Proof of Theorem uhgr2edg
Step | Hyp | Ref
| Expression |
1 | | simp1l 1195 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐺 ∈ UHGraph) |
2 | | simp1r 1196 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴 ≠ 𝐵) |
3 | | simp23 1206 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝑁 ∈ 𝑉) |
4 | | simp21 1204 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴 ∈ 𝑉) |
5 | | 3simpc 1148 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
6 | 5 | 3ad2ant2 1132 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
7 | 3, 4, 6 | jca31 514 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
8 | 1, 2, 7 | jca31 514 |
. 2
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)))) |
9 | | simp3 1136 |
. 2
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) |
10 | | usgrf1oedg.e |
. . . . . . . . 9
⊢ 𝐸 = (Edg‘𝐺) |
11 | 10 | a1i 11 |
. . . . . . . 8
⊢ (𝐺 ∈ UHGraph → 𝐸 = (Edg‘𝐺)) |
12 | | edgval 27322 |
. . . . . . . . 9
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
13 | 12 | a1i 11 |
. . . . . . . 8
⊢ (𝐺 ∈ UHGraph →
(Edg‘𝐺) = ran
(iEdg‘𝐺)) |
14 | | usgrf1oedg.i |
. . . . . . . . . . 11
⊢ 𝐼 = (iEdg‘𝐺) |
15 | 14 | eqcomi 2747 |
. . . . . . . . . 10
⊢
(iEdg‘𝐺) =
𝐼 |
16 | 15 | a1i 11 |
. . . . . . . . 9
⊢ (𝐺 ∈ UHGraph →
(iEdg‘𝐺) = 𝐼) |
17 | 16 | rneqd 5836 |
. . . . . . . 8
⊢ (𝐺 ∈ UHGraph → ran
(iEdg‘𝐺) = ran 𝐼) |
18 | 11, 13, 17 | 3eqtrd 2782 |
. . . . . . 7
⊢ (𝐺 ∈ UHGraph → 𝐸 = ran 𝐼) |
19 | 18 | eleq2d 2824 |
. . . . . 6
⊢ (𝐺 ∈ UHGraph → ({𝑁, 𝐴} ∈ 𝐸 ↔ {𝑁, 𝐴} ∈ ran 𝐼)) |
20 | 18 | eleq2d 2824 |
. . . . . 6
⊢ (𝐺 ∈ UHGraph → ({𝐵, 𝑁} ∈ 𝐸 ↔ {𝐵, 𝑁} ∈ ran 𝐼)) |
21 | 19, 20 | anbi12d 630 |
. . . . 5
⊢ (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ ({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼))) |
22 | 14 | uhgrfun 27339 |
. . . . . . 7
⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
23 | 22 | funfnd 6449 |
. . . . . 6
⊢ (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼) |
24 | | fvelrnb 6812 |
. . . . . . 7
⊢ (𝐼 Fn dom 𝐼 → ({𝑁, 𝐴} ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴})) |
25 | | fvelrnb 6812 |
. . . . . . 7
⊢ (𝐼 Fn dom 𝐼 → ({𝐵, 𝑁} ∈ ran 𝐼 ↔ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁})) |
26 | 24, 25 | anbi12d 630 |
. . . . . 6
⊢ (𝐼 Fn dom 𝐼 → (({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}))) |
27 | 23, 26 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}))) |
28 | 21, 27 | bitrd 278 |
. . . 4
⊢ (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}))) |
29 | 28 | ad2antrr 722 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}))) |
30 | | reeanv 3292 |
. . . 4
⊢
(∃𝑥 ∈ dom
𝐼∃𝑦 ∈ dom 𝐼((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁})) |
31 | | fveqeq2 6765 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝐼‘𝑥) = {𝑁, 𝐴} ↔ (𝐼‘𝑦) = {𝑁, 𝐴})) |
32 | 31 | anbi1d 629 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) ↔ ((𝐼‘𝑦) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}))) |
33 | | eqtr2 2762 |
. . . . . . . . . . . 12
⊢ (((𝐼‘𝑦) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → {𝑁, 𝐴} = {𝐵, 𝑁}) |
34 | | prcom 4665 |
. . . . . . . . . . . . . 14
⊢ {𝐵, 𝑁} = {𝑁, 𝐵} |
35 | 34 | eqeq2i 2751 |
. . . . . . . . . . . . 13
⊢ ({𝑁, 𝐴} = {𝐵, 𝑁} ↔ {𝑁, 𝐴} = {𝑁, 𝐵}) |
36 | | preq12bg 4781 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝑁 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} ↔ ((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) ∨ (𝑁 = 𝐵 ∧ 𝐴 = 𝑁)))) |
37 | 36 | ancom2s 646 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} ↔ ((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) ∨ (𝑁 = 𝐵 ∧ 𝐴 = 𝑁)))) |
38 | | eqneqall 2953 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦)) |
39 | 38 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) → (𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦)) |
