Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsprel Structured version   Visualization version   GIF version

Theorem prsprel 43642
Description: The elements of a pair from the set of all unordered pairs over a given set 𝑉 are elements of the set 𝑉. (Contributed by AV, 22-Nov-2021.)
Assertion
Ref Expression
prsprel (({𝑋, 𝑌} ∈ (Pairs‘𝑉) ∧ (𝑋𝑈𝑌𝑊)) → (𝑋𝑉𝑌𝑉))

Proof of Theorem prsprel
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprel 43639 . . 3 ({𝑋, 𝑌} ∈ (Pairs‘𝑉) → ∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏})
2 preq12bg 4778 . . . . . . 7 (((𝑋𝑈𝑌𝑊) ∧ (𝑎𝑉𝑏𝑉)) → ({𝑋, 𝑌} = {𝑎, 𝑏} ↔ ((𝑋 = 𝑎𝑌 = 𝑏) ∨ (𝑋 = 𝑏𝑌 = 𝑎))))
3 eleq1 2900 . . . . . . . . . . . . 13 (𝑎 = 𝑋 → (𝑎𝑉𝑋𝑉))
43eqcoms 2829 . . . . . . . . . . . 12 (𝑋 = 𝑎 → (𝑎𝑉𝑋𝑉))
5 eleq1 2900 . . . . . . . . . . . . 13 (𝑏 = 𝑌 → (𝑏𝑉𝑌𝑉))
65eqcoms 2829 . . . . . . . . . . . 12 (𝑌 = 𝑏 → (𝑏𝑉𝑌𝑉))
74, 6bi2anan9 637 . . . . . . . . . . 11 ((𝑋 = 𝑎𝑌 = 𝑏) → ((𝑎𝑉𝑏𝑉) ↔ (𝑋𝑉𝑌𝑉)))
87biimpd 231 . . . . . . . . . 10 ((𝑋 = 𝑎𝑌 = 𝑏) → ((𝑎𝑉𝑏𝑉) → (𝑋𝑉𝑌𝑉)))
9 eleq1 2900 . . . . . . . . . . . . . 14 (𝑏 = 𝑋 → (𝑏𝑉𝑋𝑉))
109eqcoms 2829 . . . . . . . . . . . . 13 (𝑋 = 𝑏 → (𝑏𝑉𝑋𝑉))
11 eleq1 2900 . . . . . . . . . . . . . 14 (𝑎 = 𝑌 → (𝑎𝑉𝑌𝑉))
1211eqcoms 2829 . . . . . . . . . . . . 13 (𝑌 = 𝑎 → (𝑎𝑉𝑌𝑉))
1310, 12bi2anan9 637 . . . . . . . . . . . 12 ((𝑋 = 𝑏𝑌 = 𝑎) → ((𝑏𝑉𝑎𝑉) ↔ (𝑋𝑉𝑌𝑉)))
1413biimpd 231 . . . . . . . . . . 11 ((𝑋 = 𝑏𝑌 = 𝑎) → ((𝑏𝑉𝑎𝑉) → (𝑋𝑉𝑌𝑉)))
1514ancomsd 468 . . . . . . . . . 10 ((𝑋 = 𝑏𝑌 = 𝑎) → ((𝑎𝑉𝑏𝑉) → (𝑋𝑉𝑌𝑉)))
168, 15jaoi 853 . . . . . . . . 9 (((𝑋 = 𝑎𝑌 = 𝑏) ∨ (𝑋 = 𝑏𝑌 = 𝑎)) → ((𝑎𝑉𝑏𝑉) → (𝑋𝑉𝑌𝑉)))
1716com12 32 . . . . . . . 8 ((𝑎𝑉𝑏𝑉) → (((𝑋 = 𝑎𝑌 = 𝑏) ∨ (𝑋 = 𝑏𝑌 = 𝑎)) → (𝑋𝑉𝑌𝑉)))
1817adantl 484 . . . . . . 7 (((𝑋𝑈𝑌𝑊) ∧ (𝑎𝑉𝑏𝑉)) → (((𝑋 = 𝑎𝑌 = 𝑏) ∨ (𝑋 = 𝑏𝑌 = 𝑎)) → (𝑋𝑉𝑌𝑉)))
192, 18sylbid 242 . . . . . 6 (((𝑋𝑈𝑌𝑊) ∧ (𝑎𝑉𝑏𝑉)) → ({𝑋, 𝑌} = {𝑎, 𝑏} → (𝑋𝑉𝑌𝑉)))
2019expcom 416 . . . . 5 ((𝑎𝑉𝑏𝑉) → ((𝑋𝑈𝑌𝑊) → ({𝑋, 𝑌} = {𝑎, 𝑏} → (𝑋𝑉𝑌𝑉))))
2120com23 86 . . . 4 ((𝑎𝑉𝑏𝑉) → ({𝑋, 𝑌} = {𝑎, 𝑏} → ((𝑋𝑈𝑌𝑊) → (𝑋𝑉𝑌𝑉))))
2221rexlimivv 3292 . . 3 (∃𝑎𝑉𝑏𝑉 {𝑋, 𝑌} = {𝑎, 𝑏} → ((𝑋𝑈𝑌𝑊) → (𝑋𝑉𝑌𝑉)))
231, 22syl 17 . 2 ({𝑋, 𝑌} ∈ (Pairs‘𝑉) → ((𝑋𝑈𝑌𝑊) → (𝑋𝑉𝑌𝑉)))
2423imp 409 1 (({𝑋, 𝑌} ∈ (Pairs‘𝑉) ∧ (𝑋𝑈𝑌𝑊)) → (𝑋𝑉𝑌𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wrex 3139  {cpr 4563  cfv 6350  Pairscspr 43632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-spr 43633
This theorem is referenced by:  prsssprel  43643  sprsymrelfolem2  43648
  Copyright terms: Public domain W3C validator