MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem4 Structured version   Visualization version   GIF version

Theorem pzriprnglem4 21421
Description: Lemma 4 for pzriprng 21434: 𝐼 is a subgroup of 𝑅. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
Assertion
Ref Expression
pzriprnglem4 𝐼 ∈ (SubGrp‘𝑅)

Proof of Theorem pzriprnglem4
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 12479 . . . . 5 0 ∈ ℤ
2 c0ex 11106 . . . . . 6 0 ∈ V
32snss 4734 . . . . 5 (0 ∈ ℤ ↔ {0} ⊆ ℤ)
41, 3mpbi 230 . . . 4 {0} ⊆ ℤ
5 xpss2 5634 . . . 4 ({0} ⊆ ℤ → (ℤ × {0}) ⊆ (ℤ × ℤ))
64, 5ax-mp 5 . . 3 (ℤ × {0}) ⊆ (ℤ × ℤ)
7 pzriprng.i . . 3 𝐼 = (ℤ × {0})
8 pzriprng.r . . . 4 𝑅 = (ℤring ×sring)
98pzriprnglem2 21419 . . 3 (Base‘𝑅) = (ℤ × ℤ)
106, 7, 93sstr4i 3981 . 2 𝐼 ⊆ (Base‘𝑅)
111ne0ii 4291 . . . . 5 ℤ ≠ ∅
122snnz 4726 . . . . 5 {0} ≠ ∅
1311, 12pm3.2i 470 . . . 4 (ℤ ≠ ∅ ∧ {0} ≠ ∅)
14 xpnz 6106 . . . 4 ((ℤ ≠ ∅ ∧ {0} ≠ ∅) ↔ (ℤ × {0}) ≠ ∅)
1513, 14mpbi 230 . . 3 (ℤ × {0}) ≠ ∅
167, 15eqnetri 2998 . 2 𝐼 ≠ ∅
178, 7pzriprnglem3 21420 . . . 4 (𝑥𝐼 ↔ ∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩)
188, 7pzriprnglem3 21420 . . . . . . . 8 (𝑦𝐼 ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩)
19 simpr 484 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → 𝑥 = ⟨𝑎, 0⟩)
2019adantr 480 . . . . . . . . . . 11 (((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) → 𝑥 = ⟨𝑎, 0⟩)
21 id 22 . . . . . . . . . . 11 (𝑦 = ⟨𝑏, 0⟩ → 𝑦 = ⟨𝑏, 0⟩)
2220, 21oveqan12d 7365 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(+g𝑅)𝑦) = (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩))
23 zringbas 21390 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
24 zringring 21386 . . . . . . . . . . . . . 14 ring ∈ Ring
2524a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ℤring ∈ Ring)
26 simpl 482 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℤ)
271a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 0 ∈ ℤ)
28 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
29 zaddcl 12512 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
30 00id 11288 . . . . . . . . . . . . . . 15 (0 + 0) = 0
3130, 1eqeltri 2827 . . . . . . . . . . . . . 14 (0 + 0) ∈ ℤ
3231a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (0 + 0) ∈ ℤ)
33 zringplusg 21391 . . . . . . . . . . . . 13 + = (+g‘ℤring)
34 eqid 2731 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
358, 23, 23, 25, 25, 26, 27, 28, 27, 29, 32, 33, 33, 34xpsadd 17478 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) = ⟨(𝑎 + 𝑏), (0 + 0)⟩)
362snid 4612 . . . . . . . . . . . . . 14 0 ∈ {0}
3730, 36eqeltri 2827 . . . . . . . . . . . . 13 (0 + 0) ∈ {0}
387eleq2i 2823 . . . . . . . . . . . . . 14 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼 ↔ ⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ (ℤ × {0}))
39 opelxp 5650 . . . . . . . . . . . . . 14 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ (ℤ × {0}) ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ (0 + 0) ∈ {0}))
4038, 39bitri 275 . . . . . . . . . . . . 13 (⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼 ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ (0 + 0) ∈ {0}))
4129, 37, 40sylanblrc 590 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ⟨(𝑎 + 𝑏), (0 + 0)⟩ ∈ 𝐼)
4235, 41eqeltrd 2831 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) ∈ 𝐼)
4342ad4ant13 751 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (⟨𝑎, 0⟩(+g𝑅)⟨𝑏, 0⟩) ∈ 𝐼)
4422, 43eqeltrd 2831 . . . . . . . . 9 ((((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) ∧ 𝑏 ∈ ℤ) ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(+g𝑅)𝑦) ∈ 𝐼)
