MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem4 Structured version   Visualization version   GIF version

Theorem pzriprnglem4 21443
Description: Lemma 4 for pzriprng 21456: 𝐼 is a subgroup of 𝑅. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
Assertion
Ref Expression
pzriprnglem4 𝐼 ∈ (SubGrp‘𝑅)

Proof of Theorem pzriprnglem4
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 12597 . . . . 5 0 ∈ ℤ
2 c0ex 11227 . . . . . 6 0 ∈ V
32snss 4761 . . . . 5 (0 ∈ ℤ ↔ {0} ⊆ ℤ)
41, 3mpbi 230 . . . 4 {0} ⊆ ℤ
5 xpss2 5674 . . . 4 ({0} ⊆ ℤ → (ℤ × {0}) ⊆ (ℤ × ℤ))
64, 5ax-mp 5 . . 3 (ℤ × {0}) ⊆ (ℤ × ℤ)
7 pzriprng.i . . 3 𝐼 = (ℤ × {0})
8 pzriprng.r . . . 4 𝑅 = (ℤring ×sring)
98pzriprnglem2 21441 . . 3 (Base‘𝑅) = (ℤ × ℤ)
106, 7, 93sstr4i 4010 . 2 𝐼 ⊆ (Base‘𝑅)
111ne0ii 4319 . . . . 5 ℤ ≠ ∅
122snnz 4752 . . . . 5 {0} ≠ ∅
1311, 12pm3.2i 470 . . . 4 (ℤ ≠ ∅ ∧ {0} ≠ ∅)
14 xpnz 6148 . . . 4 ((ℤ ≠ ∅ ∧ {0} ≠ ∅) ↔ (ℤ × {0}) ≠ ∅)
1513, 14mpbi 230 . . 3 (ℤ × {0}) ≠ ∅
167, 15eqnetri 3002 . 2 𝐼 ≠ ∅
178, 7pzriprnglem3 21442 . . . 4 (𝑥𝐼 ↔ ∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩)
188, 7pzriprnglem3 21442 . . . . . . . 8 (𝑦𝐼 ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩)
19 simpr 484 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → 𝑥 = ⟨𝑎, 0⟩)
2019adantr 480 . . . . . . . . . . 11 (((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) → 𝑥 = ⟨𝑎, 0⟩)
21 id 22 . . . . . . . . . . 11 (𝑦 = ⟨𝑏, 0⟩ → 𝑦 = ⟨𝑏, 0⟩)
2220, 21oveqan12d 7422 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(+g𝑅)𝑦) = (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩))
23 zringbas 21412 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
24 zringring 21408 . . . . . . . . . . . . . 14 ring ∈ Ring
2524a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ℤring ∈ Ring)
26 simpl 482 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℤ)
271a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 0 ∈ ℤ)
28 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
29 zaddcl 12630 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
30 00id 11408 . . . . . . . . . . . . . . 15 (0 + 0) = 0
3130, 1eqeltri 2830 . . . . . . . . . . . . . 14 (0 + 0) ∈ ℤ
3231a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (0 + 0) ∈ ℤ)
33 zringplusg 21413 . . . . . . . . . . . . 13 + = (+g‘ℤring)
34 eqid 2735 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
358, 23, 23, 25, 25, 26, 27, 28, 27, 29, 32, 33, 33, 34xpsadd 17586 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) = ⟨(𝑎 + 𝑏), (0 + 0)⟩)
362snid 4638 . . . . . . . . . . . . . 14 0 ∈ {0}
3730, 36eqeltri 2830 . . . . . . . . . . . . 13 (0 + 0) ∈ {0}
387eleq2i 2826 . . . . . . . . . . . . . 14 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼 ↔ ⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ (ℤ × {0}))
39 opelxp 5690 . . . . . . . . . . . . . 14 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ (ℤ × {0}) ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ (0 + 0) ∈ {0}))
4038, 39bitri 275 . . . . . . . . . . . . 13 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼 ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ (0 + 0) ∈ {0}))
4129, 37, 40sylanblrc 590 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼)
4235, 41eqeltrd 2834 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) ∈ 𝐼)
4342ad4ant13 751 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) ∈ 𝐼)
4422, 43eqeltrd 2834 . . . . . . . . 9 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(+g𝑅)𝑦) ∈ 𝐼)
4544rexlimdva2 3143 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥(+g𝑅)𝑦) ∈ 𝐼))
