| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcf1olem1 | Structured version Visualization version GIF version | ||
| Description: Property of a Galois connection, lemma for mgcf1o 32983. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| Ref | Expression |
|---|---|
| mgcf1o.h | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
| mgcf1o.a | ⊢ 𝐴 = (Base‘𝑉) |
| mgcf1o.b | ⊢ 𝐵 = (Base‘𝑊) |
| mgcf1o.1 | ⊢ ≤ = (le‘𝑉) |
| mgcf1o.2 | ⊢ ≲ = (le‘𝑊) |
| mgcf1o.v | ⊢ (𝜑 → 𝑉 ∈ Poset) |
| mgcf1o.w | ⊢ (𝜑 → 𝑊 ∈ Poset) |
| mgcf1o.f | ⊢ (𝜑 → 𝐹𝐻𝐺) |
| mgcf1olem1.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| mgcf1olem1 | ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgcf1o.w | . 2 ⊢ (𝜑 → 𝑊 ∈ Poset) | |
| 2 | mgcf1o.f | . . . . 5 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
| 3 | mgcf1o.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
| 4 | mgcf1o.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 5 | mgcf1o.1 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
| 6 | mgcf1o.2 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
| 7 | mgcf1o.h | . . . . . 6 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
| 8 | mgcf1o.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ Poset) | |
| 9 | posprs 18328 | . . . . . . 7 ⊢ (𝑉 ∈ Poset → 𝑉 ∈ Proset ) | |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ Proset ) |
| 11 | posprs 18328 | . . . . . . 7 ⊢ (𝑊 ∈ Poset → 𝑊 ∈ Proset ) | |
| 12 | 1, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Proset ) |
| 13 | 3, 4, 5, 6, 7, 10, 12 | dfmgc2 32976 | . . . . 5 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) |
| 14 | 2, 13 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥)))))) |
| 15 | 14 | simplld 767 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 16 | 14 | simplrd 769 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 17 | mgcf1olem1.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 18 | 15, 17 | ffvelcdmd 7075 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐵) |
| 19 | 16, 18 | ffvelcdmd 7075 | . . 3 ⊢ (𝜑 → (𝐺‘(𝐹‘𝑋)) ∈ 𝐴) |
| 20 | 15, 19 | ffvelcdmd 7075 | . 2 ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) ∈ 𝐵) |
| 21 | 3, 4, 5, 6, 7, 10, 12, 2, 18 | mgccole2 32971 | . 2 ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) ≲ (𝐹‘𝑋)) |
| 22 | 3, 4, 5, 6, 7, 10, 12, 2, 17 | mgccole1 32970 | . . 3 ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) |
| 23 | 3, 4, 5, 6, 7, 10, 12, 2, 17, 19, 22 | mgcmnt1 32972 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘(𝐺‘(𝐹‘𝑋)))) |
| 24 | 4, 6 | posasymb 18331 | . . 3 ⊢ ((𝑊 ∈ Poset ∧ (𝐹‘(𝐺‘(𝐹‘𝑋))) ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ 𝐵) → (((𝐹‘(𝐺‘(𝐹‘𝑋))) ≲ (𝐹‘𝑋) ∧ (𝐹‘𝑋) ≲ (𝐹‘(𝐺‘(𝐹‘𝑋)))) ↔ (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋))) |
| 25 | 24 | biimpa 476 | . 2 ⊢ (((𝑊 ∈ Poset ∧ (𝐹‘(𝐺‘(𝐹‘𝑋))) ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ 𝐵) ∧ ((𝐹‘(𝐺‘(𝐹‘𝑋))) ≲ (𝐹‘𝑋) ∧ (𝐹‘𝑋) ≲ (𝐹‘(𝐺‘(𝐹‘𝑋))))) → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) |
| 26 | 1, 20, 18, 21, 23, 25 | syl32anc 1380 | 1 ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 lecple 17278 Proset cproset 18304 Posetcpo 18319 MGalConncmgc 32959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-proset 18306 df-poset 18325 df-mgc 32961 |
| This theorem is referenced by: mgcf1o 32983 |
| Copyright terms: Public domain | W3C validator |