Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcf1olem2 Structured version   Visualization version   GIF version

Theorem mgcf1olem2 31862
Description: Property of a Galois connection, lemma for mgcf1o 31863. (Contributed by Thierry Arnoux, 26-Jul-2024.)
Hypotheses
Ref Expression
mgcf1o.h 𝐻 = (𝑉MGalConn𝑊)
mgcf1o.a 𝐴 = (Base‘𝑉)
mgcf1o.b 𝐵 = (Base‘𝑊)
mgcf1o.1 = (le‘𝑉)
mgcf1o.2 = (le‘𝑊)
mgcf1o.v (𝜑𝑉 ∈ Poset)
mgcf1o.w (𝜑𝑊 ∈ Poset)
mgcf1o.f (𝜑𝐹𝐻𝐺)
mgcf1olem2.1 (𝜑𝑌𝐵)
Assertion
Ref Expression
mgcf1olem2 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))

Proof of Theorem mgcf1olem2
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcf1o.v . 2 (𝜑𝑉 ∈ Poset)
2 mgcf1o.f . . . . 5 (𝜑𝐹𝐻𝐺)
3 mgcf1o.a . . . . . 6 𝐴 = (Base‘𝑉)
4 mgcf1o.b . . . . . 6 𝐵 = (Base‘𝑊)
5 mgcf1o.1 . . . . . 6 = (le‘𝑉)
6 mgcf1o.2 . . . . . 6 = (le‘𝑊)
7 mgcf1o.h . . . . . 6 𝐻 = (𝑉MGalConn𝑊)
8 posprs 18205 . . . . . . 7 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
91, 8syl 17 . . . . . 6 (𝜑𝑉 ∈ Proset )
10 mgcf1o.w . . . . . . 7 (𝜑𝑊 ∈ Poset)
11 posprs 18205 . . . . . . 7 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
1210, 11syl 17 . . . . . 6 (𝜑𝑊 ∈ Proset )
133, 4, 5, 6, 7, 9, 12dfmgc2 31856 . . . . 5 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
142, 13mpbid 231 . . . 4 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))))
1514simplrd 768 . . 3 (𝜑𝐺:𝐵𝐴)
1614simplld 766 . . . 4 (𝜑𝐹:𝐴𝐵)
17 mgcf1olem2.1 . . . . 5 (𝜑𝑌𝐵)
1815, 17ffvelcdmd 7036 . . . 4 (𝜑 → (𝐺𝑌) ∈ 𝐴)
1916, 18ffvelcdmd 7036 . . 3 (𝜑 → (𝐹‘(𝐺𝑌)) ∈ 𝐵)
2015, 19ffvelcdmd 7036 . 2 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) ∈ 𝐴)
213, 4, 5, 6, 7, 9, 12, 2, 17mgccole2 31851 . . 3 (𝜑 → (𝐹‘(𝐺𝑌)) 𝑌)
223, 4, 5, 6, 7, 9, 12, 2, 19, 17, 21mgcmnt2 31853 . 2 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) (𝐺𝑌))
233, 4, 5, 6, 7, 9, 12, 2, 18mgccole1 31850 . 2 (𝜑 → (𝐺𝑌) (𝐺‘(𝐹‘(𝐺𝑌))))
243, 5posasymb 18208 . . 3 ((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺𝑌))) ∈ 𝐴 ∧ (𝐺𝑌) ∈ 𝐴) → (((𝐺‘(𝐹‘(𝐺𝑌))) (𝐺𝑌) ∧ (𝐺𝑌) (𝐺‘(𝐹‘(𝐺𝑌)))) ↔ (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌)))
2524biimpa 477 . 2 (((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺𝑌))) ∈ 𝐴 ∧ (𝐺𝑌) ∈ 𝐴) ∧ ((𝐺‘(𝐹‘(𝐺𝑌))) (𝐺𝑌) ∧ (𝐺𝑌) (𝐺‘(𝐹‘(𝐺𝑌))))) → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))
261, 20, 18, 22, 23, 25syl32anc 1378 1 (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140   Proset cproset 18182  Posetcpo 18196  MGalConncmgc 31839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-proset 18184  df-poset 18202  df-mgc 31841
This theorem is referenced by:  mgcf1o  31863
  Copyright terms: Public domain W3C validator