Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcf1olem1 Structured version   Visualization version   GIF version

Theorem mgcf1olem1 32934
Description: Property of a Galois connection, lemma for mgcf1o 32936. (Contributed by Thierry Arnoux, 26-Jul-2024.)
Hypotheses
Ref Expression
mgcf1o.h 𝐻 = (𝑉MGalConn𝑊)
mgcf1o.a 𝐴 = (Base‘𝑉)
mgcf1o.b 𝐵 = (Base‘𝑊)
mgcf1o.1 = (le‘𝑉)
mgcf1o.2 = (le‘𝑊)
mgcf1o.v (𝜑𝑉 ∈ Poset)
mgcf1o.w (𝜑𝑊 ∈ Poset)
mgcf1o.f (𝜑𝐹𝐻𝐺)
mgcf1olem1.1 (𝜑𝑋𝐴)
Assertion
Ref Expression
mgcf1olem1 (𝜑 → (𝐹‘(𝐺‘(𝐹𝑋))) = (𝐹𝑋))

Proof of Theorem mgcf1olem1
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcf1o.w . 2 (𝜑𝑊 ∈ Poset)
2 mgcf1o.f . . . . 5 (𝜑𝐹𝐻𝐺)
3 mgcf1o.a . . . . . 6 𝐴 = (Base‘𝑉)
4 mgcf1o.b . . . . . 6 𝐵 = (Base‘𝑊)
5 mgcf1o.1 . . . . . 6 = (le‘𝑉)
6 mgcf1o.2 . . . . . 6 = (le‘𝑊)
7 mgcf1o.h . . . . . 6 𝐻 = (𝑉MGalConn𝑊)
8 mgcf1o.v . . . . . . 7 (𝜑𝑉 ∈ Poset)
9 posprs 18284 . . . . . . 7 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
108, 9syl 17 . . . . . 6 (𝜑𝑉 ∈ Proset )
11 posprs 18284 . . . . . . 7 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
121, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ Proset )
133, 4, 5, 6, 7, 10, 12dfmgc2 32929 . . . . 5 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
142, 13mpbid 232 . . . 4 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))))
1514simplld 767 . . 3 (𝜑𝐹:𝐴𝐵)
1614simplrd 769 . . . 4 (𝜑𝐺:𝐵𝐴)
17 mgcf1olem1.1 . . . . 5 (𝜑𝑋𝐴)
1815, 17ffvelcdmd 7060 . . . 4 (𝜑 → (𝐹𝑋) ∈ 𝐵)
1916, 18ffvelcdmd 7060 . . 3 (𝜑 → (𝐺‘(𝐹𝑋)) ∈ 𝐴)
2015, 19ffvelcdmd 7060 . 2 (𝜑 → (𝐹‘(𝐺‘(𝐹𝑋))) ∈ 𝐵)
213, 4, 5, 6, 7, 10, 12, 2, 18mgccole2 32924 . 2 (𝜑 → (𝐹‘(𝐺‘(𝐹𝑋))) (𝐹𝑋))
223, 4, 5, 6, 7, 10, 12, 2, 17mgccole1 32923 . . 3 (𝜑𝑋 (𝐺‘(𝐹𝑋)))
233, 4, 5, 6, 7, 10, 12, 2, 17, 19, 22mgcmnt1 32925 . 2 (𝜑 → (𝐹𝑋) (𝐹‘(𝐺‘(𝐹𝑋))))
244, 6posasymb 18287 . . 3 ((𝑊 ∈ Poset ∧ (𝐹‘(𝐺‘(𝐹𝑋))) ∈ 𝐵 ∧ (𝐹𝑋) ∈ 𝐵) → (((𝐹‘(𝐺‘(𝐹𝑋))) (𝐹𝑋) ∧ (𝐹𝑋) (𝐹‘(𝐺‘(𝐹𝑋)))) ↔ (𝐹‘(𝐺‘(𝐹𝑋))) = (𝐹𝑋)))
2524biimpa 476 . 2 (((𝑊 ∈ Poset ∧ (𝐹‘(𝐺‘(𝐹𝑋))) ∈ 𝐵 ∧ (𝐹𝑋) ∈ 𝐵) ∧ ((𝐹‘(𝐺‘(𝐹𝑋))) (𝐹𝑋) ∧ (𝐹𝑋) (𝐹‘(𝐺‘(𝐹𝑋))))) → (𝐹‘(𝐺‘(𝐹𝑋))) = (𝐹𝑋))
261, 20, 18, 21, 23, 25syl32anc 1380 1 (𝜑 → (𝐹‘(𝐺‘(𝐹𝑋))) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234   Proset cproset 18260  Posetcpo 18275  MGalConncmgc 32912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-proset 18262  df-poset 18281  df-mgc 32914
This theorem is referenced by:  mgcf1o  32936
  Copyright terms: Public domain W3C validator