MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem3 Structured version   Visualization version   GIF version

Theorem pzriprnglem3 21370
Description: Lemma 3 for pzriprng 21384: An element of 𝐼 is an ordered pair. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
Assertion
Ref Expression
pzriprnglem3 (𝑋𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩)
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝑅(𝑥)   𝐼(𝑥)

Proof of Theorem pzriprnglem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pzriprng.i . . 3 𝐼 = (ℤ × {0})
21eleq2i 2819 . 2 (𝑋𝐼𝑋 ∈ (ℤ × {0}))
3 elxp2 5693 . 2 (𝑋 ∈ (ℤ × {0}) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩)
4 0z 12573 . . . 4 0 ∈ ℤ
5 opeq2 4869 . . . . . 6 (𝑦 = 0 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0⟩)
65eqeq2d 2737 . . . . 5 (𝑦 = 0 → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩))
76rexsng 4673 . . . 4 (0 ∈ ℤ → (∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩))
84, 7ax-mp 5 . . 3 (∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩)
98rexbii 3088 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩)
102, 3, 93bitri 297 1 (𝑋𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  wrex 3064  {csn 4623  cop 4629   × cxp 5667  (class class class)co 7405  0cc0 11112  cz 12562   ×s cxps 17461  ringczring 21333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-1cn 11170  ax-addrcl 11173  ax-rnegex 11183  ax-cnre 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-xp 5675  df-iota 6489  df-fv 6545  df-ov 7408  df-neg 11451  df-z 12563
This theorem is referenced by:  pzriprnglem4  21371  pzriprnglem5  21372  pzriprnglem6  21373  pzriprnglem8  21375
  Copyright terms: Public domain W3C validator