![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pzriprnglem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for pzriprng 21384: An element of 𝐼 is an ordered pair. (Contributed by AV, 18-Mar-2025.) |
Ref | Expression |
---|---|
pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
Ref | Expression |
---|---|
pzriprnglem3 | ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pzriprng.i | . . 3 ⊢ 𝐼 = (ℤ × {0}) | |
2 | 1 | eleq2i 2819 | . 2 ⊢ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ (ℤ × {0})) |
3 | elxp2 5693 | . 2 ⊢ (𝑋 ∈ (ℤ × {0}) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩) | |
4 | 0z 12573 | . . . 4 ⊢ 0 ∈ ℤ | |
5 | opeq2 4869 | . . . . . 6 ⊢ (𝑦 = 0 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0⟩) | |
6 | 5 | eqeq2d 2737 | . . . . 5 ⊢ (𝑦 = 0 → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩)) |
7 | 6 | rexsng 4673 | . . . 4 ⊢ (0 ∈ ℤ → (∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩)) |
8 | 4, 7 | ax-mp 5 | . . 3 ⊢ (∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨𝑥, 0⟩) |
9 | 8 | rexbii 3088 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ {0}𝑋 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩) |
10 | 2, 3, 9 | 3bitri 297 | 1 ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = ⟨𝑥, 0⟩) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 {csn 4623 ⟨cop 4629 × cxp 5667 (class class class)co 7405 0cc0 11112 ℤcz 12562 ×s cxps 17461 ℤringczring 21333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-1cn 11170 ax-addrcl 11173 ax-rnegex 11183 ax-cnre 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-xp 5675 df-iota 6489 df-fv 6545 df-ov 7408 df-neg 11451 df-z 12563 |
This theorem is referenced by: pzriprnglem4 21371 pzriprnglem5 21372 pzriprnglem6 21373 pzriprnglem8 21375 |
Copyright terms: Public domain | W3C validator |