MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem4 Structured version   Visualization version   GIF version

Theorem pzriprnglem4 21457
Description: Lemma 4 for pzriprng 21470: 𝐼 is a subgroup of 𝑅. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
Assertion
Ref Expression
pzriprnglem4 𝐼 ∈ (SubGrp‘𝑅)

Proof of Theorem pzriprnglem4
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 12607 . . . . 5 0 ∈ ℤ
2 c0ex 11237 . . . . . 6 0 ∈ V
32snss 4765 . . . . 5 (0 ∈ ℤ ↔ {0} ⊆ ℤ)
41, 3mpbi 230 . . . 4 {0} ⊆ ℤ
5 xpss2 5685 . . . 4 ({0} ⊆ ℤ → (ℤ × {0}) ⊆ (ℤ × ℤ))
64, 5ax-mp 5 . . 3 (ℤ × {0}) ⊆ (ℤ × ℤ)
7 pzriprng.i . . 3 𝐼 = (ℤ × {0})
8 pzriprng.r . . . 4 𝑅 = (ℤring ×sring)
98pzriprnglem2 21455 . . 3 (Base‘𝑅) = (ℤ × ℤ)
106, 7, 93sstr4i 4015 . 2 𝐼 ⊆ (Base‘𝑅)
111ne0ii 4324 . . . . 5 ℤ ≠ ∅
122snnz 4756 . . . . 5 {0} ≠ ∅
1311, 12pm3.2i 470 . . . 4 (ℤ ≠ ∅ ∧ {0} ≠ ∅)
14 xpnz 6159 . . . 4 ((ℤ ≠ ∅ ∧ {0} ≠ ∅) ↔ (ℤ × {0}) ≠ ∅)
1513, 14mpbi 230 . . 3 (ℤ × {0}) ≠ ∅
167, 15eqnetri 3001 . 2 𝐼 ≠ ∅
178, 7pzriprnglem3 21456 . . . 4 (𝑥𝐼 ↔ ∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩)
188, 7pzriprnglem3 21456 . . . . . . . 8 (𝑦𝐼 ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩)
19 simpr 484 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → 𝑥 = ⟨𝑎, 0⟩)
2019adantr 480 . . . . . . . . . . 11 (((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) → 𝑥 = ⟨𝑎, 0⟩)
21 id 22 . . . . . . . . . . 11 (𝑦 = ⟨𝑏, 0⟩ → 𝑦 = ⟨𝑏, 0⟩)
2220, 21oveqan12d 7432 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(+g𝑅)𝑦) = (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩))
23 zringbas 21426 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
24 zringring 21422 . . . . . . . . . . . . . 14 ring ∈ Ring
2524a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ℤring ∈ Ring)
26 simpl 482 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℤ)
271a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 0 ∈ ℤ)
28 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
29 zaddcl 12640 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
30 00id 11418 . . . . . . . . . . . . . . 15 (0 + 0) = 0
3130, 1eqeltri 2829 . . . . . . . . . . . . . 14 (0 + 0) ∈ ℤ
3231a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (0 + 0) ∈ ℤ)
33 zringplusg 21427 . . . . . . . . . . . . 13 + = (+g‘ℤring)
34 eqid 2734 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
358, 23, 23, 25, 25, 26, 27, 28, 27, 29, 32, 33, 33, 34xpsadd 17590 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) = ⟨(𝑎 + 𝑏), (0 + 0)⟩)
362snid 4642 . . . . . . . . . . . . . 14 0 ∈ {0}
3730, 36eqeltri 2829 . . . . . . . . . . . . 13 (0 + 0) ∈ {0}
387eleq2i 2825 . . . . . . . . . . . . . 14 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼 ↔ ⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ (ℤ × {0}))
39 opelxp 5701 . . . . . . . . . . . . . 14 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ (ℤ × {0}) ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ (0 + 0) ∈ {0}))
4038, 39bitri 275 . . . . . . . . . . . . 13 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼 ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ (0 + 0) ∈ {0}))
4129, 37, 40sylanblrc 590 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼)
4235, 41eqeltrd 2833 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) ∈ 𝐼)
4342ad4ant13 751 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) ∈ 𝐼)
4422, 43eqeltrd 2833 . . . . . . . . 9 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(+g𝑅)𝑦) ∈ 𝐼)
4544rexlimdva2 3144 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥(+g𝑅)𝑦) ∈ 𝐼))
4618, 45biimtrid 242 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (𝑦𝐼 → (𝑥(+g𝑅)𝑦) ∈ 𝐼))
4746ralrimiv 3132 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼)
48 zringgrp 21425 . . . . . . . . . . 11 ring ∈ Grp
4948a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℤ → ℤring ∈ Grp)
50 id 22 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℤ)
511a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℤ → 0 ∈ ℤ)
52 eqid 2734 . . . . . . . . . 10 (invg‘ℤring) = (invg‘ℤring)
53 eqid 2734 . . . . . . . . . 10 (invg𝑅) = (invg𝑅)
548, 23, 23, 49, 49, 50, 51, 52, 52, 53xpsinv 19047 . . . . . . . . 9 (𝑎 ∈ ℤ → ((invg𝑅)‘⟨𝑎, 0⟩) = ⟨((invg‘ℤring)‘𝑎), ((invg‘ℤring)‘0)⟩)
55 zringinvg 21438 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 = ((invg‘ℤring)‘𝑎))
56 znegcl 12635 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 ∈ ℤ)
5755, 56eqeltrrd 2834 . . . . . . . . . 10 (𝑎 ∈ ℤ → ((invg‘ℤring)‘𝑎) ∈ ℤ)
58 neg0 11537 . . . . . . . . . . . 12 -0 = 0
5958, 36eqeltri 2829 . . . . . . . . . . 11 -0 ∈ {0}
60 zringinvg 21438 . . . . . . . . . . . . 13 (0 ∈ ℤ → -0 = ((invg‘ℤring)‘0))
6160eleq1d 2818 . . . . . . . . . . . 12 (0 ∈ ℤ → (-0 ∈ {0} ↔ ((invg‘ℤring)‘0) ∈ {0}))
621, 61mp1i 13 . . . . . . . . . . 11 (𝑎 ∈ ℤ → (-0 ∈ {0} ↔ ((invg‘ℤring)‘0) ∈ {0}))
6359, 62mpbii 233 . . . . . . . . . 10 (𝑎 ∈ ℤ → ((invg‘ℤring)‘0) ∈ {0})
6457, 63opelxpd 5704 . . . . . . . . 9 (𝑎 ∈ ℤ → ⟨((invg‘ℤring)‘𝑎), ((invg‘ℤring)‘0)⟩ ∈ (ℤ × {0}))
6554, 64eqeltrd 2833 . . . . . . . 8 (𝑎 ∈ ℤ → ((invg𝑅)‘⟨𝑎, 0⟩) ∈ (ℤ × {0}))
6665adantr 480 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘⟨𝑎, 0⟩) ∈ (ℤ × {0}))
67 fveq2 6886 . . . . . . . 8 (𝑥 = ⟨𝑎, 0⟩ → ((invg𝑅)‘𝑥) = ((invg𝑅)‘⟨𝑎, 0⟩))
6867adantl 481 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘𝑥) = ((invg𝑅)‘⟨𝑎, 0⟩))
697a1i 11 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → 𝐼 = (ℤ × {0}))
7066, 68, 693eltr4d 2848 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘𝑥) ∈ 𝐼)
7147, 70jca 511 . . . . 5 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7271rexlimiva 3134 . . . 4 (∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩ → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7317, 72sylbi 217 . . 3 (𝑥𝐼 → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7473rgen 3052 . 2 𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼)
758pzriprnglem1 21454 . . . 4 𝑅 ∈ Rng
76 rnggrp 20123 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
7775, 76ax-mp 5 . . 3 𝑅 ∈ Grp
78 eqid 2734 . . . 4 (Base‘𝑅) = (Base‘𝑅)
7978, 34, 53issubg2 19128 . . 3 (𝑅 ∈ Grp → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))))
8077, 79ax-mp 5 . 2 (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼)))
8110, 16, 74, 80mpbir3an 1341 1 𝐼 ∈ (SubGrp‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059  wss 3931  c0 4313  {csn 4606  cop 4612   × cxp 5663  cfv 6541  (class class class)co 7413  0cc0 11137   + caddc 11140  -cneg 11475  cz 12596  Basecbs 17229  +gcplusg 17273   ×s cxps 17522  Grpcgrp 18920  invgcminusg 18921  SubGrpcsubg 19107  Rngcrng 20117  Ringcrg 20198  ringczring 21419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-0g 17457  df-prds 17463  df-imas 17524  df-xps 17526  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-subg 19110  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20514  df-subrg 20538  df-cnfld 21327  df-zring 21420
This theorem is referenced by:  pzriprnglem5  21458  pzriprnglem8  21461  pzriprnglem12  21465  pzriprnglem13  21466
  Copyright terms: Public domain W3C validator