| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pzriprnglem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for pzriprng 21434: An element of 𝐼 is an ordered pair. (Contributed by AV, 18-Mar-2025.) |
| Ref | Expression |
|---|---|
| pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
| pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
| Ref | Expression |
|---|---|
| pzriprnglem3 | ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = 〈𝑥, 0〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pzriprng.i | . . 3 ⊢ 𝐼 = (ℤ × {0}) | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ (ℤ × {0})) |
| 3 | elxp2 5638 | . 2 ⊢ (𝑋 ∈ (ℤ × {0}) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = 〈𝑥, 𝑦〉) | |
| 4 | 0z 12479 | . . . 4 ⊢ 0 ∈ ℤ | |
| 5 | opeq2 4823 | . . . . . 6 ⊢ (𝑦 = 0 → 〈𝑥, 𝑦〉 = 〈𝑥, 0〉) | |
| 6 | 5 | eqeq2d 2742 | . . . . 5 ⊢ (𝑦 = 0 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈𝑥, 0〉)) |
| 7 | 6 | rexsng 4626 | . . . 4 ⊢ (0 ∈ ℤ → (∃𝑦 ∈ {0}𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈𝑥, 0〉)) |
| 8 | 4, 7 | ax-mp 5 | . . 3 ⊢ (∃𝑦 ∈ {0}𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈𝑥, 0〉) |
| 9 | 8 | rexbii 3079 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 ∈ ℤ 𝑋 = 〈𝑥, 0〉) |
| 10 | 2, 3, 9 | 3bitri 297 | 1 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = 〈𝑥, 0〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {csn 4573 〈cop 4579 × cxp 5612 (class class class)co 7346 0cc0 11006 ℤcz 12468 ×s cxps 17410 ℤringczring 21383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-iota 6437 df-fv 6489 df-ov 7349 df-neg 11347 df-z 12469 |
| This theorem is referenced by: pzriprnglem4 21421 pzriprnglem5 21422 pzriprnglem6 21423 pzriprnglem8 21425 |
| Copyright terms: Public domain | W3C validator |