![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pzriprnglem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for pzriprng 21531: An element of 𝐼 is an ordered pair. (Contributed by AV, 18-Mar-2025.) |
Ref | Expression |
---|---|
pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
Ref | Expression |
---|---|
pzriprnglem3 | ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = 〈𝑥, 0〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pzriprng.i | . . 3 ⊢ 𝐼 = (ℤ × {0}) | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ (ℤ × {0})) |
3 | elxp2 5724 | . 2 ⊢ (𝑋 ∈ (ℤ × {0}) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = 〈𝑥, 𝑦〉) | |
4 | 0z 12650 | . . . 4 ⊢ 0 ∈ ℤ | |
5 | opeq2 4898 | . . . . . 6 ⊢ (𝑦 = 0 → 〈𝑥, 𝑦〉 = 〈𝑥, 0〉) | |
6 | 5 | eqeq2d 2751 | . . . . 5 ⊢ (𝑦 = 0 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈𝑥, 0〉)) |
7 | 6 | rexsng 4698 | . . . 4 ⊢ (0 ∈ ℤ → (∃𝑦 ∈ {0}𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈𝑥, 0〉)) |
8 | 4, 7 | ax-mp 5 | . . 3 ⊢ (∃𝑦 ∈ {0}𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈𝑥, 0〉) |
9 | 8 | rexbii 3100 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 ∈ ℤ 𝑋 = 〈𝑥, 0〉) |
10 | 2, 3, 9 | 3bitri 297 | 1 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = 〈𝑥, 0〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {csn 4648 〈cop 4654 × cxp 5698 (class class class)co 7448 0cc0 11184 ℤcz 12639 ×s cxps 17566 ℤringczring 21480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 df-z 12640 |
This theorem is referenced by: pzriprnglem4 21518 pzriprnglem5 21519 pzriprnglem6 21520 pzriprnglem8 21522 |
Copyright terms: Public domain | W3C validator |