MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem3 Structured version   Visualization version   GIF version

Theorem pzriprnglem3 21442
Description: Lemma 3 for pzriprng 21456: An element of 𝐼 is an ordered pair. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
Assertion
Ref Expression
pzriprnglem3 (𝑋𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩)
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝑅(𝑥)   𝐼(𝑥)

Proof of Theorem pzriprnglem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pzriprng.i . . 3 𝐼 = (ℤ × {0})
21eleq2i 2826 . 2 (𝑋𝐼𝑋 ∈ (ℤ × {0}))
3 elxp2 5678 . 2 (𝑋 ∈ (ℤ × {0}) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩)
4 0z 12597 . . . 4 0 ∈ ℤ
5 opeq2 4850 . . . . . 6 (𝑦 = 0 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0⟩)
65eqeq2d 2746 . . . . 5 (𝑦 = 0 → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩))
76rexsng 4652 . . . 4 (0 ∈ ℤ → (∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩))
84, 7ax-mp 5 . . 3 (∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩)
98rexbii 3083 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩)
102, 3, 93bitri 297 1 (𝑋𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108  wrex 3060  {csn 4601  cop 4607   × cxp 5652  (class class class)co 7403  0cc0 11127  cz 12586   ×s cxps 17518  ringczring 21405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-1cn 11185  ax-addrcl 11188  ax-rnegex 11198  ax-cnre 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-iota 6483  df-fv 6538  df-ov 7406  df-neg 11467  df-z 12587
This theorem is referenced by:  pzriprnglem4  21443  pzriprnglem5  21444  pzriprnglem6  21445  pzriprnglem8  21447
  Copyright terms: Public domain W3C validator