| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcf1olem1 | Structured version Visualization version GIF version | ||
| Description: Property of a Galois connection, lemma for mgcf1o 32929. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| Ref | Expression |
|---|---|
| mgcf1o.h | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
| mgcf1o.a | ⊢ 𝐴 = (Base‘𝑉) |
| mgcf1o.b | ⊢ 𝐵 = (Base‘𝑊) |
| mgcf1o.1 | ⊢ ≤ = (le‘𝑉) |
| mgcf1o.2 | ⊢ ≲ = (le‘𝑊) |
| mgcf1o.v | ⊢ (𝜑 → 𝑉 ∈ Poset) |
| mgcf1o.w | ⊢ (𝜑 → 𝑊 ∈ Poset) |
| mgcf1o.f | ⊢ (𝜑 → 𝐹𝐻𝐺) |
| mgcf1olem1.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| mgcf1olem1 | ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgcf1o.w | . 2 ⊢ (𝜑 → 𝑊 ∈ Poset) | |
| 2 | mgcf1o.f | . . . . 5 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
| 3 | mgcf1o.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
| 4 | mgcf1o.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 5 | mgcf1o.1 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
| 6 | mgcf1o.2 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
| 7 | mgcf1o.h | . . . . . 6 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
| 8 | mgcf1o.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ Poset) | |
| 9 | posprs 18277 | . . . . . . 7 ⊢ (𝑉 ∈ Poset → 𝑉 ∈ Proset ) | |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ Proset ) |
| 11 | posprs 18277 | . . . . . . 7 ⊢ (𝑊 ∈ Poset → 𝑊 ∈ Proset ) | |
| 12 | 1, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Proset ) |
| 13 | 3, 4, 5, 6, 7, 10, 12 | dfmgc2 32922 | . . . . 5 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) |
| 14 | 2, 13 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥)))))) |
| 15 | 14 | simplld 767 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 16 | 14 | simplrd 769 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 17 | mgcf1olem1.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 18 | 15, 17 | ffvelcdmd 7057 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐵) |
| 19 | 16, 18 | ffvelcdmd 7057 | . . 3 ⊢ (𝜑 → (𝐺‘(𝐹‘𝑋)) ∈ 𝐴) |
| 20 | 15, 19 | ffvelcdmd 7057 | . 2 ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) ∈ 𝐵) |
| 21 | 3, 4, 5, 6, 7, 10, 12, 2, 18 | mgccole2 32917 | . 2 ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) ≲ (𝐹‘𝑋)) |
| 22 | 3, 4, 5, 6, 7, 10, 12, 2, 17 | mgccole1 32916 | . . 3 ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) |
| 23 | 3, 4, 5, 6, 7, 10, 12, 2, 17, 19, 22 | mgcmnt1 32918 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘(𝐺‘(𝐹‘𝑋)))) |
| 24 | 4, 6 | posasymb 18280 | . . 3 ⊢ ((𝑊 ∈ Poset ∧ (𝐹‘(𝐺‘(𝐹‘𝑋))) ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ 𝐵) → (((𝐹‘(𝐺‘(𝐹‘𝑋))) ≲ (𝐹‘𝑋) ∧ (𝐹‘𝑋) ≲ (𝐹‘(𝐺‘(𝐹‘𝑋)))) ↔ (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋))) |
| 25 | 24 | biimpa 476 | . 2 ⊢ (((𝑊 ∈ Poset ∧ (𝐹‘(𝐺‘(𝐹‘𝑋))) ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ 𝐵) ∧ ((𝐹‘(𝐺‘(𝐹‘𝑋))) ≲ (𝐹‘𝑋) ∧ (𝐹‘𝑋) ≲ (𝐹‘(𝐺‘(𝐹‘𝑋))))) → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) |
| 26 | 1, 20, 18, 21, 23, 25 | syl32anc 1380 | 1 ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 Proset cproset 18253 Posetcpo 18268 MGalConncmgc 32905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-proset 18255 df-poset 18274 df-mgc 32907 |
| This theorem is referenced by: mgcf1o 32929 |
| Copyright terms: Public domain | W3C validator |