Proof of Theorem uhgr2edg
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1l 1198 | . . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐺 ∈ UHGraph) | 
| 2 |  | simp1r 1199 | . . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴 ≠ 𝐵) | 
| 3 |  | simp23 1209 | . . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝑁 ∈ 𝑉) | 
| 4 |  | simp21 1207 | . . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴 ∈ 𝑉) | 
| 5 |  | 3simpc 1151 | . . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) | 
| 6 | 5 | 3ad2ant2 1135 | . . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) | 
| 7 | 3, 4, 6 | jca31 514 | . . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) | 
| 8 | 1, 2, 7 | jca31 514 | . 2
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)))) | 
| 9 |  | simp3 1139 | . 2
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) | 
| 10 |  | usgrf1oedg.e | . . . . . . . . 9
⊢ 𝐸 = (Edg‘𝐺) | 
| 11 | 10 | a1i 11 | . . . . . . . 8
⊢ (𝐺 ∈ UHGraph → 𝐸 = (Edg‘𝐺)) | 
| 12 |  | edgval 29066 | . . . . . . . . 9
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) | 
| 13 | 12 | a1i 11 | . . . . . . . 8
⊢ (𝐺 ∈ UHGraph →
(Edg‘𝐺) = ran
(iEdg‘𝐺)) | 
| 14 |  | usgrf1oedg.i | . . . . . . . . . . 11
⊢ 𝐼 = (iEdg‘𝐺) | 
| 15 | 14 | eqcomi 2746 | . . . . . . . . . 10
⊢
(iEdg‘𝐺) =
𝐼 | 
| 16 | 15 | a1i 11 | . . . . . . . . 9
⊢ (𝐺 ∈ UHGraph →
(iEdg‘𝐺) = 𝐼) | 
| 17 | 16 | rneqd 5949 | . . . . . . . 8
⊢ (𝐺 ∈ UHGraph → ran
(iEdg‘𝐺) = ran 𝐼) | 
| 18 | 11, 13, 17 | 3eqtrd 2781 | . . . . . . 7
⊢ (𝐺 ∈ UHGraph → 𝐸 = ran 𝐼) | 
| 19 | 18 | eleq2d 2827 | . . . . . 6
⊢ (𝐺 ∈ UHGraph → ({𝑁, 𝐴} ∈ 𝐸 ↔ {𝑁, 𝐴} ∈ ran 𝐼)) | 
| 20 | 18 | eleq2d 2827 | . . . . . 6
⊢ (𝐺 ∈ UHGraph → ({𝐵, 𝑁} ∈ 𝐸 ↔ {𝐵, 𝑁} ∈ ran 𝐼)) | 
| 21 | 19, 20 | anbi12d 632 | . . . . 5
⊢ (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ ({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼))) | 
| 22 | 14 | uhgrfun 29083 | . . . . . . 7
⊢ (𝐺 ∈ UHGraph → Fun 𝐼) | 
| 23 | 22 | funfnd 6597 | . . . . . 6
⊢ (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼) | 
| 24 |  | fvelrnb 6969 | . . . . . . 7
⊢ (𝐼 Fn dom 𝐼 → ({𝑁, 𝐴} ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴})) | 
| 25 |  | fvelrnb 6969 | . . . . . . 7
⊢ (𝐼 Fn dom 𝐼 → ({𝐵, 𝑁} ∈ ran 𝐼 ↔ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁})) | 
| 26 | 24, 25 | anbi12d 632 | . . . . . 6
⊢ (𝐼 Fn dom 𝐼 → (({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}))) | 
| 27 | 23, 26 | syl 17 | . . . . 5
⊢ (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}))) | 
| 28 | 21, 27 | bitrd 279 | . . . 4
⊢ (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}))) | 
| 29 | 28 | ad2antrr 726 | . . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}))) | 
| 30 |  | reeanv 3229 | . . . 4
⊢
(∃𝑥 ∈ dom
𝐼∃𝑦 ∈ dom 𝐼((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) ↔ (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁})) | 
| 31 |  | fveqeq2 6915 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝐼‘𝑥) = {𝑁, 𝐴} ↔ (𝐼‘𝑦) = {𝑁, 𝐴})) | 
| 32 | 31 | anbi1d 631 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) ↔ ((𝐼‘𝑦) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}))) | 
| 33 |  | eqtr2 2761 | . . . . . . . . . . . 12
⊢ (((𝐼‘𝑦) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → {𝑁, 𝐴} = {𝐵, 𝑁}) | 
| 34 |  | prcom 4732 | . . . . . . . . . . . . . 14
⊢ {𝐵, 𝑁} = {𝑁, 𝐵} | 
| 35 | 34 | eqeq2i 2750 | . . . . . . . . . . . . 13
⊢ ({𝑁, 𝐴} = {𝐵, 𝑁} ↔ {𝑁, 𝐴} = {𝑁, 𝐵}) | 
| 36 |  | preq12bg 4853 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝑁 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} ↔ ((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) ∨ (𝑁 = 𝐵 ∧ 𝐴 = 𝑁)))) | 
| 37 | 36 | ancom2s 650 | . . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} ↔ ((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) ∨ (𝑁 = 𝐵 ∧ 𝐴 = 𝑁)))) | 
| 38 |  | eqneqall 2951 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦)) | 
| 39 | 38 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) → (𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦)) | 
| 40 |  | eqtr 2760 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 = 𝑁 ∧ 𝑁 = 𝐵) → 𝐴 = 𝐵) | 
| 41 | 40 | ancoms 458 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 = 𝐵 ∧ 𝐴 = 𝑁) → 𝐴 = 𝐵) | 
