![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcf1olem2 | Structured version Visualization version GIF version |
Description: Property of a Galois connection, lemma for mgcf1o 31863. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
Ref | Expression |
---|---|
mgcf1o.h | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
mgcf1o.a | ⊢ 𝐴 = (Base‘𝑉) |
mgcf1o.b | ⊢ 𝐵 = (Base‘𝑊) |
mgcf1o.1 | ⊢ ≤ = (le‘𝑉) |
mgcf1o.2 | ⊢ ≲ = (le‘𝑊) |
mgcf1o.v | ⊢ (𝜑 → 𝑉 ∈ Poset) |
mgcf1o.w | ⊢ (𝜑 → 𝑊 ∈ Poset) |
mgcf1o.f | ⊢ (𝜑 → 𝐹𝐻𝐺) |
mgcf1olem2.1 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
mgcf1olem2 | ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgcf1o.v | . 2 ⊢ (𝜑 → 𝑉 ∈ Poset) | |
2 | mgcf1o.f | . . . . 5 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
3 | mgcf1o.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
4 | mgcf1o.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
5 | mgcf1o.1 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
6 | mgcf1o.2 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
7 | mgcf1o.h | . . . . . 6 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
8 | posprs 18205 | . . . . . . 7 ⊢ (𝑉 ∈ Poset → 𝑉 ∈ Proset ) | |
9 | 1, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ Proset ) |
10 | mgcf1o.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Poset) | |
11 | posprs 18205 | . . . . . . 7 ⊢ (𝑊 ∈ Poset → 𝑊 ∈ Proset ) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Proset ) |
13 | 3, 4, 5, 6, 7, 9, 12 | dfmgc2 31856 | . . . . 5 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) |
14 | 2, 13 | mpbid 231 | . . . 4 ⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥)))))) |
15 | 14 | simplrd 768 | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
16 | 14 | simplld 766 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
17 | mgcf1olem2.1 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
18 | 15, 17 | ffvelcdmd 7036 | . . . 4 ⊢ (𝜑 → (𝐺‘𝑌) ∈ 𝐴) |
19 | 16, 18 | ffvelcdmd 7036 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐺‘𝑌)) ∈ 𝐵) |
20 | 15, 19 | ffvelcdmd 7036 | . 2 ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) ∈ 𝐴) |
21 | 3, 4, 5, 6, 7, 9, 12, 2, 17 | mgccole2 31851 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐺‘𝑌)) ≲ 𝑌) |
22 | 3, 4, 5, 6, 7, 9, 12, 2, 19, 17, 21 | mgcmnt2 31853 | . 2 ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) ≤ (𝐺‘𝑌)) |
23 | 3, 4, 5, 6, 7, 9, 12, 2, 18 | mgccole1 31850 | . 2 ⊢ (𝜑 → (𝐺‘𝑌) ≤ (𝐺‘(𝐹‘(𝐺‘𝑌)))) |
24 | 3, 5 | posasymb 18208 | . . 3 ⊢ ((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺‘𝑌))) ∈ 𝐴 ∧ (𝐺‘𝑌) ∈ 𝐴) → (((𝐺‘(𝐹‘(𝐺‘𝑌))) ≤ (𝐺‘𝑌) ∧ (𝐺‘𝑌) ≤ (𝐺‘(𝐹‘(𝐺‘𝑌)))) ↔ (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌))) |
25 | 24 | biimpa 477 | . 2 ⊢ (((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺‘𝑌))) ∈ 𝐴 ∧ (𝐺‘𝑌) ∈ 𝐴) ∧ ((𝐺‘(𝐹‘(𝐺‘𝑌))) ≤ (𝐺‘𝑌) ∧ (𝐺‘𝑌) ≤ (𝐺‘(𝐹‘(𝐺‘𝑌))))) → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) |
26 | 1, 20, 18, 22, 23, 25 | syl32anc 1378 | 1 ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3064 class class class wbr 5105 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 lecple 17140 Proset cproset 18182 Posetcpo 18196 MGalConncmgc 31839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-map 8767 df-proset 18184 df-poset 18202 df-mgc 31841 |
This theorem is referenced by: mgcf1o 31863 |
Copyright terms: Public domain | W3C validator |