| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcf1olem2 | Structured version Visualization version GIF version | ||
| Description: Property of a Galois connection, lemma for mgcf1o 32993. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| Ref | Expression |
|---|---|
| mgcf1o.h | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
| mgcf1o.a | ⊢ 𝐴 = (Base‘𝑉) |
| mgcf1o.b | ⊢ 𝐵 = (Base‘𝑊) |
| mgcf1o.1 | ⊢ ≤ = (le‘𝑉) |
| mgcf1o.2 | ⊢ ≲ = (le‘𝑊) |
| mgcf1o.v | ⊢ (𝜑 → 𝑉 ∈ Poset) |
| mgcf1o.w | ⊢ (𝜑 → 𝑊 ∈ Poset) |
| mgcf1o.f | ⊢ (𝜑 → 𝐹𝐻𝐺) |
| mgcf1olem2.1 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mgcf1olem2 | ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgcf1o.v | . 2 ⊢ (𝜑 → 𝑉 ∈ Poset) | |
| 2 | mgcf1o.f | . . . . 5 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
| 3 | mgcf1o.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
| 4 | mgcf1o.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 5 | mgcf1o.1 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
| 6 | mgcf1o.2 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
| 7 | mgcf1o.h | . . . . . 6 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
| 8 | posprs 18362 | . . . . . . 7 ⊢ (𝑉 ∈ Poset → 𝑉 ∈ Proset ) | |
| 9 | 1, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ Proset ) |
| 10 | mgcf1o.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Poset) | |
| 11 | posprs 18362 | . . . . . . 7 ⊢ (𝑊 ∈ Poset → 𝑊 ∈ Proset ) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Proset ) |
| 13 | 3, 4, 5, 6, 7, 9, 12 | dfmgc2 32986 | . . . . 5 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) |
| 14 | 2, 13 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥)))))) |
| 15 | 14 | simplrd 770 | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 16 | 14 | simplld 768 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 17 | mgcf1olem2.1 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 18 | 15, 17 | ffvelcdmd 7105 | . . . 4 ⊢ (𝜑 → (𝐺‘𝑌) ∈ 𝐴) |
| 19 | 16, 18 | ffvelcdmd 7105 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐺‘𝑌)) ∈ 𝐵) |
| 20 | 15, 19 | ffvelcdmd 7105 | . 2 ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) ∈ 𝐴) |
| 21 | 3, 4, 5, 6, 7, 9, 12, 2, 17 | mgccole2 32981 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐺‘𝑌)) ≲ 𝑌) |
| 22 | 3, 4, 5, 6, 7, 9, 12, 2, 19, 17, 21 | mgcmnt2 32983 | . 2 ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) ≤ (𝐺‘𝑌)) |
| 23 | 3, 4, 5, 6, 7, 9, 12, 2, 18 | mgccole1 32980 | . 2 ⊢ (𝜑 → (𝐺‘𝑌) ≤ (𝐺‘(𝐹‘(𝐺‘𝑌)))) |
| 24 | 3, 5 | posasymb 18365 | . . 3 ⊢ ((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺‘𝑌))) ∈ 𝐴 ∧ (𝐺‘𝑌) ∈ 𝐴) → (((𝐺‘(𝐹‘(𝐺‘𝑌))) ≤ (𝐺‘𝑌) ∧ (𝐺‘𝑌) ≤ (𝐺‘(𝐹‘(𝐺‘𝑌)))) ↔ (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌))) |
| 25 | 24 | biimpa 476 | . 2 ⊢ (((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺‘𝑌))) ∈ 𝐴 ∧ (𝐺‘𝑌) ∈ 𝐴) ∧ ((𝐺‘(𝐹‘(𝐺‘𝑌))) ≤ (𝐺‘𝑌) ∧ (𝐺‘𝑌) ≤ (𝐺‘(𝐹‘(𝐺‘𝑌))))) → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) |
| 26 | 1, 20, 18, 22, 23, 25 | syl32anc 1380 | 1 ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 class class class wbr 5143 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 lecple 17304 Proset cproset 18338 Posetcpo 18353 MGalConncmgc 32969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-proset 18340 df-poset 18359 df-mgc 32971 |
| This theorem is referenced by: mgcf1o 32993 |
| Copyright terms: Public domain | W3C validator |