Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcf1olem2 Structured version   Visualization version   GIF version

Theorem mgcf1olem2 30810
Description: Property of a Galois connection, lemma for mgcf1o 30811. (Contributed by Thierry Arnoux, 26-Jul-2024.)
Hypotheses
Ref Expression
mgcf1o.h 𝐻 = (𝑉MGalConn𝑊)
mgcf1o.a 𝐴 = (Base‘𝑉)
mgcf1o.b 𝐵 = (Base‘𝑊)
mgcf1o.1 = (le‘𝑉)
mgcf1o.2 = (le‘𝑊)
mgcf1o.v (𝜑𝑉 ∈ Poset)
mgcf1o.w (𝜑𝑊 ∈ Poset)
mgcf1o.f (𝜑𝐹𝐻𝐺)
mgcf1olem2.1 (𝜑𝑌𝐵)
Assertion
Ref Expression
mgcf1olem2 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))

Proof of Theorem mgcf1olem2
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcf1o.v . 2 (𝜑𝑉 ∈ Poset)
2 mgcf1o.f . . . . 5 (𝜑𝐹𝐻𝐺)
3 mgcf1o.a . . . . . 6 𝐴 = (Base‘𝑉)
4 mgcf1o.b . . . . . 6 𝐵 = (Base‘𝑊)
5 mgcf1o.1 . . . . . 6 = (le‘𝑉)
6 mgcf1o.2 . . . . . 6 = (le‘𝑊)
7 mgcf1o.h . . . . . 6 𝐻 = (𝑉MGalConn𝑊)
8 posprs 17630 . . . . . . 7 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
91, 8syl 17 . . . . . 6 (𝜑𝑉 ∈ Proset )
10 mgcf1o.w . . . . . . 7 (𝜑𝑊 ∈ Poset)
11 posprs 17630 . . . . . . 7 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
1210, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ Proset )
133, 4, 5, 6, 7, 9, 12dfmgc2 30804 . . . . 5 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
142, 13mpbid 235 . . . 4 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))))
1514simplrd 769 . . 3 (𝜑𝐺:𝐵𝐴)
1614simplld 767 . . . 4 (𝜑𝐹:𝐴𝐵)
17 mgcf1olem2.1 . . . . 5 (𝜑𝑌𝐵)
1815, 17ffvelrnd 6848 . . . 4 (𝜑 → (𝐺𝑌) ∈ 𝐴)
1916, 18ffvelrnd 6848 . . 3 (𝜑 → (𝐹‘(𝐺𝑌)) ∈ 𝐵)
2015, 19ffvelrnd 6848 . 2 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) ∈ 𝐴)
213, 4, 5, 6, 7, 9, 12, 2, 17mgccole2 30799 . . 3 (𝜑 → (𝐹‘(𝐺𝑌)) 𝑌)
223, 4, 5, 6, 7, 9, 12, 2, 19, 17, 21mgcmnt2 30801 . 2 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) (𝐺𝑌))
233, 4, 5, 6, 7, 9, 12, 2, 18mgccole1 30798 . 2 (𝜑 → (𝐺𝑌) (𝐺‘(𝐹‘(𝐺𝑌))))
243, 5posasymb 17633 . . 3 ((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺𝑌))) ∈ 𝐴 ∧ (𝐺𝑌) ∈ 𝐴) → (((𝐺‘(𝐹‘(𝐺𝑌))) (𝐺𝑌) ∧ (𝐺𝑌) (𝐺‘(𝐹‘(𝐺𝑌)))) ↔ (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌)))
2524biimpa 480 . 2 (((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺𝑌))) ∈ 𝐴 ∧ (𝐺𝑌) ∈ 𝐴) ∧ ((𝐺‘(𝐹‘(𝐺𝑌))) (𝐺𝑌) ∧ (𝐺𝑌) (𝐺‘(𝐹‘(𝐺𝑌))))) → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))
261, 20, 18, 22, 23, 25syl32anc 1375 1 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070   class class class wbr 5035  wf 6335  cfv 6339  (class class class)co 7155  Basecbs 16546  lecple 16635   Proset cproset 17607  Posetcpo 17621  MGalConncmgc 30787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-map 8423  df-proset 17609  df-poset 17627  df-mgc 30789
This theorem is referenced by:  mgcf1o  30811
  Copyright terms: Public domain W3C validator