Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwrssmgc Structured version   Visualization version   GIF version

Theorem pwrssmgc 32872
Description: Given a function 𝐹, exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
pwrssmgc.1 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (𝐹𝑛))
pwrssmgc.2 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚})
pwrssmgc.3 𝑉 = (toInc‘𝒫 𝑌)
pwrssmgc.4 𝑊 = (toInc‘𝒫 𝑋)
pwrssmgc.5 (𝜑𝑋𝐴)
pwrssmgc.6 (𝜑𝑌𝐵)
pwrssmgc.7 (𝜑𝐹:𝑋𝑌)
Assertion
Ref Expression
pwrssmgc (𝜑𝐺(𝑉MGalConn𝑊)𝐻)
Distinct variable groups:   𝑚,𝐹,𝑦   𝑛,𝐹   𝑚,𝑉,𝑦   𝑛,𝑉   𝑚,𝑊,𝑦   𝑛,𝑊   𝑚,𝑋   𝑛,𝑋   𝑚,𝑌,𝑦   𝑛,𝑌   𝜑,𝑦,𝑚   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑦,𝑚,𝑛)   𝐵(𝑦,𝑚,𝑛)   𝐺(𝑦,𝑚,𝑛)   𝐻(𝑦,𝑚,𝑛)   𝑋(𝑦)

Proof of Theorem pwrssmgc
Dummy variables 𝑖 𝑗 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwrssmgc.5 . . . . . . 7 (𝜑𝑋𝐴)
21adantr 479 . . . . . 6 ((𝜑𝑛 ∈ 𝒫 𝑌) → 𝑋𝐴)
3 cnvimass 6093 . . . . . . . 8 (𝐹𝑛) ⊆ dom 𝐹
4 pwrssmgc.7 . . . . . . . 8 (𝜑𝐹:𝑋𝑌)
53, 4fssdm 6749 . . . . . . 7 (𝜑 → (𝐹𝑛) ⊆ 𝑋)
65adantr 479 . . . . . 6 ((𝜑𝑛 ∈ 𝒫 𝑌) → (𝐹𝑛) ⊆ 𝑋)
72, 6sselpwd 5335 . . . . 5 ((𝜑𝑛 ∈ 𝒫 𝑌) → (𝐹𝑛) ∈ 𝒫 𝑋)
8 pwrssmgc.1 . . . . 5 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (𝐹𝑛))
97, 8fmptd 7130 . . . 4 (𝜑𝐺:𝒫 𝑌⟶𝒫 𝑋)
10 pwrssmgc.6 . . . . . 6 (𝜑𝑌𝐵)
11 pwexg 5384 . . . . . 6 (𝑌𝐵 → 𝒫 𝑌 ∈ V)
12 pwrssmgc.3 . . . . . . 7 𝑉 = (toInc‘𝒫 𝑌)
1312ipobas 18558 . . . . . 6 (𝒫 𝑌 ∈ V → 𝒫 𝑌 = (Base‘𝑉))
1410, 11, 133syl 18 . . . . 5 (𝜑 → 𝒫 𝑌 = (Base‘𝑉))
15 pwexg 5384 . . . . . 6 (𝑋𝐴 → 𝒫 𝑋 ∈ V)
16 pwrssmgc.4 . . . . . . 7 𝑊 = (toInc‘𝒫 𝑋)
1716ipobas 18558 . . . . . 6 (𝒫 𝑋 ∈ V → 𝒫 𝑋 = (Base‘𝑊))
181, 15, 173syl 18 . . . . 5 (𝜑 → 𝒫 𝑋 = (Base‘𝑊))
1914, 18feq23d 6725 . . . 4 (𝜑 → (𝐺:𝒫 𝑌⟶𝒫 𝑋𝐺:(Base‘𝑉)⟶(Base‘𝑊)))
209, 19mpbid 231 . . 3 (𝜑𝐺:(Base‘𝑉)⟶(Base‘𝑊))
2110adantr 479 . . . . . 6 ((𝜑𝑚 ∈ 𝒫 𝑋) → 𝑌𝐵)
22 ssrab2 4076 . . . . . . 7 {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ⊆ 𝑌
2322a1i 11 . . . . . 6 ((𝜑𝑚 ∈ 𝒫 𝑋) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ⊆ 𝑌)
2421, 23sselpwd 5335 . . . . 5 ((𝜑𝑚 ∈ 𝒫 𝑋) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} ∈ 𝒫 𝑌)
25 pwrssmgc.2 . . . . 5 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚})
2624, 25fmptd 7130 . . . 4 (𝜑𝐻:𝒫 𝑋⟶𝒫 𝑌)
2718, 14feq23d 6725 . . . 4 (𝜑 → (𝐻:𝒫 𝑋⟶𝒫 𝑌𝐻:(Base‘𝑊)⟶(Base‘𝑉)))
2826, 27mpbid 231 . . 3 (𝜑𝐻:(Base‘𝑊)⟶(Base‘𝑉))
2920, 28jca 510 . 2 (𝜑 → (𝐺:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐻:(Base‘𝑊)⟶(Base‘𝑉)))
30 sneq 4643 . . . . . . . . . . . 12 (𝑦 = 𝑗 → {𝑦} = {𝑗})
3130imaeq2d 6071 . . . . . . . . . . 11 (𝑦 = 𝑗 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑗}))
3231sseq1d 4011 . . . . . . . . . 10 (𝑦 = 𝑗 → ((𝐹 “ {𝑦}) ⊆ 𝑣 ↔ (𝐹 “ {𝑗}) ⊆ 𝑣))
33 simplr 767 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑢 ∈ (Base‘𝑉))
3414ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑌 = (Base‘𝑉))
3533, 34eleqtrrd 2829 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑢 ∈ 𝒫 𝑌)