4618, 45biimtrid 242 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (𝑦𝐼 → (𝑥(+g𝑅)𝑦) ∈ 𝐼))
4746ralrimiv 3131 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼)
48 zringgrp 21411 . . . . . . . . . . 11 ring ∈ Grp
4948a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℤ → ℤring ∈ Grp)
50 id 22 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℤ)
511a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℤ → 0 ∈ ℤ)
52 eqid 2735 . . . . . . . . . 10 (invg‘ℤring) = (invg‘ℤring)
53 eqid 2735 . . . . . . . . . 10 (invg𝑅) = (invg𝑅)
548, 23, 23, 49, 49, 50, 51, 52, 52, 53xpsinv 19041 . . . . . . . . 9 (𝑎 ∈ ℤ → ((invg𝑅)‘⟨𝑎, 0⟩) = ⟨((invg‘ℤring)‘𝑎), ((invg‘ℤring)‘0)⟩)
55 zringinvg 21424 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 = ((invg‘ℤring)‘𝑎))
56 znegcl 12625 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 ∈ ℤ)
5755, 56eqeltrrd 2835 . . . . . . . . . 10 (𝑎 ∈ ℤ → ((invg‘ℤring)‘𝑎) ∈ ℤ)
58 neg0 11527 . . . . . . . . . . . 12 -0 = 0
5958, 36eqeltri 2830 . . . . . . . . . . 11 -0 ∈ {0}
60 zringinvg 21424 . . . . . . . . . . . . 13 (0 ∈ ℤ → -0 = ((invg‘ℤring)‘0))
6160eleq1d 2819 . . . . . . . . . . . 12 (0 ∈ ℤ → (-0 ∈ {0} ↔ ((invg‘ℤring)‘0) ∈ {0}))
621, 61mp1i 13 . . . . . . . . . . 11 (𝑎 ∈ ℤ → (-0 ∈ {0} ↔ ((invg‘ℤring)‘0) ∈ {0}))
6359, 62mpbii 233 . . . . . . . . . 10 (𝑎 ∈ ℤ → ((invg‘ℤring)‘0) ∈ {0})
6457, 63opelxpd 5693 . . . . . . . . 9 (𝑎 ∈ ℤ → ⟨((invg‘ℤring)‘𝑎), ((invg‘ℤring)‘0)⟩ ∈ (ℤ × {0}))
6554, 64eqeltrd 2834 . . . . . . . 8 (𝑎 ∈ ℤ → ((invg𝑅)‘⟨𝑎, 0⟩) ∈ (ℤ × {0}))
6665adantr 480 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘⟨𝑎, 0⟩) ∈ (ℤ × {0}))
67 fveq2 6875 . . . . . . . 8 (𝑥 = ⟨𝑎, 0⟩ → ((invg𝑅)‘𝑥) = ((invg𝑅)‘⟨𝑎, 0⟩))
6867adantl 481 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘𝑥) = ((invg𝑅)‘⟨𝑎, 0⟩))
697a1i 11 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → 𝐼 = (ℤ × {0}))
7066, 68, 693eltr4d 2849 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘𝑥) ∈ 𝐼)
7147, 70jca 511 . . . . 5 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7271rexlimiva 3133 . . . 4 (∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩ → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7317, 72sylbi 217 . . 3 (𝑥𝐼 → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7473rgen 3053 . 2 𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼)
758pzriprnglem1 21440 . . . 4 𝑅 ∈ Rng
76 rnggrp 20116 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
7775, 76ax-mp 5 . . 3 𝑅 ∈ Grp
78 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
7978, 34, 53issubg2 19122 . . 3 (𝑅 ∈ Grp → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))))
8077, 79ax-mp 5 . 2 (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼)))
8110, 16, 74, 80mpbir3an 1342 1 𝐼 ∈ (SubGrp‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  wss 3926  c0 4308  {csn 4601  cop 4607   × cxp 5652  cfv 6530  (class class class)co 7403  0cc0 11127   + caddc 11130  -cneg 11465  cz 12586  Basecbs 17226  +gcplusg 17269   ×s cxps 17518  Grpcgrp 18914  invgcminusg 18915  SubGrpcsubg 19101  Rngcrng 20110  Ringcrg 20191  ringczring 21405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-prds 17459  df-imas 17520  df-xps 17522  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-minusg 18918  df-subg 19104  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-subrng 20504  df-subrg 20528  df-cnfld 21314  df-zring 21406
This theorem is referenced by:  pzriprnglem5  21444  pzriprnglem8  21447  pzriprnglem12  21451  pzriprnglem13  21452
  Copyright terms: Public domain W3C validator