Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcf1olem1 | Structured version Visualization version GIF version |
Description: Property of a Galois connection, lemma for mgcf1o 31183. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
Ref | Expression |
---|---|
mgcf1o.h | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
mgcf1o.a | ⊢ 𝐴 = (Base‘𝑉) |
mgcf1o.b | ⊢ 𝐵 = (Base‘𝑊) |
mgcf1o.1 | ⊢ ≤ = (le‘𝑉) |
mgcf1o.2 | ⊢ ≲ = (le‘𝑊) |
mgcf1o.v | ⊢ (𝜑 → 𝑉 ∈ Poset) |
mgcf1o.w | ⊢ (𝜑 → 𝑊 ∈ Poset) |
mgcf1o.f | ⊢ (𝜑 → 𝐹𝐻𝐺) |
mgcf1olem1.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
mgcf1olem1 | ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgcf1o.w | . 2 ⊢ (𝜑 → 𝑊 ∈ Poset) | |
2 | mgcf1o.f | . . . . 5 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
3 | mgcf1o.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
4 | mgcf1o.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
5 | mgcf1o.1 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
6 | mgcf1o.2 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
7 | mgcf1o.h | . . . . . 6 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
8 | mgcf1o.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ Poset) | |
9 | posprs 17949 | . . . . . . 7 ⊢ (𝑉 ∈ Poset → 𝑉 ∈ Proset ) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ Proset ) |
11 | posprs 17949 | . . . . . . 7 ⊢ (𝑊 ∈ Poset → 𝑊 ∈ Proset ) | |
12 | 1, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Proset ) |
13 | 3, 4, 5, 6, 7, 10, 12 | dfmgc2 31176 | . . . . 5 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) |
14 | 2, 13 | mpbid 231 | . . . 4 ⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥)))))) |
15 | 14 | simplld 764 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
16 | 14 | simplrd 766 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
17 | mgcf1olem1.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
18 | 15, 17 | ffvelrnd 6944 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐵) |
19 | 16, 18 | ffvelrnd 6944 | . . 3 ⊢ (𝜑 → (𝐺‘(𝐹‘𝑋)) ∈ 𝐴) |
20 | 15, 19 | ffvelrnd 6944 | . 2 ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) ∈ 𝐵) |
21 | 3, 4, 5, 6, 7, 10, 12, 2, 18 | mgccole2 31171 | . 2 ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) ≲ (𝐹‘𝑋)) |
22 | 3, 4, 5, 6, 7, 10, 12, 2, 17 | mgccole1 31170 | . . 3 ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) |
23 | 3, 4, 5, 6, 7, 10, 12, 2, 17, 19, 22 | mgcmnt1 31172 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘(𝐺‘(𝐹‘𝑋)))) |
24 | 4, 6 | posasymb 17952 | . . 3 ⊢ ((𝑊 ∈ Poset ∧ (𝐹‘(𝐺‘(𝐹‘𝑋))) ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ 𝐵) → (((𝐹‘(𝐺‘(𝐹‘𝑋))) ≲ (𝐹‘𝑋) ∧ (𝐹‘𝑋) ≲ (𝐹‘(𝐺‘(𝐹‘𝑋)))) ↔ (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋))) |
25 | 24 | biimpa 476 | . 2 ⊢ (((𝑊 ∈ Poset ∧ (𝐹‘(𝐺‘(𝐹‘𝑋))) ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ 𝐵) ∧ ((𝐹‘(𝐺‘(𝐹‘𝑋))) ≲ (𝐹‘𝑋) ∧ (𝐹‘𝑋) ≲ (𝐹‘(𝐺‘(𝐹‘𝑋))))) → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) |
26 | 1, 20, 18, 21, 23, 25 | syl32anc 1376 | 1 ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 Proset cproset 17926 Posetcpo 17940 MGalConncmgc 31159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-proset 17928 df-poset 17946 df-mgc 31161 |
This theorem is referenced by: mgcf1o 31183 |
Copyright terms: Public domain | W3C validator |