3635adantr 479 . . . . . . . . . . . 12 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢 ∈ 𝒫 𝑌)
3736elpwid 4616 . . . . . . . . . . 11 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢𝑌)
3837sselda 3979 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → 𝑗𝑌)
394ffund 6734 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
4039ad4antr 730 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → Fun 𝐹)
41 snssi 4817 . . . . . . . . . . . . 13 (𝑗𝑢 → {𝑗} ⊆ 𝑢)
4241adantl 480 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → {𝑗} ⊆ 𝑢)
43 sspreima 7083 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ {𝑗} ⊆ 𝑢) → (𝐹 “ {𝑗}) ⊆ (𝐹𝑢))
4440, 42, 43syl2anc 582 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹 “ {𝑗}) ⊆ (𝐹𝑢))
45 simplr 767 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹𝑢) ⊆ 𝑣)
4644, 45sstrd 3990 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → (𝐹 “ {𝑗}) ⊆ 𝑣)
4732, 38, 46elrabd 3683 . . . . . . . . 9 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) ∧ 𝑗𝑢) → 𝑗 ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
4847ex 411 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → (𝑗𝑢𝑗 ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
4948ssrdv 3985 . . . . . . 7 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ (𝐹𝑢) ⊆ 𝑣) → 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
50 simplr 767 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
514ffnd 6731 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝑋)
5251ad4antr 730 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝐹 Fn 𝑋)
53 simpr 483 . . . . . . . . . . . . . 14 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖 ∈ (𝐹𝑢))
54 elpreima 7073 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝑋 → (𝑖 ∈ (𝐹𝑢) ↔ (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢)))
5554biimpa 475 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝑖 ∈ (𝐹𝑢)) → (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢))
5652, 53, 55syl2anc 582 . . . . . . . . . . . . 13 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝑖𝑋 ∧ (𝐹𝑖) ∈ 𝑢))
5756simprd 494 . . . . . . . . . . . 12 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) ∈ 𝑢)
5850, 57sseldd 3980 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
59 sneq 4643 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑖) → {𝑦} = {(𝐹𝑖)})
6059imaeq2d 6071 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑖) → (𝐹 “ {𝑦}) = (𝐹 “ {(𝐹𝑖)}))
6160sseq1d 4011 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑖) → ((𝐹 “ {𝑦}) ⊆ 𝑣 ↔ (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣))
6261elrab 3681 . . . . . . . . . . . 12 ((𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ↔ ((𝐹𝑖) ∈ 𝑌 ∧ (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣))
6362simprbi 495 . . . . . . . . . . 11 ((𝐹𝑖) ∈ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} → (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣)
6458, 63syl 17 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹 “ {(𝐹𝑖)}) ⊆ 𝑣)
