![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcf1olem1 | Structured version Visualization version GIF version |
Description: Property of a Galois connection, lemma for mgcf1o 32978. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
Ref | Expression |
---|---|
mgcf1o.h | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
mgcf1o.a | ⊢ 𝐴 = (Base‘𝑉) |
mgcf1o.b | ⊢ 𝐵 = (Base‘𝑊) |
mgcf1o.1 | ⊢ ≤ = (le‘𝑉) |
mgcf1o.2 | ⊢ ≲ = (le‘𝑊) |
mgcf1o.v | ⊢ (𝜑 → 𝑉 ∈ Poset) |
mgcf1o.w | ⊢ (𝜑 → 𝑊 ∈ Poset) |
mgcf1o.f | ⊢ (𝜑 → 𝐹𝐻𝐺) |
mgcf1olem1.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
mgcf1olem1 | ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgcf1o.w | . 2 ⊢ (𝜑 → 𝑊 ∈ Poset) | |
2 | mgcf1o.f | . . . . 5 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
3 | mgcf1o.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
4 | mgcf1o.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
5 | mgcf1o.1 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
6 | mgcf1o.2 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
7 | mgcf1o.h | . . . . . 6 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
8 | mgcf1o.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ Poset) | |
9 | posprs 18374 | . . . . . . 7 ⊢ (𝑉 ∈ Poset → 𝑉 ∈ Proset ) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ Proset ) |
11 | posprs 18374 | . . . . . . 7 ⊢ (𝑊 ∈ Poset → 𝑊 ∈ Proset ) | |
12 | 1, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Proset ) |
13 | 3, 4, 5, 6, 7, 10, 12 | dfmgc2 32971 | . . . . 5 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) |
14 | 2, 13 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥)))))) |
15 | 14 | simplld 768 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
16 | 14 | simplrd 770 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
17 | mgcf1olem1.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
18 | 15, 17 | ffvelcdmd 7105 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐵) |
19 | 16, 18 | ffvelcdmd 7105 | . . 3 ⊢ (𝜑 → (𝐺‘(𝐹‘𝑋)) ∈ 𝐴) |
20 | 15, 19 | ffvelcdmd 7105 | . 2 ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) ∈ 𝐵) |
21 | 3, 4, 5, 6, 7, 10, 12, 2, 18 | mgccole2 32966 | . 2 ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) ≲ (𝐹‘𝑋)) |
22 | 3, 4, 5, 6, 7, 10, 12, 2, 17 | mgccole1 32965 | . . 3 ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) |
23 | 3, 4, 5, 6, 7, 10, 12, 2, 17, 19, 22 | mgcmnt1 32967 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘(𝐺‘(𝐹‘𝑋)))) |
24 | 4, 6 | posasymb 18377 | . . 3 ⊢ ((𝑊 ∈ Poset ∧ (𝐹‘(𝐺‘(𝐹‘𝑋))) ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ 𝐵) → (((𝐹‘(𝐺‘(𝐹‘𝑋))) ≲ (𝐹‘𝑋) ∧ (𝐹‘𝑋) ≲ (𝐹‘(𝐺‘(𝐹‘𝑋)))) ↔ (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋))) |
25 | 24 | biimpa 476 | . 2 ⊢ (((𝑊 ∈ Poset ∧ (𝐹‘(𝐺‘(𝐹‘𝑋))) ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ 𝐵) ∧ ((𝐹‘(𝐺‘(𝐹‘𝑋))) ≲ (𝐹‘𝑋) ∧ (𝐹‘𝑋) ≲ (𝐹‘(𝐺‘(𝐹‘𝑋))))) → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) |
26 | 1, 20, 18, 21, 23, 25 | syl32anc 1377 | 1 ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 lecple 17305 Proset cproset 18350 Posetcpo 18365 MGalConncmgc 32954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-proset 18352 df-poset 18371 df-mgc 32956 |
This theorem is referenced by: mgcf1o 32978 |
Copyright terms: Public domain | W3C validator |