MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem5 Structured version   Visualization version   GIF version

Theorem pzriprnglem5 21428
Description: Lemma 5 for pzriprng 21440: 𝐼 is a subring of the non-unital ring 𝑅. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
Assertion
Ref Expression
pzriprnglem5 𝐼 ∈ (SubRng‘𝑅)

Proof of Theorem pzriprnglem5
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . 3 𝑅 = (ℤring ×sring)
2 pzriprng.i . . 3 𝐼 = (ℤ × {0})
31, 2pzriprnglem4 21427 . 2 𝐼 ∈ (SubGrp‘𝑅)
41, 2pzriprnglem3 21426 . . . 4 (𝑥𝐼 ↔ ∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩)
51, 2pzriprnglem3 21426 . . . 4 (𝑦𝐼 ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩)
6 zringbas 21396 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
7 zringring 21392 . . . . . . . . . . . . . 14 ring ∈ Ring
87a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ℤring ∈ Ring)
9 simpl 481 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℤ)
10 0zd 12603 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 0 ∈ ℤ)
11 simpr 483 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
12 zringmulr 21400 . . . . . . . . . . . . . . . 16 · = (.r‘ℤring)
1312eqcomi 2734 . . . . . . . . . . . . . . 15 (.r‘ℤring) = ·
1413oveqi 7432 . . . . . . . . . . . . . 14 (𝑎(.r‘ℤring)𝑏) = (𝑎 · 𝑏)
15 zmulcl 12644 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
1614, 15eqeltrid 2829 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎(.r‘ℤring)𝑏) ∈ ℤ)
1713oveqi 7432 . . . . . . . . . . . . . . . 16 (0(.r‘ℤring)0) = (0 · 0)
18 0cn 11238 . . . . . . . . . . . . . . . . 17 0 ∈ ℂ
1918mul02i 11435 . . . . . . . . . . . . . . . 16 (0 · 0) = 0
2017, 19eqtri 2753 . . . . . . . . . . . . . . 15 (0(.r‘ℤring)0) = 0
21 0z 12602 . . . . . . . . . . . . . . 15 0 ∈ ℤ
2220, 21eqeltri 2821 . . . . . . . . . . . . . 14 (0(.r‘ℤring)0) ∈ ℤ
2322a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (0(.r‘ℤring)0) ∈ ℤ)
24 eqid 2725 . . . . . . . . . . . . 13 (.r‘ℤring) = (.r‘ℤring)
25 eqid 2725 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
261, 6, 6, 8, 8, 9, 10, 11, 10, 16, 23, 24, 24, 25xpsmul 17560 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩) = ⟨(𝑎(.r‘ℤring)𝑏), (0(.r‘ℤring)0)⟩)
27 c0ex 11240 . . . . . . . . . . . . . . . 16 0 ∈ V
2827snid 4666 . . . . . . . . . . . . . . 15 0 ∈ {0}
2928a1i 11 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 0 ∈ {0})
3020, 29eqeltrid 2829 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (0(.r‘ℤring)0) ∈ {0})
3116, 30opelxpd 5717 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ⟨(𝑎(.r‘ℤring)𝑏), (0(.r‘ℤring)0)⟩ ∈ (ℤ × {0}))
3226, 31eqeltrd 2825 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩) ∈ (ℤ × {0}))
3332adantr 479 . . . . . . . . . 10 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩)) → (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩) ∈ (ℤ × {0}))
34 oveq12 7428 . . . . . . . . . . . 12 ((𝑥 = ⟨𝑎, 0⟩ ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩))
3534ancoms 457 . . . . . . . . . . 11 ((𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩))
3635adantl 480 . . . . . . . . . 10 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩)) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩))
372a1i 11 . . . . . . . . . 10 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩)) → 𝐼 = (ℤ × {0}))
3833, 36, 373eltr4d 2840 . . . . . . . . 9 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩)) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
3938exp32 419 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑦 = ⟨𝑏, 0⟩ → (𝑥 = ⟨𝑎, 0⟩ → (𝑥(.r𝑅)𝑦) ∈ 𝐼)))
4039rexlimdva 3144 . . . . . . 7 (𝑎 ∈ ℤ → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥 = ⟨𝑎, 0⟩ → (𝑥(.r𝑅)𝑦) ∈ 𝐼)))
4140com23 86 . . . . . 6 (𝑎 ∈ ℤ → (𝑥 = ⟨𝑎, 0⟩ → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥(.r𝑅)𝑦) ∈ 𝐼)))
4241rexlimiv 3137 . . . . 5 (∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩ → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥(.r𝑅)𝑦) ∈ 𝐼))
4342imp 405 . . . 4 ((∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩ ∧ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
444, 5, 43syl2anb 596 . . 3 ((𝑥𝐼𝑦𝐼) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
4544rgen2 3187 . 2 𝑥𝐼𝑦𝐼 (𝑥(.r𝑅)𝑦) ∈ 𝐼
461pzriprnglem1 21424 . . 3 𝑅 ∈ Rng
47 eqid 2725 . . . 4 (Base‘𝑅) = (Base‘𝑅)
4847, 25issubrng2 20507 . . 3 (𝑅 ∈ Rng → (𝐼 ∈ (SubRng‘𝑅) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐼𝑦𝐼 (𝑥(.r𝑅)𝑦) ∈ 𝐼)))
4946, 48ax-mp 5 . 2 (𝐼 ∈ (SubRng‘𝑅) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐼𝑦𝐼 (𝑥(.r𝑅)𝑦) ∈ 𝐼))
503, 45, 49mpbir2an 709 1 𝐼 ∈ (SubRng‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  wrex 3059  {csn 4630  cop 4636   × cxp 5676  cfv 6549  (class class class)co 7419  0cc0 11140   · cmul 11145  cz 12591  Basecbs 17183  .rcmulr 17237   ×s cxps 17491  SubGrpcsubg 19083  Rngcrng 20104  Ringcrg 20185  SubRngcsubrng 20494  ringczring 21389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-0g 17426  df-prds 17432  df-imas 17493  df-xps 17495  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-subg 19086  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-subrng 20495  df-subrg 20520  df-cnfld 21297  df-zring 21390
This theorem is referenced by:  pzriprnglem6  21429  pzriprnglem7  21430  pzriprnglem9  21432
  Copyright terms: Public domain W3C validator