Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsprel Structured version   Visualization version   GIF version

Theorem prsprel 46155
Description: The elements of a pair from the set of all unordered pairs over a given set 𝑉 are elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.)
Assertion
Ref Expression
prsprel (({𝑋, 𝑌} ∈ (Pairs‘𝑉) ∧ (𝑋𝑈𝑌𝑊)) → (𝑋𝑉𝑌𝑉))

Proof of Theorem prsprel
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprel 46152 . . 3 ({𝑋, 𝑌} ∈ (Pairs‘𝑉) → ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})
2 preq12bg 4855 . . . . . . 7 (((𝑋𝑈𝑌𝑊) ∧ (𝑎𝑉𝑏𝑉)) → ({𝑋, 𝑌} = {𝑎, 𝑏} ↔ ((𝑋 = 𝑎𝑌 = 𝑏) ∨ (𝑋 = 𝑏𝑌 = 𝑎))))
3 eleq1 2822 . . . . . . . . . . . . 13 (𝑎 = 𝑋 → (𝑎𝑉𝑋𝑉))
43eqcoms 2741 . . . . . . . . . . . 12 (𝑋 = 𝑎 → (𝑎𝑉𝑋𝑉))
5 eleq1 2822 . . . . . . . . . . . . 13 (𝑏 = 𝑌 → (𝑏𝑉𝑌𝑉))
65eqcoms 2741 . . . . . . . . . . . 12 (𝑌 = 𝑏 → (𝑏𝑉𝑌𝑉))
74, 6bi2anan9 638 . . . . . . . . . . 11 ((𝑋 = 𝑎𝑌 = 𝑏) → ((𝑎𝑉𝑏𝑉) ↔ (𝑋𝑉𝑌𝑉)))
87biimpd 228 . . . . . . . . . 10 ((𝑋 = 𝑎𝑌 = 𝑏) → ((𝑎𝑉𝑏𝑉) → (𝑋𝑉𝑌𝑉)))
9 eleq1 2822 . . . . . . . . . . . . . 14 (𝑏 = 𝑋 → (𝑏𝑉𝑋𝑉))
109eqcoms 2741 . . . . . . . . . . . . 13 (𝑋 = 𝑏 → (𝑏𝑉𝑋𝑉))
11 eleq1 2822 . . . . . . . . . . . . . 14 (𝑎 = 𝑌 → (𝑎𝑉𝑌𝑉))
1211eqcoms 2741 . . . . . . . . . . . . 13 (𝑌 = 𝑎 → (𝑎𝑉𝑌𝑉))
1310, 12bi2anan9 638 . . . . . . . . . . . 12 ((𝑋 = 𝑏𝑌 = 𝑎) → ((𝑏𝑉𝑎𝑉) ↔ (𝑋𝑉𝑌𝑉)))
1413biimpd 228 . . . . . . . . . . 11 ((𝑋 = 𝑏𝑌 = 𝑎) → ((𝑏𝑉𝑎𝑉) → (𝑋𝑉𝑌𝑉)))
1514ancomsd 467 . . . . . . . . . 10 ((𝑋 = 𝑏𝑌 = 𝑎) → ((𝑎𝑉𝑏𝑉) → (𝑋𝑉𝑌𝑉)))
168, 15jaoi 856 . . . . . . . . 9 (((𝑋 = 𝑎𝑌 = 𝑏) ∨ (𝑋 = 𝑏𝑌 = 𝑎)) → ((𝑎𝑉𝑏𝑉) → (𝑋𝑉𝑌𝑉)))
1716com12 32 . . . . . . . 8 ((𝑎𝑉𝑏𝑉) → (((𝑋 = 𝑎𝑌 = 𝑏) ∨ (𝑋 = 𝑏𝑌 = 𝑎)) → (𝑋𝑉𝑌𝑉)))
1817adantl 483 . . . . . . 7 (((𝑋𝑈𝑌𝑊) ∧ (𝑎𝑉𝑏𝑉)) → (((𝑋 = 𝑎𝑌 = 𝑏) ∨ (𝑋 = 𝑏𝑌 = 𝑎)) → (𝑋𝑉𝑌𝑉)))
192, 18sylbid 239 . . . . . 6 (((𝑋𝑈𝑌𝑊) ∧ (𝑎𝑉𝑏𝑉)) → ({𝑋, 𝑌} = {𝑎, 𝑏} → (𝑋𝑉𝑌𝑉)))
2019expcom 415 . . . . 5 ((𝑎𝑉𝑏𝑉) → ((𝑋𝑈𝑌𝑊) → ({𝑋, 𝑌} = {𝑎, 𝑏} → (𝑋𝑉𝑌𝑉))))
2120com23 86 . . . 4 ((𝑎𝑉𝑏𝑉) → ({𝑋, 𝑌} = {𝑎, 𝑏} → ((𝑋𝑈𝑌𝑊) → (𝑋𝑉𝑌𝑉))))
2221rexlimivv 3200 . . 3 (∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏} → ((𝑋𝑈𝑌𝑊) → (𝑋𝑉𝑌𝑉)))
231, 22syl 17 . 2 ({𝑋, 𝑌} ∈ (Pairs‘𝑉) → ((𝑋𝑈𝑌𝑊) → (𝑋𝑉𝑌𝑉)))
2423imp 408 1 (({𝑋, 𝑌} ∈ (Pairs‘𝑉) ∧ (𝑋𝑈𝑌𝑊)) → (𝑋𝑉𝑌𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wrex 3071  {cpr 4631  cfv 6544  Pairscspr 46145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-spr 46146
This theorem is referenced by:  prsssprel  46156  sprsymrelfolem2  46161
  Copyright terms: Public domain W3C validator