| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcf1olem2 | Structured version Visualization version GIF version | ||
| Description: Property of a Galois connection, lemma for mgcf1o 32984. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| Ref | Expression |
|---|---|
| mgcf1o.h | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
| mgcf1o.a | ⊢ 𝐴 = (Base‘𝑉) |
| mgcf1o.b | ⊢ 𝐵 = (Base‘𝑊) |
| mgcf1o.1 | ⊢ ≤ = (le‘𝑉) |
| mgcf1o.2 | ⊢ ≲ = (le‘𝑊) |
| mgcf1o.v | ⊢ (𝜑 → 𝑉 ∈ Poset) |
| mgcf1o.w | ⊢ (𝜑 → 𝑊 ∈ Poset) |
| mgcf1o.f | ⊢ (𝜑 → 𝐹𝐻𝐺) |
| mgcf1olem2.1 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mgcf1olem2 | ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgcf1o.v | . 2 ⊢ (𝜑 → 𝑉 ∈ Poset) | |
| 2 | mgcf1o.f | . . . . 5 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
| 3 | mgcf1o.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
| 4 | mgcf1o.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 5 | mgcf1o.1 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
| 6 | mgcf1o.2 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
| 7 | mgcf1o.h | . . . . . 6 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
| 8 | posprs 18222 | . . . . . . 7 ⊢ (𝑉 ∈ Poset → 𝑉 ∈ Proset ) | |
| 9 | 1, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ Proset ) |
| 10 | mgcf1o.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Poset) | |
| 11 | posprs 18222 | . . . . . . 7 ⊢ (𝑊 ∈ Poset → 𝑊 ∈ Proset ) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Proset ) |
| 13 | 3, 4, 5, 6, 7, 9, 12 | dfmgc2 32977 | . . . . 5 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) |
| 14 | 2, 13 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥)))))) |
| 15 | 14 | simplrd 769 | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 16 | 14 | simplld 767 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 17 | mgcf1olem2.1 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 18 | 15, 17 | ffvelcdmd 7018 | . . . 4 ⊢ (𝜑 → (𝐺‘𝑌) ∈ 𝐴) |
| 19 | 16, 18 | ffvelcdmd 7018 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐺‘𝑌)) ∈ 𝐵) |
| 20 | 15, 19 | ffvelcdmd 7018 | . 2 ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) ∈ 𝐴) |
| 21 | 3, 4, 5, 6, 7, 9, 12, 2, 17 | mgccole2 32972 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐺‘𝑌)) ≲ 𝑌) |
| 22 | 3, 4, 5, 6, 7, 9, 12, 2, 19, 17, 21 | mgcmnt2 32974 | . 2 ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) ≤ (𝐺‘𝑌)) |
| 23 | 3, 4, 5, 6, 7, 9, 12, 2, 18 | mgccole1 32971 | . 2 ⊢ (𝜑 → (𝐺‘𝑌) ≤ (𝐺‘(𝐹‘(𝐺‘𝑌)))) |
| 24 | 3, 5 | posasymb 18225 | . . 3 ⊢ ((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺‘𝑌))) ∈ 𝐴 ∧ (𝐺‘𝑌) ∈ 𝐴) → (((𝐺‘(𝐹‘(𝐺‘𝑌))) ≤ (𝐺‘𝑌) ∧ (𝐺‘𝑌) ≤ (𝐺‘(𝐹‘(𝐺‘𝑌)))) ↔ (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌))) |
| 25 | 24 | biimpa 476 | . 2 ⊢ (((𝑉 ∈ Poset ∧ (𝐺‘(𝐹‘(𝐺‘𝑌))) ∈ 𝐴 ∧ (𝐺‘𝑌) ∈ 𝐴) ∧ ((𝐺‘(𝐹‘(𝐺‘𝑌))) ≤ (𝐺‘𝑌) ∧ (𝐺‘𝑌) ≤ (𝐺‘(𝐹‘(𝐺‘𝑌))))) → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) |
| 26 | 1, 20, 18, 22, 23, 25 | syl32anc 1380 | 1 ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 Proset cproset 18198 Posetcpo 18213 MGalConncmgc 32960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-proset 18200 df-poset 18219 df-mgc 32962 |
| This theorem is referenced by: mgcf1o 32984 |
| Copyright terms: Public domain | W3C validator |