6556simpld 493 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖𝑋)
66 eqidd 2727 . . . . . . . . . . 11 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → (𝐹𝑖) = (𝐹𝑖))
67 fniniseg 7075 . . . . . . . . . . . 12 (𝐹 Fn 𝑋 → (𝑖 ∈ (𝐹 “ {(𝐹𝑖)}) ↔ (𝑖𝑋 ∧ (𝐹𝑖) = (𝐹𝑖))))
6867biimpar 476 . . . . . . . . . . 11 ((𝐹 Fn 𝑋 ∧ (𝑖𝑋 ∧ (𝐹𝑖) = (𝐹𝑖))) → 𝑖 ∈ (𝐹 “ {(𝐹𝑖)}))
6952, 65, 66, 68syl12anc 835 . . . . . . . . . 10 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖 ∈ (𝐹 “ {(𝐹𝑖)}))
7064, 69sseldd 3980 . . . . . . . . 9 (((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) ∧ 𝑖 ∈ (𝐹𝑢)) → 𝑖𝑣)
7170ex 411 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) → (𝑖 ∈ (𝐹𝑢) → 𝑖𝑣))
7271ssrdv 3985 . . . . . . 7 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}) → (𝐹𝑢) ⊆ 𝑣)
7349, 72impbida 799 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐹𝑢) ⊆ 𝑣𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
74 simpr 483 . . . . . . . . 9 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑛 = 𝑢) → 𝑛 = 𝑢)
7574imaeq2d 6071 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑛 = 𝑢) → (𝐹𝑛) = (𝐹𝑢))
764, 1fexd 7246 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
77 cnvexg 7939 . . . . . . . . . 10 (𝐹 ∈ V → 𝐹 ∈ V)
78 imaexg 7928 . . . . . . . . . 10 (𝐹 ∈ V → (𝐹𝑢) ∈ V)
7976, 77, 783syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑢) ∈ V)
8079ad2antrr 724 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐹𝑢) ∈ V)
818, 75, 35, 80fvmptd2 7019 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐺𝑢) = (𝐹𝑢))
8281sseq1d 4011 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢) ⊆ 𝑣 ↔ (𝐹𝑢) ⊆ 𝑣))
83 simpr 483 . . . . . . . . . 10 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → 𝑚 = 𝑣)
8483sseq2d 4012 . . . . . . . . 9 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → ((𝐹 “ {𝑦}) ⊆ 𝑚 ↔ (𝐹 “ {𝑦}) ⊆ 𝑣))
8584rabbidv 3427 . . . . . . . 8 ((((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) ∧ 𝑚 = 𝑣) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚} = {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
86 simpr 483 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
871, 15syl 17 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑋 ∈ V)
8887ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑋 ∈ V)
8988, 17syl 17 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑋 = (Base‘𝑊))
9086, 89eleqtrrd 2829 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ 𝒫 𝑋)
9110ad2antrr 724 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑌𝐵)
92 ssrab2 4076 . . . . . . . . . 10 {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ⊆ 𝑌
9392a1i 11 . . . . . . . . 9 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ⊆ 𝑌)
9491, 93sselpwd 5335 . . . . . . . 8 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣} ∈ 𝒫 𝑌)
9525, 85, 90, 94fvmptd2 7019 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐻𝑣) = {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣})
