MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem5 Structured version   Visualization version   GIF version

Theorem pzriprnglem5 21444
Description: Lemma 5 for pzriprng 21456: 𝐼 is a subring of the non-unital ring 𝑅. (Contributed by AV, 18-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
Assertion
Ref Expression
pzriprnglem5 𝐼 ∈ (SubRng‘𝑅)

Proof of Theorem pzriprnglem5
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . 3 𝑅 = (ℤring ×sring)
2 pzriprng.i . . 3 𝐼 = (ℤ × {0})
31, 2pzriprnglem4 21443 . 2 𝐼 ∈ (SubGrp‘𝑅)
41, 2pzriprnglem3 21442 . . . 4 (𝑥𝐼 ↔ ∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩)
51, 2pzriprnglem3 21442 . . . 4 (𝑦𝐼 ↔ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩)
6 zringbas 21412 . . . . . . . . . . . . 13 ℤ = (Base‘ℤring)
7 zringring 21408 . . . . . . . . . . . . . 14 ring ∈ Ring
87a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ℤring ∈ Ring)
9 simpl 482 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℤ)
10 0zd 12598 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 0 ∈ ℤ)
11 simpr 484 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
12 zringmulr 21416 . . . . . . . . . . . . . . . 16 · = (.r‘ℤring)
1312eqcomi 2744 . . . . . . . . . . . . . . 15 (.r‘ℤring) = ·
1413oveqi 7416 . . . . . . . . . . . . . 14 (𝑎(.r‘ℤring)𝑏) = (𝑎 · 𝑏)
15 zmulcl 12639 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
1614, 15eqeltrid 2838 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎(.r‘ℤring)𝑏) ∈ ℤ)
1713oveqi 7416 . . . . . . . . . . . . . . . 16 (0(.r‘ℤring)0) = (0 · 0)
18 0cn 11225 . . . . . . . . . . . . . . . . 17 0 ∈ ℂ
1918mul02i 11422 . . . . . . . . . . . . . . . 16 (0 · 0) = 0
2017, 19eqtri 2758 . . . . . . . . . . . . . . 15 (0(.r‘ℤring)0) = 0
21 0z 12597 . . . . . . . . . . . . . . 15 0 ∈ ℤ
2220, 21eqeltri 2830 . . . . . . . . . . . . . 14 (0(.r‘ℤring)0) ∈ ℤ
2322a1i 11 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (0(.r‘ℤring)0) ∈ ℤ)
24 eqid 2735 . . . . . . . . . . . . 13 (.r‘ℤring) = (.r‘ℤring)
25 eqid 2735 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
261, 6, 6, 8, 8, 9, 10, 11, 10, 16, 23, 24, 24, 25xpsmul 17587 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩) = ⟨(𝑎(.r‘ℤring)𝑏), (0(.r‘ℤring)0)⟩)
27 c0ex 11227 . . . . . . . . . . . . . . . 16 0 ∈ V
2827snid 4638 . . . . . . . . . . . . . . 15 0 ∈ {0}
2928a1i 11 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 0 ∈ {0})
3020, 29eqeltrid 2838 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (0(.r‘ℤring)0) ∈ {0})
3116, 30opelxpd 5693 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ⟨(𝑎(.r‘ℤring)𝑏), (0(.r‘ℤring)0)⟩ ∈ (ℤ × {0}))
3226, 31eqeltrd 2834 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩) ∈ (ℤ × {0}))
3332adantr 480 . . . . . . . . . 10 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩)) → (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩) ∈ (ℤ × {0}))
34 oveq12 7412 . . . . . . . . . . . 12 ((𝑥 = ⟨𝑎, 0⟩ ∧ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩))
3534ancoms 458 . . . . . . . . . . 11 ((𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩))
3635adantl 481 . . . . . . . . . 10 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩)) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 0⟩(.r𝑅)⟨𝑏, 0⟩))
372a1i 11 . . . . . . . . . 10 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩)) → 𝐼 = (ℤ × {0}))
3833, 36, 373eltr4d 2849 . . . . . . . . 9 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑦 = ⟨𝑏, 0⟩ ∧ 𝑥 = ⟨𝑎, 0⟩)) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
3938exp32 420 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑦 = ⟨𝑏, 0⟩ → (𝑥 = ⟨𝑎, 0⟩ → (𝑥(.r𝑅)𝑦) ∈ 𝐼)))
4039rexlimdva 3141 . . . . . . 7 (𝑎 ∈ ℤ → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥 = ⟨𝑎, 0⟩ → (𝑥(.r𝑅)𝑦) ∈ 𝐼)))
4140com23 86 . . . . . 6 (𝑎 ∈ ℤ → (𝑥 = ⟨𝑎, 0⟩ → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥(.r𝑅)𝑦) ∈ 𝐼)))
4241rexlimiv 3134 . . . . 5 (∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩ → (∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩ → (𝑥(.r𝑅)𝑦) ∈ 𝐼))
4342imp 406 . . . 4 ((∃𝑎 ∈ ℤ 𝑥 = ⟨𝑎, 0⟩ ∧ ∃𝑏 ∈ ℤ 𝑦 = ⟨𝑏, 0⟩) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
444, 5, 43syl2anb 598 . . 3 ((𝑥𝐼𝑦𝐼) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
4544rgen2 3184 . 2 𝑥𝐼𝑦𝐼 (𝑥(.r𝑅)𝑦) ∈ 𝐼
461pzriprnglem1 21440 . . 3 𝑅 ∈ Rng
47 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
4847, 25issubrng2 20516 . . 3 (𝑅 ∈ Rng → (𝐼 ∈ (SubRng‘𝑅) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐼𝑦𝐼 (𝑥(.r𝑅)𝑦) ∈ 𝐼)))
4946, 48ax-mp 5 . 2 (𝐼 ∈ (SubRng‘𝑅) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐼𝑦𝐼 (𝑥(.r𝑅)𝑦) ∈ 𝐼))
503, 45, 49mpbir2an 711 1 𝐼 ∈ (SubRng‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {csn 4601  cop 4607   × cxp 5652  cfv 6530  (class class class)co 7403  0cc0 11127   · cmul 11132  cz 12586  Basecbs 17226  .rcmulr 17270   ×s cxps 17518  SubGrpcsubg 19101  Rngcrng 20110  Ringcrg 20191  SubRngcsubrng 20503  ringczring 21405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-prds 17459  df-imas 17520  df-xps 17522  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-minusg 18918  df-subg 19104  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-subrng 20504  df-subrg 20528  df-cnfld 21314  df-zring 21406
This theorem is referenced by:  pzriprnglem6  21445  pzriprnglem7  21446  pzriprnglem9  21448
  Copyright terms: Public domain W3C validator