| 42 | 41, 38 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 = 𝐵 ∧ 𝐴 = 𝑁) → (𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦)) | 
| 43 | 39, 42 | jaoi 858 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) ∨ (𝑁 = 𝐵 ∧ 𝐴 = 𝑁)) → (𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦)) | 
| 44 | 43 | adantld 490 | . . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 𝑁 ∧ 𝐴 = 𝐵) ∨ (𝑁 = 𝐵 ∧ 𝐴 = 𝑁)) → ((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) → 𝑥 ≠ 𝑦)) | 
| 45 | 37, 44 | biimtrdi 253 | . . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} → ((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) → 𝑥 ≠ 𝑦))) | 
| 46 | 45 | com3l 89 | . . . . . . . . . . . . . 14
⊢ ({𝑁, 𝐴} = {𝑁, 𝐵} → ((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) → (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → 𝑥 ≠ 𝑦))) | 
| 47 | 46 | impd 410 | . . . . . . . . . . . . 13
⊢ ({𝑁, 𝐴} = {𝑁, 𝐵} → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑥 ≠ 𝑦)) | 
| 48 | 35, 47 | sylbi 217 | . . . . . . . . . . . 12
⊢ ({𝑁, 𝐴} = {𝐵, 𝑁} → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑥 ≠ 𝑦)) | 
| 49 | 33, 48 | syl 17 | . . . . . . . . . . 11
⊢ (((𝐼‘𝑦) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑥 ≠ 𝑦)) | 
| 50 | 32, 49 | biimtrdi 253 | . . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑥 ≠ 𝑦))) | 
| 51 | 50 | impcomd 411 | . . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑥 ≠ 𝑦)) | 
| 52 |  | ax-1 6 | . . . . . . . . 9
⊢ (𝑥 ≠ 𝑦 → ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑥 ≠ 𝑦)) | 
| 53 | 51, 52 | pm2.61ine 3025 | . . . . . . . 8
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑥 ≠ 𝑦) | 
| 54 |  | prid1g 4760 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ {𝑁, 𝐴}) | 
| 55 | 54 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → 𝑁 ∈ {𝑁, 𝐴}) | 
| 56 | 55 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ {𝑁, 𝐴}) | 
| 57 |  | eleq2 2830 | . . . . . . . . . . 11
⊢ ((𝐼‘𝑥) = {𝑁, 𝐴} → (𝑁 ∈ (𝐼‘𝑥) ↔ 𝑁 ∈ {𝑁, 𝐴})) | 
| 58 | 56, 57 | imbitrrid 246 | . . . . . . . . . 10
⊢ ((𝐼‘𝑥) = {𝑁, 𝐴} → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ (𝐼‘𝑥))) | 
| 59 | 58 | adantr 480 | . . . . . . . . 9
⊢ (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ (𝐼‘𝑥))) | 
| 60 | 59 | impcom 407 | . . . . . . . 8
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑁 ∈ (𝐼‘𝑥)) | 
| 61 |  | prid2g 4761 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ {𝐵, 𝑁}) | 
| 62 | 61 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) → 𝑁 ∈ {𝐵, 𝑁}) | 
| 63 | 62 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ {𝐵, 𝑁}) | 
| 64 |  | eleq2 2830 | . . . . . . . . . . 11
⊢ ((𝐼‘𝑦) = {𝐵, 𝑁} → (𝑁 ∈ (𝐼‘𝑦) ↔ 𝑁 ∈ {𝐵, 𝑁})) | 
| 65 | 63, 64 | imbitrrid 246 | . . . . . . . . . 10
⊢ ((𝐼‘𝑦) = {𝐵, 𝑁} → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ (𝐼‘𝑦))) | 
| 66 | 65 | adantl 481 | . . . . . . . . 9
⊢ (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → 𝑁 ∈ (𝐼‘𝑦))) | 
| 67 | 66 | impcom 407 | . . . . . . . 8
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → 𝑁 ∈ (𝐼‘𝑦)) | 
| 68 | 53, 60, 67 | 3jca 1129 | . . . . . . 7
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) ∧ ((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁})) → (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦))) | 
| 69 | 68 | ex 412 | . . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) | 
| 70 | 69 | reximdv 3170 | . . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (∃𝑦 ∈ dom 𝐼((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → ∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) | 
| 71 | 70 | reximdv 3170 | . . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝐼‘𝑥) = {𝑁, 𝐴} ∧ (𝐼‘𝑦) = {𝐵, 𝑁}) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) | 
| 72 | 30, 71 | biimtrrid 243 | . . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → ((∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼‘𝑦) = {𝐵, 𝑁}) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) | 
| 73 | 29, 72 | sylbid 240 | . 2
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)))) | 
| 74 | 8, 9, 73 | sylc 65 | 1
⊢ (((𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦))) |