MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem4 Structured version   Visualization version   GIF version

Theorem pzriprnglem4 21394
Description: Lemma 4 for pzriprng 21407: 𝐼 is a subgroup of 𝑅. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
Assertion
Ref Expression
pzriprnglem4 𝐼 ∈ (SubGrp‘𝑅)

Proof of Theorem pzriprnglem4
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 12540 . . . . 5 0 ∈ ℤ
2 c0ex 11168 . . . . . 6 0 ∈ V
32snss 4749 . . . . 5 (0 ∈ ℤ ↔ {0} ⊆ ℤ)
41, 3mpbi 230 . . . 4 {0} ⊆ ℤ
5 xpss2 5658 . . . 4 ({0} ⊆ ℤ → (ℤ × {0}) ⊆ (ℤ × ℤ))
64, 5ax-mp 5 . . 3 (ℤ × {0}) ⊆ (ℤ × ℤ)
7 pzriprng.i . . 3 𝐼 = (ℤ × {0})
8 pzriprng.r . . . 4 𝑅 = (ℤring ×sring)
98pzriprnglem2 21392 . . 3 (Base‘𝑅) = (ℤ × ℤ)
106, 7, 93sstr4i 3998 . 2 𝐼 ⊆ (Base‘𝑅)
111ne0ii 4307 . . . . 5 ℤ ≠ ∅
122snnz 4740 . . . . 5 {0} ≠ ∅
1311, 12pm3.2i 470 . . . 4 (ℤ ≠ ∅ ∧ {0} ≠ ∅)
14 xpnz 6132 . . . 4 ((ℤ ≠ ∅ ∧ {0} ≠ ∅) ↔ (ℤ × {0}) ≠ ∅)
1513, 14mpbi 230 . . 3 (ℤ × {0}) ≠ ∅
167, 15eqnetri 2995 . 2 𝐼 ≠ ∅
178, 7pzriprnglem3 21393 . . . 4 (𝑥𝐼 ↔ ∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩)
188, 7pzriprnglem3 21393 . . . . . . . 8 (𝑦𝐼 ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩)
19 simpr 484 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → 𝑥 = ⟨𝑎, 0⟩)
2019adantr 480 . . . . . . . . . . 11 (((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) → 𝑥 = ⟨𝑎, 0⟩)
21 id 22 . . . . . . . . . . 11 (𝑦 = ⟨𝑏, 0⟩ → 𝑦 = ⟨𝑏, 0⟩)
2220, 21oveqan12d 7406 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(+g𝑅)𝑦) = (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩))
23 zringbas 21363 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
24 zringring 21359 . . . . . . . . . . . . . 14 ring ∈ Ring
2524a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ℤring ∈ Ring)
26 simpl 482 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℤ)
271a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 0 ∈ ℤ)
28 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
29 zaddcl 12573 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
30 00id 11349 . . . . . . . . . . . . . . 15 (0 + 0) = 0
3130, 1eqeltri 2824 . . . . . . . . . . . . . 14 (0 + 0) ∈ ℤ
3231a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (0 + 0) ∈ ℤ)
33 zringplusg 21364 . . . . . . . . . . . . 13 + = (+g‘ℤring)
34 eqid 2729 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
358, 23, 23, 25, 25, 26, 27, 28, 27, 29, 32, 33, 33, 34xpsadd 17537 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) = ⟨(𝑎 + 𝑏), (0 + 0)⟩)
362snid 4626 . . . . . . . . . . . . . 14 0 ∈ {0}
3730, 36eqeltri 2824 . . . . . . . . . . . . 13 (0 + 0) ∈ {0}
387eleq2i 2820 . . . . . . . . . . . . . 14 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼 ↔ ⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ (ℤ × {0}))
39 opelxp 5674 . . . . . . . . . . . . . 14 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ (ℤ × {0}) ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ (0 + 0) ∈ {0}))
4038, 39bitri 275 . . . . . . . . . . . . 13 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼 ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ (0 + 0) ∈ {0}))
4129, 37, 40sylanblrc 590 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼)
4235, 41eqeltrd 2828 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) ∈ 𝐼)
4342ad4ant13 751 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) ∈ 𝐼)
4422, 43eqeltrd 2828 . . . . . . . . 9 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(+g𝑅)𝑦) ∈ 𝐼)
4544rexlimdva2 3136 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥(+g𝑅)𝑦) ∈ 𝐼))
4618, 45biimtrid 242 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (𝑦𝐼 → (𝑥(+g𝑅)𝑦) ∈ 𝐼))
4746ralrimiv 3124 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼)
48 zringgrp 21362 . . . . . . . . . . 11 ring ∈ Grp
4948a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℤ → ℤring ∈ Grp)
50 id 22 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℤ)
511a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℤ → 0 ∈ ℤ)
52 eqid 2729 . . . . . . . . . 10 (invg‘ℤring) = (invg‘ℤring)
53 eqid 2729 . . . . . . . . . 10 (invg𝑅) = (invg𝑅)
548, 23, 23, 49, 49, 50, 51, 52, 52, 53xpsinv 18992 . . . . . . . . 9 (𝑎 ∈ ℤ → ((invg𝑅)‘⟨𝑎, 0⟩) = ⟨((invg‘ℤring)‘𝑎), ((invg‘ℤring)‘0)⟩)
55 zringinvg 21375 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 = ((invg‘ℤring)‘𝑎))
56 znegcl 12568 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 ∈ ℤ)
5755, 56eqeltrrd 2829 . . . . . . . . . 10 (𝑎 ∈ ℤ → ((invg‘ℤring)‘𝑎) ∈ ℤ)
58 neg0 11468 . . . . . . . . . . . 12 -0 = 0
5958, 36eqeltri 2824 . . . . . . . . . . 11 -0 ∈ {0}
60 zringinvg 21375 . . . . . . . . . . . . 13 (0 ∈ ℤ → -0 = ((invg‘ℤring)‘0))
6160eleq1d 2813 . . . . . . . . . . . 12 (0 ∈ ℤ → (-0 ∈ {0} ↔ ((invg‘ℤring)‘0) ∈ {0}))
621, 61mp1i 13 . . . . . . . . . . 11 (𝑎 ∈ ℤ → (-0 ∈ {0} ↔ ((invg‘ℤring)‘0) ∈ {0}))
6359, 62mpbii 233 . . . . . . . . . 10 (𝑎 ∈ ℤ → ((invg‘ℤring)‘0) ∈ {0})
6457, 63opelxpd 5677 . . . . . . . . 9 (𝑎 ∈ ℤ → ⟨((invg‘ℤring)‘𝑎), ((invg‘ℤring)‘0)⟩ ∈ (ℤ × {0}))
6554, 64eqeltrd 2828 . . . . . . . 8 (𝑎 ∈ ℤ → ((invg𝑅)‘⟨𝑎, 0⟩) ∈ (ℤ × {0}))
6665adantr 480 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘⟨𝑎, 0⟩) ∈ (ℤ × {0}))
67 fveq2 6858 . . . . . . . 8 (𝑥 = ⟨𝑎, 0⟩ → ((invg𝑅)‘𝑥) = ((invg𝑅)‘⟨𝑎, 0⟩))
6867adantl 481 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘𝑥) = ((invg𝑅)‘⟨𝑎, 0⟩))
697a1i 11 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → 𝐼 = (ℤ × {0}))
7066, 68, 693eltr4d 2843 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘𝑥) ∈ 𝐼)
7147, 70jca 511 . . . . 5 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7271rexlimiva 3126 . . . 4 (∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩ → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7317, 72sylbi 217 . . 3 (𝑥𝐼 → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7473rgen 3046 . 2 𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼)
758pzriprnglem1 21391 . . . 4 𝑅 ∈ Rng
76 rnggrp 20067 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
7775, 76ax-mp 5 . . 3 𝑅 ∈ Grp
78 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
7978, 34, 53issubg2 19073 . . 3 (𝑅 ∈ Grp → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))))
8077, 79ax-mp 5 . 2 (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼)))
8110, 16, 74, 80mpbir3an 1342 1 𝐼 ∈ (SubGrp‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296  {csn 4589  cop 4595   × cxp 5636  cfv 6511  (class class class)co 7387  0cc0 11068   + caddc 11071  -cneg 11406  cz 12529  Basecbs 17179  +gcplusg 17220   ×s cxps 17469  Grpcgrp 18865  invgcminusg 18866  SubGrpcsubg 19052  Rngcrng 20061  Ringcrg 20142  ringczring 21356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-imas 17471  df-xps 17473  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-cnfld 21265  df-zring 21357
This theorem is referenced by:  pzriprnglem5  21395  pzriprnglem8  21398  pzriprnglem12  21402  pzriprnglem13  21403
  Copyright terms: Public domain W3C validator