9695sseq2d 4012 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑢 ⊆ (𝐻𝑣) ↔ 𝑢 ⊆ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑣}))
9773, 82, 963bitr4d 310 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢) ⊆ 𝑣𝑢 ⊆ (𝐻𝑣)))
989ad2antrr 724 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝐺:𝒫 𝑌⟶𝒫 𝑋)
9998, 35ffvelcdmd 7101 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐺𝑢) ∈ 𝒫 𝑋)
100 eqid 2726 . . . . . . 7 (le‘𝑊) = (le‘𝑊)
10116, 100ipole 18561 . . . . . 6 ((𝒫 𝑋 ∈ V ∧ (𝐺𝑢) ∈ 𝒫 𝑋𝑣 ∈ 𝒫 𝑋) → ((𝐺𝑢)(le‘𝑊)𝑣 ↔ (𝐺𝑢) ⊆ 𝑣))
10288, 99, 90, 101syl3anc 1368 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢)(le‘𝑊)𝑣 ↔ (𝐺𝑢) ⊆ 𝑣))
10310, 11syl 17 . . . . . . 7 (𝜑 → 𝒫 𝑌 ∈ V)
104103ad2antrr 724 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝒫 𝑌 ∈ V)
10526ad2antrr 724 . . . . . . 7 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → 𝐻:𝒫 𝑋⟶𝒫 𝑌)
106105, 90ffvelcdmd 7101 . . . . . 6 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝐻𝑣) ∈ 𝒫 𝑌)
107 eqid 2726 . . . . . . 7 (le‘𝑉) = (le‘𝑉)
10812, 107ipole 18561 . . . . . 6 ((𝒫 𝑌 ∈ V ∧ 𝑢 ∈ 𝒫 𝑌 ∧ (𝐻𝑣) ∈ 𝒫 𝑌) → (𝑢(le‘𝑉)(𝐻𝑣) ↔ 𝑢 ⊆ (𝐻𝑣)))
109104, 35, 106, 108syl3anc 1368 . . . . 5 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑢(le‘𝑉)(𝐻𝑣) ↔ 𝑢 ⊆ (𝐻𝑣)))
11097, 102, 1093bitr4d 310 . . . 4 (((𝜑𝑢 ∈ (Base‘𝑉)) ∧ 𝑣 ∈ (Base‘𝑊)) → ((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
111110anasss 465 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑉) ∧ 𝑣 ∈ (Base‘𝑊))) → ((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
112111ralrimivva 3191 . 2 (𝜑 → ∀𝑢 ∈ (Base‘𝑉)∀𝑣 ∈ (Base‘𝑊)((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))
113 eqid 2726 . . 3 (Base‘𝑉) = (Base‘𝑉)
114 eqid 2726 . . 3 (Base‘𝑊) = (Base‘𝑊)
115 eqid 2726 . . 3 (𝑉MGalConn𝑊) = (𝑉MGalConn𝑊)
11612ipopos 18563 . . . 4 𝑉 ∈ Poset
117 posprs 18343 . . . 4 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
118116, 117mp1i 13 . . 3 (𝜑𝑉 ∈ Proset )
11916ipopos 18563 . . . 4 𝑊 ∈ Poset
120 posprs 18343 . . . 4 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
121119, 120mp1i 13 . . 3 (𝜑𝑊 ∈ Proset )
122113, 114, 107, 100, 115, 118, 121mgcval 32859 . 2 (𝜑 → (𝐺(𝑉MGalConn𝑊)𝐻 ↔ ((𝐺:(Base‘𝑉)⟶(Base‘𝑊) ∧ 𝐻:(Base‘𝑊)⟶(Base‘𝑉)) ∧ ∀𝑢 ∈ (Base‘𝑉)∀𝑣 ∈ (Base‘𝑊)((𝐺𝑢)(le‘𝑊)𝑣𝑢(le‘𝑉)(𝐻𝑣)))))
12329, 112, 122mpbir2and 711 1 (𝜑𝐺(𝑉MGalConn𝑊)𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  {crab 3419  Vcvv 3462  wss 3947  𝒫 cpw 4607  {csn 4633   class class class wbr 5155  cmpt 5238  ccnv 5683  cima 5687  Fun wfun 6550   Fn wfn 6551  wf 6552  cfv 6556  (class class class)co 7426  Basecbs 17215  lecple 17275   Proset cproset 18320  Posetcpo 18334  toInccipo 18554  MGalConncmgc 32851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-er 8736  df-map 8859  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12613  df-dec 12732  df-uz 12877  df-fz 13541  df-struct 17151  df-slot 17186  df-ndx 17198  df-base 17216  df-tset 17287  df-ple 17288  df-ocomp 17289  df-proset 18322  df-poset 18340  df-ipo 18555  df-mgc 32853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator