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣)
6556simpld 498 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖𝑋)
66 eqidd 2799 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) = (𝐹𝑖))
67 fniniseg 6807 . . . . . . . . . . . 12 (𝐹 Fn 𝑋 → (𝑖 ∈ (𝐹 “ {(𝐹𝑖)}) ↔ (𝑖𝑋 ∧ (𝐹𝑖) = (𝐹𝑖))))
6867biimpar 481 . . . . . . . . . . 11 ((𝐹 Fn 𝑋 ∧ (𝑖𝑋 ∧ (𝐹𝑖) = (𝐹𝑖))) → 𝑖 ∈ (𝐹 “ {(𝐹𝑖)}))
6952, 65, 66, 68syl12anc 835 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖 ∈ (𝐹 “ {(𝐹𝑖)}))
7064, 69sseldd 3916 . . . . . . . . 9 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖𝑣)
7170ex 416 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) → (𝑖 ∈ (𝐹𝑢) → 𝑖𝑣))
7271ssrdv 3921 . . . . . . 7 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) → (𝐹𝑢) ⊆ 𝑣)
7349, 72impbida 800 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐹𝑢) ⊆ 𝑣𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
74 simpr 488 . . . . . . . . 9 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑛 = 𝑢) → 𝑛 = 𝑢)
7574imaeq2d 5896 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑛 = 𝑢) → (𝐹𝑛) = (𝐹𝑢))
76 fex 6966 . . . . . . . . . . 11 ((𝐹:𝑋𝑌𝑋𝐴) → 𝐹 ∈ V)
774, 1, 76syl2anc 587 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
78 cnvexg 7611 . . . . . . . . . 10 (𝐹 ∈ V → 𝐹 ∈ V)
79 imaexg 7602 . . . . . . . . . 10 (𝐹 ∈ V → (𝐹𝑢) ∈ V)
8077, 78, 793syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑢) ∈ V)
8180ad2antrr 725 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐹𝑢) ∈ V)
828, 75, 35, 81fvmptd2 6753 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐺𝑢) = (𝐹𝑢))
8382sseq1d 3946 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢) ⊆ 𝑣 ↔ (𝐹𝑢) ⊆ 𝑣))
84 simpr 488 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → 𝑚 = 𝑣)
8584sseq2d 3947 . . . . . . . . 9 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → ((𝐹 “ {𝑦}) ⊆ 𝑚 ↔ (𝐹 “ {𝑦}) ⊆ 𝑣))
8685rabbidv 3427 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} = {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
87 simpr 488 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
881, 15syl 17 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑋 ∈ V)
8988ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑋 ∈ V)
9089, 17syl 17 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑋 = (Base‘𝑊))
9187, 90eleqtrrd 2893 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ 𝒫 𝑋)
9210ad2antrr 725 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑌𝐵)
93 ssrab2 4007 . . . . . . . . . 10 {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ⊆ 𝑌
9493a1i 11 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ⊆ 𝑌)
9592, 94sselpwd 5194 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ∈ 𝒫 𝑌)
9625, 86, 91, 95fvmptd2 6753 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐻𝑣) = {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
9796sseq2d 3947 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑢 ⊆ (𝐻𝑣) ↔ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
9873, 83, 973bitr4d 314 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢) ⊆ 𝑣𝑢 ⊆ (𝐻𝑣)))
999ad2antrr 725 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝐺:𝒫 𝑌⟶𝒫 𝑋)
10099, 35ffvelrnd 6829 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐺𝑢) ∈ 𝒫 𝑋)
101 eqid 2798 . . . . . . 7 (le‘𝑊) = (le‘𝑊)
10216, 101ipole 17760 . . . . . 6 ((𝒫 𝑋 ∈ V ∧ (𝐺𝑢) ∈ 𝒫 𝑋𝑣 ∈ 𝒫 𝑋) → ((𝐺𝑢)(le‘𝑊)𝑣 ↔ (𝐺𝑢) ⊆ 𝑣))
10389, 100, 91, 102syl3anc 1368 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢)(le‘𝑊)𝑣 ↔ (𝐺𝑢) ⊆ 𝑣))
10410, 11syl 17 . . . . . . 7 (𝜑 → 𝒫 𝑌 ∈ V)
105104ad2antrr 725 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑌 ∈ V)
10626ad2antrr 725 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝐻:𝒫 𝑋⟶𝒫 𝑌)
107106, 91ffvelrnd 6829 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐻𝑣) ∈ 𝒫 𝑌)
108 eqid 2798 . . . . . . 7 (le‘𝑉) = (le‘𝑉)
10912, 108ipole 17760 . . . . . 6 ((𝒫 𝑌 ∈ V ∧ 𝑢 ∈ 𝒫 𝑌 ∧ (𝐻𝑣) ∈ 𝒫 𝑌) → (𝑢(le‘𝑉)(𝐻𝑣) ↔ 𝑢 ⊆ (𝐻𝑣)))
110105, 35, 107, 109syl3anc 1368 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑢(le‘𝑉)(𝐻𝑣) ↔ 𝑢 ⊆ (𝐻𝑣)))
11198, 103, 1103bitr4d 314 . . . 4 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
112111anasss 470 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑉) ∧ 𝑣 ∈ (Base‘𝑊))) → ((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
113112ralrimivva 3156 . 2 (𝜑 → ∀𝑢 ∈ (Base‘𝑉)∀𝑣 ∈ (Base‘𝑊)((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
114 eqid 2798 . . 3 (Base‘𝑉) = (Base‘𝑉)
115 eqid 2798 . . 3 (Base‘𝑊) = (Base‘𝑊)
116 eqid 2798 . . 3 (𝑉MGalConn𝑊) = (𝑉MGalConn𝑊)
11712ipopos 17762 . . . 4 𝑉 ∈ Poset
118 posprs 17551 . . . 4 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
119117, 118mp1i 13 . . 3 (𝜑𝑉 ∈ Proset )
12016ipopos 17762 . . . 4 𝑊 ∈ Poset
121 posprs 17551 . . . 4 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
122120, 121mp1i 13 . . 3 (𝜑𝑊 ∈ Proset )
123114, 115, 108, 101, 116, 119, 122mgcval 30695 . 2 (𝜑 → (𝐺(𝑉MGalConn𝑊)𝐻 ↔ ((𝐺:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐻:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑢 ∈ (Base‘𝑉)∀𝑣 ∈ (Base‘𝑊)((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))))
12429, 113, 123mpbir2and 712 1 (𝜑𝐺(𝑉MGalConn𝑊)𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  wss 3881  𝒫 cpw 4497  {csn 4525   class class class wbr 5030  cmpt 5110  ccnv 5518  cima 5522  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564   Proset cproset 17528  Posetcpo 17542  toInccipo 17753  MGalConncmgc 30687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-tset 16576  df-ple 16577  df-ocomp 16578  df-proset 17530  df-poset 17548  df-ipo 17754  df-mgc 30689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator