MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem4 Structured version   Visualization version   GIF version

Theorem pzriprnglem4 21518
Description: Lemma 4 for pzriprng 21531: 𝐼 is a subgroup of 𝑅. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
Assertion
Ref Expression
pzriprnglem4 𝐼 ∈ (SubGrp‘𝑅)

Proof of Theorem pzriprnglem4
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 12650 . . . . 5 0 ∈ ℤ
2 c0ex 11284 . . . . . 6 0 ∈ V
32snss 4810 . . . . 5 (0 ∈ ℤ ↔ {0} ⊆ ℤ)
41, 3mpbi 230 . . . 4 {0} ⊆ ℤ
5 xpss2 5720 . . . 4 ({0} ⊆ ℤ → (ℤ × {0}) ⊆ (ℤ × ℤ))
64, 5ax-mp 5 . . 3 (ℤ × {0}) ⊆ (ℤ × ℤ)
7 pzriprng.i . . 3 𝐼 = (ℤ × {0})
8 pzriprng.r . . . 4 𝑅 = (ℤring ×sring)
98pzriprnglem2 21516 . . 3 (Base‘𝑅) = (ℤ × ℤ)
106, 7, 93sstr4i 4052 . 2 𝐼 ⊆ (Base‘𝑅)
111ne0ii 4367 . . . . 5 ℤ ≠ ∅
122snnz 4801 . . . . 5 {0} ≠ ∅
1311, 12pm3.2i 470 . . . 4 (ℤ ≠ ∅ ∧ {0} ≠ ∅)
14 xpnz 6190 . . . 4 ((ℤ ≠ ∅ ∧ {0} ≠ ∅) ↔ (ℤ × {0}) ≠ ∅)
1513, 14mpbi 230 . . 3 (ℤ × {0}) ≠ ∅
167, 15eqnetri 3017 . 2 𝐼 ≠ ∅
178, 7pzriprnglem3 21517 . . . 4 (𝑥𝐼 ↔ ∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩)
188, 7pzriprnglem3 21517 . . . . . . . 8 (𝑦𝐼 ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩)
19 simpr 484 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → 𝑥 = ⟨𝑎, 0⟩)
2019adantr 480 . . . . . . . . . . 11 (((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) → 𝑥 = ⟨𝑎, 0⟩)
21 id 22 . . . . . . . . . . 11 (𝑦 = ⟨𝑏, 0⟩ → 𝑦 = ⟨𝑏, 0⟩)
2220, 21oveqan12d 7467 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(+g𝑅)𝑦) = (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩))
23 zringbas 21487 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
24 zringring 21483 . . . . . . . . . . . . . 14 ring ∈ Ring
2524a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ℤring ∈ Ring)
26 simpl 482 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℤ)
271a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 0 ∈ ℤ)
28 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
29 zaddcl 12683 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
30 00id 11465 . . . . . . . . . . . . . . 15 (0 + 0) = 0
3130, 1eqeltri 2840 . . . . . . . . . . . . . 14 (0 + 0) ∈ ℤ
3231a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (0 + 0) ∈ ℤ)
33 zringplusg 21488 . . . . . . . . . . . . 13 + = (+g‘ℤring)
34 eqid 2740 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
358, 23, 23, 25, 25, 26, 27, 28, 27, 29, 32, 33, 33, 34xpsadd 17634 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) = ⟨(𝑎 + 𝑏), (0 + 0)⟩)
362snid 4684 . . . . . . . . . . . . . 14 0 ∈ {0}
3730, 36eqeltri 2840 . . . . . . . . . . . . 13 (0 + 0) ∈ {0}
387eleq2i 2836 . . . . . . . . . . . . . 14 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼 ↔ ⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ (ℤ × {0}))
39 opelxp 5736 . . . . . . . . . . . . . 14 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ (ℤ × {0}) ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ (0 + 0) ∈ {0}))
4038, 39bitri 275 . . . . . . . . . . . . 13 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼 ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ (0 + 0) ∈ {0}))
4129, 37, 40sylanblrc 589 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼)
4235, 41eqeltrd 2844 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) ∈ 𝐼)
4342ad4ant13 750 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) ∈ 𝐼)
4422, 43eqeltrd 2844 . . . . . . . . 9 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(+g𝑅)𝑦) ∈ 𝐼)
4544rexlimdva2 3163 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥(+g𝑅)𝑦) ∈ 𝐼))
4618, 45biimtrid 242 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (𝑦𝐼 → (𝑥(+g𝑅)𝑦) ∈ 𝐼))
4746ralrimiv 3151 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼)
48 zringgrp 21486 . . . . . . . . . . 11 ring ∈ Grp
4948a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℤ → ℤring ∈ Grp)
50 id 22 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℤ)
511a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℤ → 0 ∈ ℤ)
52 eqid 2740 . . . . . . . . . 10 (invg‘ℤring) = (invg‘ℤring)
53 eqid 2740 . . . . . . . . . 10 (invg𝑅) = (invg𝑅)
548, 23, 23, 49, 49, 50, 51, 52, 52, 53xpsinv 19100 . . . . . . . . 9 (𝑎 ∈ ℤ → ((invg𝑅)‘⟨𝑎, 0⟩) = ⟨((invg‘ℤring)‘𝑎), ((invg‘ℤring)‘0)⟩)
55 zringinvg 21499 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 = ((invg‘ℤring)‘𝑎))
56 znegcl 12678 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 ∈ ℤ)
5755, 56eqeltrrd 2845 . . . . . . . . . 10 (𝑎 ∈ ℤ → ((invg‘ℤring)‘𝑎) ∈ ℤ)
58 neg0 11582 . . . . . . . . . . . 12 -0 = 0
5958, 36eqeltri 2840 . . . . . . . . . . 11 -0 ∈ {0}
60 zringinvg 21499 . . . . . . . . . . . . 13 (0 ∈ ℤ → -0 = ((invg‘ℤring)‘0))
6160eleq1d 2829 . . . . . . . . . . . 12 (0 ∈ ℤ → (-0 ∈ {0} ↔ ((invg‘ℤring)‘0) ∈ {0}))
621, 61mp1i 13 . . . . . . . . . . 11 (𝑎 ∈ ℤ → (-0 ∈ {0} ↔ ((invg‘ℤring)‘0) ∈ {0}))
6359, 62mpbii 233 . . . . . . . . . 10 (𝑎 ∈ ℤ → ((invg‘ℤring)‘0) ∈ {0})
6457, 63opelxpd 5739 . . . . . . . . 9 (𝑎 ∈ ℤ → ⟨((invg‘ℤring)‘𝑎), ((invg‘ℤring)‘0)⟩ ∈ (ℤ × {0}))
6554, 64eqeltrd 2844 . . . . . . . 8 (𝑎 ∈ ℤ → ((invg𝑅)‘⟨𝑎, 0⟩) ∈ (ℤ × {0}))
6665adantr 480 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘⟨𝑎, 0⟩) ∈ (ℤ × {0}))
67 fveq2 6920 . . . . . . . 8 (𝑥 = ⟨𝑎, 0⟩ → ((invg𝑅)‘𝑥) = ((invg𝑅)‘⟨𝑎, 0⟩))
6867adantl 481 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘𝑥) = ((invg𝑅)‘⟨𝑎, 0⟩))
697a1i 11 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → 𝐼 = (ℤ × {0}))
7066, 68, 693eltr4d 2859 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘𝑥) ∈ 𝐼)
7147, 70jca 511 . . . . 5 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7271rexlimiva 3153 . . . 4 (∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩ → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7317, 72sylbi 217 . . 3 (𝑥𝐼 → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7473rgen 3069 . 2 𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼)
758pzriprnglem1 21515 . . . 4 𝑅 ∈ Rng
76 rnggrp 20185 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
7775, 76ax-mp 5 . . 3 𝑅 ∈ Grp
78 eqid 2740 . . . 4 (Base‘𝑅) = (Base‘𝑅)
7978, 34, 53issubg2 19181 . . 3 (𝑅 ∈ Grp → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))))
8077, 79ax-mp 5 . 2 (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼)))
8110, 16, 74, 80mpbir3an 1341 1 𝐼 ∈ (SubGrp‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352  {csn 4648  cop 4654   × cxp 5698  cfv 6573  (class class class)co 7448  0cc0 11184   + caddc 11187  -cneg 11521  cz 12639  Basecbs 17258  +gcplusg 17311   ×s cxps 17566  Grpcgrp 18973  invgcminusg 18974  SubGrpcsubg 19160  Rngcrng 20179  Ringcrg 20260  ringczring 21480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-imas 17568  df-xps 17570  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-cnfld 21388  df-zring 21481
This theorem is referenced by:  pzriprnglem5  21519  pzriprnglem8  21522  pzriprnglem12  21526  pzriprnglem13  21527
  Copyright terms: Public domain W3C validator