Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcf1olem2 Structured version   Visualization version   GIF version

Theorem mgcf1olem2 32159
Description: Property of a Galois connection, lemma for mgcf1o 32160. (Contributed by Thierry Arnoux, 26-Jul-2024.)
Hypotheses
Ref Expression
mgcf1o.h 𝐻 = (𝑉MGalConnπ‘Š)
mgcf1o.a 𝐴 = (Baseβ€˜π‘‰)
mgcf1o.b 𝐡 = (Baseβ€˜π‘Š)
mgcf1o.1 ≀ = (leβ€˜π‘‰)
mgcf1o.2 ≲ = (leβ€˜π‘Š)
mgcf1o.v (πœ‘ β†’ 𝑉 ∈ Poset)
mgcf1o.w (πœ‘ β†’ π‘Š ∈ Poset)
mgcf1o.f (πœ‘ β†’ 𝐹𝐻𝐺)
mgcf1olem2.1 (πœ‘ β†’ π‘Œ ∈ 𝐡)
Assertion
Ref Expression
mgcf1olem2 (πœ‘ β†’ (πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ))) = (πΊβ€˜π‘Œ))

Proof of Theorem mgcf1olem2
Dummy variables 𝑒 𝑣 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcf1o.v . 2 (πœ‘ β†’ 𝑉 ∈ Poset)
2 mgcf1o.f . . . . 5 (πœ‘ β†’ 𝐹𝐻𝐺)
3 mgcf1o.a . . . . . 6 𝐴 = (Baseβ€˜π‘‰)
4 mgcf1o.b . . . . . 6 𝐡 = (Baseβ€˜π‘Š)
5 mgcf1o.1 . . . . . 6 ≀ = (leβ€˜π‘‰)
6 mgcf1o.2 . . . . . 6 ≲ = (leβ€˜π‘Š)
7 mgcf1o.h . . . . . 6 𝐻 = (𝑉MGalConnπ‘Š)
8 posprs 18265 . . . . . . 7 (𝑉 ∈ Poset β†’ 𝑉 ∈ Proset )
91, 8syl 17 . . . . . 6 (πœ‘ β†’ 𝑉 ∈ Proset )
10 mgcf1o.w . . . . . . 7 (πœ‘ β†’ π‘Š ∈ Poset)
11 posprs 18265 . . . . . . 7 (π‘Š ∈ Poset β†’ π‘Š ∈ Proset )
1210, 11syl 17 . . . . . 6 (πœ‘ β†’ π‘Š ∈ Proset )
133, 4, 5, 6, 7, 9, 12dfmgc2 32153 . . . . 5 (πœ‘ β†’ (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐡⟢𝐴) ∧ ((βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (πΉβ€˜π‘₯) ≲ (πΉβ€˜π‘¦)) ∧ βˆ€π‘’ ∈ 𝐡 βˆ€π‘£ ∈ 𝐡 (𝑒 ≲ 𝑣 β†’ (πΊβ€˜π‘’) ≀ (πΊβ€˜π‘£))) ∧ (βˆ€π‘’ ∈ 𝐡 (πΉβ€˜(πΊβ€˜π‘’)) ≲ 𝑒 ∧ βˆ€π‘₯ ∈ 𝐴 π‘₯ ≀ (πΊβ€˜(πΉβ€˜π‘₯)))))))
142, 13mpbid 231 . . . 4 (πœ‘ β†’ ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐡⟢𝐴) ∧ ((βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (πΉβ€˜π‘₯) ≲ (πΉβ€˜π‘¦)) ∧ βˆ€π‘’ ∈ 𝐡 βˆ€π‘£ ∈ 𝐡 (𝑒 ≲ 𝑣 β†’ (πΊβ€˜π‘’) ≀ (πΊβ€˜π‘£))) ∧ (βˆ€π‘’ ∈ 𝐡 (πΉβ€˜(πΊβ€˜π‘’)) ≲ 𝑒 ∧ βˆ€π‘₯ ∈ 𝐴 π‘₯ ≀ (πΊβ€˜(πΉβ€˜π‘₯))))))
1514simplrd 768 . . 3 (πœ‘ β†’ 𝐺:𝐡⟢𝐴)
1614simplld 766 . . . 4 (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
17 mgcf1olem2.1 . . . . 5 (πœ‘ β†’ π‘Œ ∈ 𝐡)
1815, 17ffvelcdmd 7084 . . . 4 (πœ‘ β†’ (πΊβ€˜π‘Œ) ∈ 𝐴)
1916, 18ffvelcdmd 7084 . . 3 (πœ‘ β†’ (πΉβ€˜(πΊβ€˜π‘Œ)) ∈ 𝐡)
2015, 19ffvelcdmd 7084 . 2 (πœ‘ β†’ (πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ))) ∈ 𝐴)
213, 4, 5, 6, 7, 9, 12, 2, 17mgccole2 32148 . . 3 (πœ‘ β†’ (πΉβ€˜(πΊβ€˜π‘Œ)) ≲ π‘Œ)
223, 4, 5, 6, 7, 9, 12, 2, 19, 17, 21mgcmnt2 32150 . 2 (πœ‘ β†’ (πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ))) ≀ (πΊβ€˜π‘Œ))
233, 4, 5, 6, 7, 9, 12, 2, 18mgccole1 32147 . 2 (πœ‘ β†’ (πΊβ€˜π‘Œ) ≀ (πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ))))
243, 5posasymb 18268 . . 3 ((𝑉 ∈ Poset ∧ (πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ))) ∈ 𝐴 ∧ (πΊβ€˜π‘Œ) ∈ 𝐴) β†’ (((πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ))) ≀ (πΊβ€˜π‘Œ) ∧ (πΊβ€˜π‘Œ) ≀ (πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ)))) ↔ (πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ))) = (πΊβ€˜π‘Œ)))
2524biimpa 477 . 2 (((𝑉 ∈ Poset ∧ (πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ))) ∈ 𝐴 ∧ (πΊβ€˜π‘Œ) ∈ 𝐴) ∧ ((πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ))) ≀ (πΊβ€˜π‘Œ) ∧ (πΊβ€˜π‘Œ) ≀ (πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ))))) β†’ (πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ))) = (πΊβ€˜π‘Œ))
261, 20, 18, 22, 23, 25syl32anc 1378 1 (πœ‘ β†’ (πΊβ€˜(πΉβ€˜(πΊβ€˜π‘Œ))) = (πΊβ€˜π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5147  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200   Proset cproset 18242  Posetcpo 18256  MGalConncmgc 32136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-proset 18244  df-poset 18262  df-mgc 32138
This theorem is referenced by:  mgcf1o  32160
  Copyright terms: Public domain W3C validator