| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pzriprnglem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for pzriprng 21404: An element of 𝐼 is an ordered pair. (Contributed by AV, 18-Mar-2025.) |
| Ref | Expression |
|---|---|
| pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
| pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
| Ref | Expression |
|---|---|
| pzriprnglem3 | ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = 〈𝑥, 0〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pzriprng.i | . . 3 ⊢ 𝐼 = (ℤ × {0}) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ (ℤ × {0})) |
| 3 | elxp2 5643 | . 2 ⊢ (𝑋 ∈ (ℤ × {0}) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = 〈𝑥, 𝑦〉) | |
| 4 | 0z 12482 | . . . 4 ⊢ 0 ∈ ℤ | |
| 5 | opeq2 4825 | . . . . . 6 ⊢ (𝑦 = 0 → 〈𝑥, 𝑦〉 = 〈𝑥, 0〉) | |
| 6 | 5 | eqeq2d 2740 | . . . . 5 ⊢ (𝑦 = 0 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈𝑥, 0〉)) |
| 7 | 6 | rexsng 4628 | . . . 4 ⊢ (0 ∈ ℤ → (∃𝑦 ∈ {0}𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈𝑥, 0〉)) |
| 8 | 4, 7 | ax-mp 5 | . . 3 ⊢ (∃𝑦 ∈ {0}𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈𝑥, 0〉) |
| 9 | 8 | rexbii 3076 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 ∈ ℤ 𝑋 = 〈𝑥, 0〉) |
| 10 | 2, 3, 9 | 3bitri 297 | 1 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = 〈𝑥, 0〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {csn 4577 〈cop 4583 × cxp 5617 (class class class)co 7349 0cc0 11009 ℤcz 12471 ×s cxps 17410 ℤringczring 21353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-1cn 11067 ax-addrcl 11070 ax-rnegex 11080 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-iota 6438 df-fv 6490 df-ov 7352 df-neg 11350 df-z 12472 |
| This theorem is referenced by: pzriprnglem4 21391 pzriprnglem5 21392 pzriprnglem6 21393 pzriprnglem8 21395 |
| Copyright terms: Public domain | W3C validator |