MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem8 Structured version   Visualization version   GIF version

Theorem pzriprnglem8 21516
Description: Lemma 8 for pzriprng 21525: 𝐼 resp. 𝐽 is a two-sided ideal of the non-unital ring 𝑅. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
Assertion
Ref Expression
pzriprnglem8 𝐼 ∈ (2Ideal‘𝑅)

Proof of Theorem pzriprnglem8
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . . . . . 7 𝑅 = (ℤring ×sring)
21pzriprnglem2 21510 . . . . . 6 (Base‘𝑅) = (ℤ × ℤ)
32eleq2i 2830 . . . . 5 (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ (ℤ × ℤ))
4 elxp2 5712 . . . . 5 (𝑥 ∈ (ℤ × ℤ) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑥 = ⟨𝑎, 𝑏⟩)
53, 4bitri 275 . . . 4 (𝑥 ∈ (Base‘𝑅) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑥 = ⟨𝑎, 𝑏⟩)
6 pzriprng.i . . . . 5 𝐼 = (ℤ × {0})
71, 6pzriprnglem3 21511 . . . 4 (𝑦𝐼 ↔ ∃𝑐 ∈ ℤ 𝑦 = ⟨𝑐, 0⟩)
8 simpll 767 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → 𝑎 ∈ ℤ)
9 simpr 484 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → 𝑐 ∈ ℤ)
108, 9zmulcld 12725 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑎 · 𝑐) ∈ ℤ)
11 zcn 12615 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
1211adantl 481 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
1312adantr 480 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → 𝑏 ∈ ℂ)
1413mul01d 11457 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑏 · 0) = 0)
15 ovex 7463 . . . . . . . . . . . . . . 15 (𝑏 · 0) ∈ V
1615elsn 4645 . . . . . . . . . . . . . 14 ((𝑏 · 0) ∈ {0} ↔ (𝑏 · 0) = 0)
1714, 16sylibr 234 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑏 · 0) ∈ {0})
1810, 17opelxpd 5727 . . . . . . . . . . . 12 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → ⟨(𝑎 · 𝑐), (𝑏 · 0)⟩ ∈ (ℤ × {0}))
199, 8zmulcld 12725 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑐 · 𝑎) ∈ ℤ)
2013mul02d 11456 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (0 · 𝑏) = 0)
21 ovex 7463 . . . . . . . . . . . . . . 15 (0 · 𝑏) ∈ V
2221elsn 4645 . . . . . . . . . . . . . 14 ((0 · 𝑏) ∈ {0} ↔ (0 · 𝑏) = 0)
2320, 22sylibr 234 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (0 · 𝑏) ∈ {0})
2419, 23opelxpd 5727 . . . . . . . . . . . 12 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → ⟨(𝑐 · 𝑎), (0 · 𝑏)⟩ ∈ (ℤ × {0}))
25 zringbas 21481 . . . . . . . . . . . . . . 15 ℤ = (Base‘ℤring)
26 zringring 21477 . . . . . . . . . . . . . . . 16 ring ∈ Ring
2726a1i 11 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → ℤring ∈ Ring)
28 simplr 769 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → 𝑏 ∈ ℤ)
29 0zd 12622 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → 0 ∈ ℤ)
3028, 29zmulcld 12725 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑏 · 0) ∈ ℤ)
31 zringmulr 21485 . . . . . . . . . . . . . . 15 · = (.r‘ℤring)
32 eqid 2734 . . . . . . . . . . . . . . 15 (.r𝑅) = (.r𝑅)
331, 25, 25, 27, 27, 8, 28, 9, 29, 10, 30, 31, 31, 32xpsmul 17621 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) = ⟨(𝑎 · 𝑐), (𝑏 · 0)⟩)
3433eleq1d 2823 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → ((⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) ∈ (ℤ × {0}) ↔ ⟨(𝑎 · 𝑐), (𝑏 · 0)⟩ ∈ (ℤ × {0})))
35 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑐 ∈ ℤ)
36 simprl 771 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
3735, 36zmulcld 12725 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑐 · 𝑎) ∈ ℤ)
3837ancoms 458 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑐 · 𝑎) ∈ ℤ)
39 0zd 12622 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 0 ∈ ℤ)
40 simprr 773 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
4139, 40zmulcld 12725 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (0 · 𝑏) ∈ ℤ)
4241ancoms 458 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (0 · 𝑏) ∈ ℤ)
431, 25, 25, 27, 27, 9, 29, 8, 28, 38, 42, 31, 31, 32xpsmul 17621 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) = ⟨(𝑐 · 𝑎), (0 · 𝑏)⟩)
4443eleq1d 2823 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → ((⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) ∈ (ℤ × {0}) ↔ ⟨(𝑐 · 𝑎), (0 · 𝑏)⟩ ∈ (ℤ × {0})))
4534, 44anbi12d 632 . . . . . . . . . . . 12 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (((⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) ∈ (ℤ × {0}) ∧ (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) ∈ (ℤ × {0})) ↔ (⟨(𝑎 · 𝑐), (𝑏 · 0)⟩ ∈ (ℤ × {0}) ∧ ⟨(𝑐 · 𝑎), (0 · 𝑏)⟩ ∈ (ℤ × {0}))))