4544rexlimdva2 3135 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥(+g𝑅)𝑦) ∈ 𝐼))
4618, 45biimtrid 242 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (𝑦𝐼 → (𝑥(+g𝑅)𝑦) ∈ 𝐼))
4746ralrimiv 3123 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼)
48 zringgrp 21389 . . . . . . . . . . 11 ring ∈ Grp
4948a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℤ → ℤring ∈ Grp)
50 id 22 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℤ)
511a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℤ → 0 ∈ ℤ)
52 eqid 2731 . . . . . . . . . 10 (invg‘ℤring) = (invg‘ℤring)
53 eqid 2731 . . . . . . . . . 10 (invg𝑅) = (invg𝑅)
548, 23, 23, 49, 49, 50, 51, 52, 52, 53xpsinv 18973 . . . . . . . . 9 (𝑎 ∈ ℤ → ((invg𝑅)‘⟨𝑎, 0⟩) = ⟨((invg‘ℤring)‘𝑎), ((invg‘ℤring)‘0)⟩)
55 zringinvg 21402 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 = ((invg‘ℤring)‘𝑎))
56 znegcl 12507 . . . . . . . . . . 11 (𝑎 ∈ ℤ → -𝑎 ∈ ℤ)
5755, 56eqeltrrd 2832 . . . . . . . . . 10 (𝑎 ∈ ℤ → ((invg‘ℤring)‘𝑎) ∈ ℤ)
58 neg0 11407 . . . . . . . . . . . 12 -0 = 0
5958, 36eqeltri 2827 . . . . . . . . . . 11 -0 ∈ {0}
60 zringinvg 21402 . . . . . . . . . . . . 13 (0 ∈ ℤ → -0 = ((invg‘ℤring)‘0))
6160eleq1d 2816 . . . . . . . . . . . 12 (0 ∈ ℤ → (-0 ∈ {0} ↔ ((invg‘ℤring)‘0) ∈ {0}))
621, 61mp1i 13 . . . . . . . . . . 11 (𝑎 ∈ ℤ → (-0 ∈ {0} ↔ ((invg‘ℤring)‘0) ∈ {0}))
6359, 62mpbii 233 . . . . . . . . . 10 (𝑎 ∈ ℤ → ((invg‘ℤring)‘0) ∈ {0})
6457, 63opelxpd 5653 . . . . . . . . 9 (𝑎 ∈ ℤ → ⟨((invg‘ℤring)‘𝑎), ((invg‘ℤring)‘0)⟩ ∈ (ℤ × {0}))
6554, 64eqeltrd 2831 . . . . . . . 8 (𝑎 ∈ ℤ → ((invg𝑅)‘⟨𝑎, 0⟩) ∈ (ℤ × {0}))
6665adantr 480 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘⟨𝑎, 0⟩) ∈ (ℤ × {0}))
67 fveq2 6822 . . . . . . . 8 (𝑥 = ⟨𝑎, 0⟩ → ((invg𝑅)‘𝑥) = ((invg𝑅)‘⟨𝑎, 0⟩))
6867adantl 481 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘𝑥) = ((invg𝑅)‘⟨𝑎, 0⟩))
697a1i 11 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → 𝐼 = (ℤ × {0}))
7066, 68, 693eltr4d 2846 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → ((invg𝑅)‘𝑥) ∈ 𝐼)
7147, 70jca 511 . . . . 5 ((𝑎 ∈ ℤ ∧ 𝑥 = ⟨𝑎, 0⟩) → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7271rexlimiva 3125 . . . 4 (∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩ → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7317, 72sylbi 217 . . 3 (𝑥𝐼 → (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))
7473rgen 3049 . 2 𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼)
758pzriprnglem1 21418 . . . 4 𝑅 ∈ Rng
76 rnggrp 20076 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
7775, 76ax-mp 5 . . 3 𝑅 ∈ Grp
78 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
7978, 34, 53issubg2 19054 . . 3 (𝑅 ∈ Grp → (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼))))
8077, 79ax-mp 5 . 2 (𝐼 ∈ (SubGrp‘𝑅) ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥(+g𝑅)𝑦) ∈ 𝐼 ∧ ((invg𝑅)‘𝑥) ∈ 𝐼)))
8110, 16, 74, 80mpbir3an 1342 1 𝐼 ∈ (SubGrp‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  wss 3897  c0 4280  {csn 4573  cop 4579   × cxp 5612  cfv 6481  (class class class)co 7346  0cc0 11006   + caddc 11009  -cneg 11345  cz 12468  Basecbs 17120  +gcplusg 17161   ×s cxps 17410  Grpcgrp 18846  invgcminusg 18847  SubGrpcsubg 19033  Rngcrng 20070  Ringcrg 20151  ringczring 21383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-imas 17412  df-xps 17414  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrng 20461  df-subrg 20485  df-cnfld 21292  df-zring 21384
This theorem is referenced by:  pzriprnglem5  21422  pzriprnglem8  21425  pzriprnglem12  21429  pzriprnglem13  21430
  Copyright terms: Public domain W3C validator