Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcf1olem1 Structured version   Visualization version   GIF version

Theorem mgcf1olem1 32976
Description: Property of a Galois connection, lemma for mgcf1o 32978. (Contributed by Thierry Arnoux, 26-Jul-2024.)
Hypotheses
Ref Expression
mgcf1o.h 𝐻 = (𝑉MGalConn𝑊)
mgcf1o.a 𝐴 = (Base‘𝑉)
mgcf1o.b 𝐵 = (Base‘𝑊)
mgcf1o.1 = (le‘𝑉)
mgcf1o.2 = (le‘𝑊)
mgcf1o.v (𝜑𝑉 ∈ Poset)
mgcf1o.w (𝜑𝑊 ∈ Poset)
mgcf1o.f (𝜑𝐹𝐻𝐺)
mgcf1olem1.1 (𝜑𝑋𝐴)
Assertion
Ref Expression
mgcf1olem1 (𝜑 → (𝐹‘(𝐺‘(𝐹𝑋))) = (𝐹𝑋))

Proof of Theorem mgcf1olem1
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcf1o.w . 2 (𝜑𝑊 ∈ Poset)
2 mgcf1o.f . . . . 5 (𝜑𝐹𝐻𝐺)
3 mgcf1o.a . . . . . 6 𝐴 = (Base‘𝑉)
4 mgcf1o.b . . . . . 6 𝐵 = (Base‘𝑊)
5 mgcf1o.1 . . . . . 6 = (le‘𝑉)
6 mgcf1o.2 . . . . . 6 = (le‘𝑊)
7 mgcf1o.h . . . . . 6 𝐻 = (𝑉MGalConn𝑊)
8 mgcf1o.v . . . . . . 7 (𝜑𝑉 ∈ Poset)
9 posprs 18374 . . . . . . 7 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
108, 9syl 17 . . . . . 6 (𝜑𝑉 ∈ Proset )
11 posprs 18374 . . . . . . 7 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
121, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ Proset )
133, 4, 5, 6, 7, 10, 12dfmgc2 32971 . . . . 5 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
142, 13mpbid 232 . . . 4 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))))
1514simplld 768 . . 3 (𝜑𝐹:𝐴𝐵)
1614simplrd 770 . . . 4 (𝜑𝐺:𝐵𝐴)
17 mgcf1olem1.1 . . . . 5 (𝜑𝑋𝐴)
1815, 17ffvelcdmd 7105 . . . 4 (𝜑 → (𝐹𝑋) ∈ 𝐵)
1916, 18ffvelcdmd 7105 . . 3 (𝜑 → (𝐺‘(𝐹𝑋)) ∈ 𝐴)
2015, 19ffvelcdmd 7105 . 2 (𝜑 → (𝐹‘(𝐺‘(𝐹𝑋))) ∈ 𝐵)
213, 4, 5, 6, 7, 10, 12, 2, 18mgccole2 32966 . 2 (𝜑 → (𝐹‘(𝐺‘(𝐹𝑋))) (𝐹𝑋))
223, 4, 5, 6, 7, 10, 12, 2, 17mgccole1 32965 . . 3 (𝜑𝑋 (𝐺‘(𝐹𝑋)))
233, 4, 5, 6, 7, 10, 12, 2, 17, 19, 22mgcmnt1 32967 . 2 (𝜑 → (𝐹𝑋) (𝐹‘(𝐺‘(𝐹𝑋))))
244, 6posasymb 18377 . . 3 ((𝑊 ∈ Poset ∧ (𝐹‘(𝐺‘(𝐹𝑋))) ∈ 𝐵 ∧ (𝐹𝑋) ∈ 𝐵) → (((𝐹‘(𝐺‘(𝐹𝑋))) (𝐹𝑋) ∧ (𝐹𝑋) (𝐹‘(𝐺‘(𝐹𝑋)))) ↔ (𝐹‘(𝐺‘(𝐹𝑋))) = (𝐹𝑋)))
2524biimpa 476 . 2 (((𝑊 ∈ Poset ∧ (𝐹‘(𝐺‘(𝐹𝑋))) ∈ 𝐵 ∧ (𝐹𝑋) ∈ 𝐵) ∧ ((𝐹‘(𝐺‘(𝐹𝑋))) (𝐹𝑋) ∧ (𝐹𝑋) (𝐹‘(𝐺‘(𝐹𝑋))))) → (𝐹‘(𝐺‘(𝐹𝑋))) = (𝐹𝑋))
261, 20, 18, 21, 23, 25syl32anc 1377 1 (𝜑 → (𝐹‘(𝐺‘(𝐹𝑋))) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305   Proset cproset 18350  Posetcpo 18365  MGalConncmgc 32954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-proset 18352  df-poset 18371  df-mgc 32956
This theorem is referenced by:  mgcf1o  32978
  Copyright terms: Public domain W3C validator