4618, 24, 45mpbir2and 713 . . . . . . . . . . 11 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → ((⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) ∈ (ℤ × {0}) ∧ (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) ∈ (ℤ × {0})))
4746adantr 480 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → ((⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) ∈ (ℤ × {0}) ∧ (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) ∈ (ℤ × {0})))
48 oveq12 7439 . . . . . . . . . . . . . 14 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑦 = ⟨𝑐, 0⟩) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩))
4948ancoms 458 . . . . . . . . . . . . 13 ((𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩))
5049adantl 481 . . . . . . . . . . . 12 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩))
516a1i 11 . . . . . . . . . . . 12 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → 𝐼 = (ℤ × {0}))
5250, 51eleq12d 2832 . . . . . . . . . . 11 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ↔ (⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) ∈ (ℤ × {0})))
53 oveq12 7439 . . . . . . . . . . . . 13 ((𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩) → (𝑦(.r𝑅)𝑥) = (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩))
5453adantl 481 . . . . . . . . . . . 12 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → (𝑦(.r𝑅)𝑥) = (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩))
5554, 51eleq12d 2832 . . . . . . . . . . 11 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → ((𝑦(.r𝑅)𝑥) ∈ 𝐼 ↔ (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) ∈ (ℤ × {0})))
5652, 55anbi12d 632 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → (((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼) ↔ ((⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) ∈ (ℤ × {0}) ∧ (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) ∈ (ℤ × {0}))))
5747, 56mpbird 257 . . . . . . . . 9 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))
5857exp32 420 . . . . . . . 8 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑦 = ⟨𝑐, 0⟩ → (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))))
5958rexlimdva 3152 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (∃𝑐 ∈ ℤ 𝑦 = ⟨𝑐, 0⟩ → (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))))
6059com23 86 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑥 = ⟨𝑎, 𝑏⟩ → (∃𝑐 ∈ ℤ 𝑦 = ⟨𝑐, 0⟩ → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))))
6160rexlimivv 3198 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑥 = ⟨𝑎, 𝑏⟩ → (∃𝑐 ∈ ℤ 𝑦 = ⟨𝑐, 0⟩ → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼)))
6261imp 406 . . . 4 ((∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑥 = ⟨𝑎, 𝑏⟩ ∧ ∃𝑐 ∈ ℤ 𝑦 = ⟨𝑐, 0⟩) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))
635, 7, 62syl2anb 598 . . 3 ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐼) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))
6463rgen2 3196 . 2 𝑥 ∈ (Base‘𝑅)∀𝑦𝐼 ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼)
651pzriprnglem1 21509 . . 3 𝑅 ∈ Rng
661, 6pzriprnglem4 21512 . . 3 𝐼 ∈ (SubGrp‘𝑅)
67 eqid 2734 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
68 eqid 2734 . . . 4 (Base‘𝑅) = (Base‘𝑅)
6967, 68, 32df2idl2rng 21283 . . 3 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ (2Ideal‘𝑅) ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑦𝐼 ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼)))
7065, 66, 69mp2an 692 . 2 (𝐼 ∈ (2Ideal‘𝑅) ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑦𝐼 ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))
7164, 70mpbir 231 1 𝐼 ∈ (2Ideal‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  {csn 4630  cop 4636   × cxp 5686  cfv 6562  (class class class)co 7430  cc 11150  0cc0 11152   · cmul 11157  cz 12610  Basecbs 17244  s cress 17273  .rcmulr 17298   ×s cxps 17552  SubGrpcsubg 19150  Rngcrng 20169  Ringcrg 20250  2Idealc2idl 21276  ringczring 21474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17487  df-prds 17493  df-imas 17554  df-xps 17556  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-subg 19153  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-subrng 20562  df-subrg 20586  df-lss 20947  df-sra 21189  df-rgmod 21190  df-lidl 21235  df-2idl 21277  df-cnfld 21382  df-zring 21475
This theorem is referenced by:  pzriprnglem12  21520  pzriprnglem13  21521  pzriprngALT  21523  pzriprng1ALT  21524
  Copyright terms: Public domain W3C validator