MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem3 Structured version   Visualization version   GIF version

Theorem pzriprnglem3 21425
Description: Lemma 3 for pzriprng 21439: An element of 𝐼 is an ordered pair. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
Assertion
Ref Expression
pzriprnglem3 (𝑋𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩)
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝑅(𝑥)   𝐼(𝑥)

Proof of Theorem pzriprnglem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pzriprng.i . . 3 𝐼 = (ℤ × {0})
21eleq2i 2820 . 2 (𝑋𝐼𝑋 ∈ (ℤ × {0}))
3 elxp2 5655 . 2 (𝑋 ∈ (ℤ × {0}) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩)
4 0z 12516 . . . 4 0 ∈ ℤ
5 opeq2 4834 . . . . . 6 (𝑦 = 0 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0⟩)
65eqeq2d 2740 . . . . 5 (𝑦 = 0 → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩))
76rexsng 4636 . . . 4 (0 ∈ ℤ → (∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩))
84, 7ax-mp 5 . . 3 (∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩)
98rexbii 3076 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩)
102, 3, 93bitri 297 1 (𝑋𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3053  {csn 4585  cop 4591   × cxp 5629  (class class class)co 7369  0cc0 11044  cz 12505   ×s cxps 17445  ringczring 21388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-1cn 11102  ax-addrcl 11105  ax-rnegex 11115  ax-cnre 11117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-iota 6452  df-fv 6507  df-ov 7372  df-neg 11384  df-z 12506
This theorem is referenced by:  pzriprnglem4  21426  pzriprnglem5  21427  pzriprnglem6  21428  pzriprnglem8  21430
  Copyright terms: Public domain W3C validator