Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcf1olem2 Structured version   Visualization version   GIF version

Theorem mgcf1olem2 32975
Description: Property of a Galois connection, lemma for mgcf1o 32976. (Contributed by Thierry Arnoux, 26-Jul-2024.)
Hypotheses
Ref Expression
mgcf1o.h 𝐻 = (𝑉MGalConn𝑊)
mgcf1o.a 𝐴 = (Base‘𝑉)
mgcf1o.b 𝐵 = (Base‘𝑊)
mgcf1o.1 = (le‘𝑉)
mgcf1o.2 = (le‘𝑊)
mgcf1o.v (𝜑𝑉 ∈ Poset)
mgcf1o.w (𝜑𝑊 ∈ Poset)
mgcf1o.f (𝜑𝐹𝐻𝐺)
mgcf1olem2.1 (𝜑𝑌𝐵)
Assertion
Ref Expression
mgcf1olem2 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))

Proof of Theorem mgcf1olem2
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcf1o.v . 2 (𝜑𝑉 ∈ Poset)
2 mgcf1o.f . . . . 5 (𝜑𝐹𝐻𝐺)
3 mgcf1o.a . . . . . 6 𝐴 = (Base‘𝑉)
4 mgcf1o.b . . . . . 6 𝐵 = (Base‘𝑊)
5 mgcf1o.1 . . . . . 6 = (le‘𝑉)
6 mgcf1o.2 . . . . . 6 = (le‘𝑊)
7 mgcf1o.h . . . . . 6 𝐻 = (𝑉MGalConn𝑊)
8 posprs 18386 . . . . . . 7 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
91, 8syl 17 . . . . . 6 (𝜑𝑉 ∈ Proset )
10 mgcf1o.w . . . . . . 7 (𝜑𝑊 ∈ Poset)
11 posprs 18386 . . . . . . 7 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
1210, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ Proset )
133, 4, 5, 6, 7, 9, 12dfmgc2 32969 . . . . 5 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
142, 13mpbid 232 . . . 4 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))))
1514simplrd 769 . . 3 (𝜑𝐺:𝐵𝐴)
1614simplld 767 . . . 4 (𝜑𝐹:𝐴𝐵)
17 mgcf1olem2.1 . . . . 5 (𝜑𝑌𝐵)
1815, 17ffvelcdmd 7119 . . . 4 (𝜑 → (𝐺𝑌) ∈ 𝐴)
1916, 18ffvelcdmd 7119 . . 3 (𝜑 → (𝐹‘(𝐺𝑌)) ∈ 𝐵)
2015, 19ffvelcdmd 7119 . 2 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) ∈ 𝐴)
213, 4, 5, 6, 7, 9, 12, 2, 17mgccole2 32964 . . 3 (𝜑 → (𝐹‘(𝐺𝑌)) 𝑌)
223, 4, 5, 6, 7, 9, 12, 2, 19, 17, 21mgcmnt2 32966 . 2 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) (𝐺𝑌))
233, 4, 5, 6, 7, 9, 12, 2, 18mgccole1 32963 . 2 (𝜑 → (𝐺𝑌) (𝐺‘(𝐹‘(𝐺𝑌))))
243, 5posasymb 18389 . . 3 ((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺𝑌))) ∈ 𝐴 ∧ (𝐺𝑌) ∈ 𝐴) → (((𝐺‘(𝐹‘(𝐺𝑌))) (𝐺𝑌) ∧ (𝐺𝑌) (𝐺‘(𝐹‘(𝐺𝑌)))) ↔ (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌)))
2524biimpa 476 . 2 (((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺𝑌))) ∈ 𝐴 ∧ (𝐺𝑌) ∈ 𝐴) ∧ ((𝐺‘(𝐹‘(𝐺𝑌))) (𝐺𝑌) ∧ (𝐺𝑌) (𝐺‘(𝐹‘(𝐺𝑌))))) → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))
261, 20, 18, 22, 23, 25syl32anc 1378 1 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318   Proset cproset 18363  Posetcpo 18377  MGalConncmgc 32952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-proset 18365  df-poset 18383  df-mgc 32954
This theorem is referenced by:  mgcf1o  32976
  Copyright terms: Public domain W3C validator