MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem3 Structured version   Visualization version   GIF version

Theorem pzriprnglem3 21517
Description: Lemma 3 for pzriprng 21531: An element of 𝐼 is an ordered pair. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
Assertion
Ref Expression
pzriprnglem3 (𝑋𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩)
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝑅(𝑥)   𝐼(𝑥)

Proof of Theorem pzriprnglem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pzriprng.i . . 3 𝐼 = (ℤ × {0})
21eleq2i 2836 . 2 (𝑋𝐼𝑋 ∈ (ℤ × {0}))
3 elxp2 5724 . 2 (𝑋 ∈ (ℤ × {0}) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩)
4 0z 12650 . . . 4 0 ∈ ℤ
5 opeq2 4898 . . . . . 6 (𝑦 = 0 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0⟩)
65eqeq2d 2751 . . . . 5 (𝑦 = 0 → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩))
76rexsng 4698 . . . 4 (0 ∈ ℤ → (∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩))
84, 7ax-mp 5 . . 3 (∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩)
98rexbii 3100 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩)
102, 3, 93bitri 297 1 (𝑋𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  wrex 3076  {csn 4648  cop 4654   × cxp 5698  (class class class)co 7448  0cc0 11184  cz 12639   ×s cxps 17566  ringczring 21480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-1cn 11242  ax-addrcl 11245  ax-rnegex 11255  ax-cnre 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-iota 6525  df-fv 6581  df-ov 7451  df-neg 11523  df-z 12640
This theorem is referenced by:  pzriprnglem4  21518  pzriprnglem5  21519  pzriprnglem6  21520  pzriprnglem8  21522
  Copyright terms: Public domain W3C validator