MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem5 Structured version   Visualization version   GIF version

Theorem pzriprnglem5 21427
Description: Lemma 5 for pzriprng 21439: 𝐼 is a subring of the non-unital ring 𝑅. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
Assertion
Ref Expression
pzriprnglem5 𝐼 ∈ (SubRng‘𝑅)

Proof of Theorem pzriprnglem5
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . 3 𝑅 = (ℤring ×sring)
2 pzriprng.i . . 3 𝐼 = (ℤ × {0})
31, 2pzriprnglem4 21426 . 2 𝐼 ∈ (SubGrp‘𝑅)
41, 2pzriprnglem3 21425 . . . 4 (𝑥𝐼 ↔ ∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩)
51, 2pzriprnglem3 21425 . . . 4 (𝑦𝐼 ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩)
6 zringbas 21395 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
7 zringring 21391 . . . . . . . . . . . . . 14 ring ∈ Ring
87a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ℤring ∈ Ring)
9 simpl 482 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℤ)
10 0zd 12517 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 0 ∈ ℤ)
11 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
12 zringmulr 21399 . . . . . . . . . . . . . . . 16 · = (.r‘ℤring)
1312eqcomi 2738 . . . . . . . . . . . . . . 15 (.r‘ℤring) = ·
1413oveqi 7382 . . . . . . . . . . . . . 14 (𝑎(.r‘ℤring)𝑏) = (𝑎 · 𝑏)
15 zmulcl 12558 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
1614, 15eqeltrid 2832 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎(.r‘ℤring)𝑏) ∈ ℤ)
1713oveqi 7382 . . . . . . . . . . . . . . . 16 (0(.r‘ℤring)0) = (0 · 0)
18 0cn 11142 . . . . . . . . . . . . . . . . 17 0 ∈ ℂ
1918mul02i 11339 . . . . . . . . . . . . . . . 16 (0 · 0) = 0
2017, 19eqtri 2752 . . . . . . . . . . . . . . 15 (0(.r‘ℤring)0) = 0
21 0z 12516 . . . . . . . . . . . . . . 15 0 ∈ ℤ
2220, 21eqeltri 2824 . . . . . . . . . . . . . 14 (0(.r‘ℤring)0) ∈ ℤ
2322a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (0(.r‘ℤring)0) ∈ ℤ)
24 eqid 2729 . . . . . . . . . . . . 13 (.r‘ℤring) = (.r‘ℤring)
25 eqid 2729 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
261, 6, 6, 8, 8, 9, 10, 11, 10, 16, 23, 24, 24, 25xpsmul 17514 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩) = ⟨(𝑎(.r‘ℤring)𝑏), (0(.r‘ℤring)0)⟩)
27 c0ex 11144 . . . . . . . . . . . . . . . 16 0 ∈ V
2827snid 4622 . . . . . . . . . . . . . . 15 0 ∈ {0}
2928a1i 11 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 0 ∈ {0})
3020, 29eqeltrid 2832 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (0(.r‘ℤring)0) ∈ {0})
3116, 30opelxpd 5670 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ⟨(𝑎(.r‘ℤring)𝑏), (0(.r‘ℤring)0)⟩ ∈ (ℤ × {0}))
3226, 31eqeltrd 2828 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩) ∈ (ℤ × {0}))
3332adantr 480 . . . . . . . . . 10 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩)) → (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩) ∈ (ℤ × {0}))
34 oveq12 7378 . . . . . . . . . . . 12 ((𝑥 = ⟨𝑎, 0⟩ ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩))
3534ancoms 458 . . . . . . . . . . 11 ((𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩))
3635adantl 481 . . . . . . . . . 10 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩)) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩))
372a1i 11 . . . . . . . . . 10 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩)) → 𝐼 = (ℤ × {0}))
3833, 36, 373eltr4d 2843 . . . . . . . . 9 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩)) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
3938exp32 420 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑦 = ⟨𝑏, 0⟩ → (𝑥 = ⟨𝑎, 0⟩ → (𝑥(.r𝑅)𝑦) ∈ 𝐼)))
4039rexlimdva 3134 . . . . . . 7 (𝑎 ∈ ℤ → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥 = ⟨𝑎, 0⟩ → (𝑥(.r𝑅)𝑦) ∈ 𝐼)))
4140com23 86 . . . . . 6 (𝑎 ∈ ℤ → (𝑥 = ⟨𝑎, 0⟩ → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥(.r𝑅)𝑦) ∈ 𝐼)))
4241rexlimiv 3127 . . . . 5 (∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩ → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥(.r𝑅)𝑦) ∈ 𝐼))
4342imp 406 . . . 4 ((∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩ ∧ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
444, 5, 43syl2anb 598 . . 3 ((𝑥𝐼𝑦𝐼) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
4544rgen2 3175 . 2 𝑥𝐼𝑦𝐼 (𝑥(.r𝑅)𝑦) ∈ 𝐼
461pzriprnglem1 21423 . . 3 𝑅 ∈ Rng
47 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
4847, 25issubrng2 20478 . . 3 (𝑅 ∈ Rng → (𝐼 ∈ (SubRng‘𝑅) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐼𝑦𝐼 (𝑥(.r𝑅)𝑦) ∈ 𝐼)))
4946, 48ax-mp 5 . 2 (𝐼 ∈ (SubRng‘𝑅) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐼𝑦𝐼 (𝑥(.r𝑅)𝑦) ∈ 𝐼))
503, 45, 49mpbir2an 711 1 𝐼 ∈ (SubRng‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {csn 4585  cop 4591   × cxp 5629  cfv 6499  (class class class)co 7369  0cc0 11044   · cmul 11049  cz 12505  Basecbs 17155  .rcmulr 17197   ×s cxps 17445  SubGrpcsubg 19034  Rngcrng 20072  Ringcrg 20153  SubRngcsubrng 20465  ringczring 21388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-imas 17447  df-xps 17449  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-subg 19037  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20466  df-subrg 20490  df-cnfld 21297  df-zring 21389
This theorem is referenced by:  pzriprnglem6  21428  pzriprnglem7  21429  pzriprnglem9  21431
  Copyright terms: Public domain W3C validator