Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcf1olem2 Structured version   Visualization version   GIF version

Theorem mgcf1olem2 32928
Description: Property of a Galois connection, lemma for mgcf1o 32929. (Contributed by Thierry Arnoux, 26-Jul-2024.)
Hypotheses
Ref Expression
mgcf1o.h 𝐻 = (𝑉MGalConn𝑊)
mgcf1o.a 𝐴 = (Base‘𝑉)
mgcf1o.b 𝐵 = (Base‘𝑊)
mgcf1o.1 = (le‘𝑉)
mgcf1o.2 = (le‘𝑊)
mgcf1o.v (𝜑𝑉 ∈ Poset)
mgcf1o.w (𝜑𝑊 ∈ Poset)
mgcf1o.f (𝜑𝐹𝐻𝐺)
mgcf1olem2.1 (𝜑𝑌𝐵)
Assertion
Ref Expression
mgcf1olem2 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))

Proof of Theorem mgcf1olem2
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcf1o.v . 2 (𝜑𝑉 ∈ Poset)
2 mgcf1o.f . . . . 5 (𝜑𝐹𝐻𝐺)
3 mgcf1o.a . . . . . 6 𝐴 = (Base‘𝑉)
4 mgcf1o.b . . . . . 6 𝐵 = (Base‘𝑊)
5 mgcf1o.1 . . . . . 6 = (le‘𝑉)
6 mgcf1o.2 . . . . . 6 = (le‘𝑊)
7 mgcf1o.h . . . . . 6 𝐻 = (𝑉MGalConn𝑊)
8 posprs 18326 . . . . . . 7 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
91, 8syl 17 . . . . . 6 (𝜑𝑉 ∈ Proset )
10 mgcf1o.w . . . . . . 7 (𝜑𝑊 ∈ Poset)
11 posprs 18326 . . . . . . 7 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
1210, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ Proset )
133, 4, 5, 6, 7, 9, 12dfmgc2 32922 . . . . 5 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
142, 13mpbid 232 . . . 4 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))))
1514simplrd 769 . . 3 (𝜑𝐺:𝐵𝐴)
1614simplld 767 . . . 4 (𝜑𝐹:𝐴𝐵)
17 mgcf1olem2.1 . . . . 5 (𝜑𝑌𝐵)
1815, 17ffvelcdmd 7074 . . . 4 (𝜑 → (𝐺𝑌) ∈ 𝐴)
1916, 18ffvelcdmd 7074 . . 3 (𝜑 → (𝐹‘(𝐺𝑌)) ∈ 𝐵)
2015, 19ffvelcdmd 7074 . 2 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) ∈ 𝐴)
213, 4, 5, 6, 7, 9, 12, 2, 17mgccole2 32917 . . 3 (𝜑 → (𝐹‘(𝐺𝑌)) 𝑌)
223, 4, 5, 6, 7, 9, 12, 2, 19, 17, 21mgcmnt2 32919 . 2 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) (𝐺𝑌))
233, 4, 5, 6, 7, 9, 12, 2, 18mgccole1 32916 . 2 (𝜑 → (𝐺𝑌) (𝐺‘(𝐹‘(𝐺𝑌))))
243, 5posasymb 18329 . . 3 ((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺𝑌))) ∈ 𝐴 ∧ (𝐺𝑌) ∈ 𝐴) → (((𝐺‘(𝐹‘(𝐺𝑌))) (𝐺𝑌) ∧ (𝐺𝑌) (𝐺‘(𝐹‘(𝐺𝑌)))) ↔ (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌)))
2524biimpa 476 . 2 (((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺𝑌))) ∈ 𝐴 ∧ (𝐺𝑌) ∈ 𝐴) ∧ ((𝐺‘(𝐹‘(𝐺𝑌))) (𝐺𝑌) ∧ (𝐺𝑌) (𝐺‘(𝐹‘(𝐺𝑌))))) → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))
261, 20, 18, 22, 23, 25syl32anc 1380 1 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  wf 6526  cfv 6530  (class class class)co 7403  Basecbs 17226  lecple 17276   Proset cproset 18302  Posetcpo 18317  MGalConncmgc 32905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-proset 18304  df-poset 18323  df-mgc 32907
This theorem is referenced by:  mgcf1o  32929
  Copyright terms: Public domain W3C validator