40 | | eqtr 2761 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 = 𝑁 ∧ 𝑁 = 𝐵) → 𝐴 = 𝐵) |
41 | 40 | ancoms 458 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 = 𝐵 ∧ 𝐴 = 𝑁) → 𝐴 = 𝐵) |
42 | 41, 38 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 𝐵 ∧ 𝐴 = 𝑁) → (𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦)) |
43 | 39, 42 | jaoi 853 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) ∨ (𝑁 = 𝐵 ∧ 𝐴 = 𝑁)) → (𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦)) |
44 | 43 | adantld 490 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) ∨ (𝑁 = 𝐵 ∧ 𝐴 = 𝑁)) → ((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) → 𝑥 ≠ 𝑦)) |
45 | 37, 44 | syl6bi 252 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} → ((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) → 𝑥 ≠ 𝑦))) |
46 | 45 | com3l 89 |
. . . . . . . . . . . . . 14
⊢ ({𝑁, 𝐴} = {𝑁, 𝐵} → ((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) → (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → 𝑥 ≠ 𝑦))) |
47 | 46 | impd 410 |
. . . . . . . . . . . . 13
⊢ ({𝑁, 𝐴} = {𝑁, 𝐵} → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑥 ≠ 𝑦)) |
48 | 35, 47 | sylbi 216 |
. . . . . . . . . . . 12
⊢ ({𝑁, 𝐴} = {𝐵, 𝑁} → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑥 ≠ 𝑦)) |
49 | 33, 48 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐼‘𝑦) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑥 ≠ 𝑦)) |
50 | 32, 49 | syl6bi 252 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑥 ≠ 𝑦))) |
51 | 50 | impcomd 411 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑥 ≠ 𝑦)) |
52 | | ax-1 6 |
. . . . . . . . 9
⊢ (𝑥 ≠ 𝑦 → ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑥 ≠ 𝑦)) |
53 | 51, 52 | pm2.61ine 3027 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑥 ≠ 𝑦) |
54 | | prid1g 4693 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ {𝑁, 𝐴}) |
55 | 54 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → 𝑁 ∈ {𝑁, 𝐴}) |
56 | 55 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ {𝑁, 𝐴}) |
57 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ ((𝐼‘𝑥) = {𝑁, 𝐴} → (𝑁 ∈ (𝐼‘𝑥) ↔ 𝑁 ∈ {𝑁, 𝐴})) |
58 | 56, 57 | syl5ibr 245 |
. . . . . . . . . 10
⊢ ((𝐼‘𝑥) = {𝑁, 𝐴} → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ (𝐼‘𝑥))) |
59 | 58 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ (𝐼‘𝑥))) |
60 | 59 | impcom 407 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑁 ∈ (𝐼‘𝑥)) |
61 | | prid2g 4694 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ {𝐵, 𝑁}) |
62 | 61 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → 𝑁 ∈ {𝐵, 𝑁}) |
63 | 62 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ {𝐵, 𝑁}) |
64 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ ((𝐼‘𝑦) = {𝐵, 𝑁} → (𝑁 ∈ (𝐼‘𝑦) ↔ 𝑁 ∈ {𝐵, 𝑁})) |
65 | 63, 64 | syl5ibr 245 |
. . . . . . . . . 10
⊢ ((𝐼‘𝑦) = {𝐵, 𝑁} → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ (𝐼‘𝑦))) |
66 | 65 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ (𝐼‘𝑦))) |
67 | 66 | impcom 407 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑁 ∈ (𝐼‘𝑦)) |
68 | 53, 60, 67 | 3jca 1126 |
. . . . . . 7
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦))) |
69 | 68 | ex 412 |
. . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) |
70 | 69 | reximdv 3201 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (∃𝑦 ∈ dom 𝐼((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → ∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) |
71 | 70 | reximdv 3201 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) |
72 | 30, 71 | syl5bir 242 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → ((∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) |
73 | 29, 72 | sylbid 239 |
. 2
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) |
74 | 8, 9, 73 | sylc 65 |
1
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦))) |