MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem8 Structured version   Visualization version   GIF version

Theorem pzriprnglem8 21461
Description: Lemma 8 for pzriprng 21470: 𝐼 resp. 𝐽 is a two-sided ideal of the non-unital ring 𝑅. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
Assertion
Ref Expression
pzriprnglem8 𝐼 ∈ (2Ideal‘𝑅)

Proof of Theorem pzriprnglem8
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . . . . . 7 𝑅 = (ℤring ×sring)
21pzriprnglem2 21455 . . . . . 6 (Base‘𝑅) = (ℤ × ℤ)
32eleq2i 2825 . . . . 5 (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ (ℤ × ℤ))
4 elxp2 5689 . . . . 5 (𝑥 ∈ (ℤ × ℤ) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑥 = ⟨𝑎, 𝑏⟩)
53, 4bitri 275 . . . 4 (𝑥 ∈ (Base‘𝑅) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑥 = ⟨𝑎, 𝑏⟩)
6 pzriprng.i . . . . 5 𝐼 = (ℤ × {0})
71, 6pzriprnglem3 21456 . . . 4 (𝑦𝐼 ↔ ∃𝑐 ∈ ℤ 𝑦 = ⟨𝑐, 0⟩)
8 simpll 766 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → 𝑎 ∈ ℤ)
9 simpr 484 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → 𝑐 ∈ ℤ)
108, 9zmulcld 12711 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑎 · 𝑐) ∈ ℤ)
11 zcn 12601 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
1211adantl 481 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
1312adantr 480 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → 𝑏 ∈ ℂ)
1413mul01d 11442 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑏 · 0) = 0)
15 ovex 7446 . . . . . . . . . . . . . . 15 (𝑏 · 0) ∈ V
1615elsn 4621 . . . . . . . . . . . . . 14 ((𝑏 · 0) ∈ {0} ↔ (𝑏 · 0) = 0)
1714, 16sylibr 234 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑏 · 0) ∈ {0})
1810, 17opelxpd 5704 . . . . . . . . . . . 12 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → ⟨(𝑎 · 𝑐), (𝑏 · 0)⟩ ∈ (ℤ × {0}))
199, 8zmulcld 12711 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑐 · 𝑎) ∈ ℤ)
2013mul02d 11441 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (0 · 𝑏) = 0)
21 ovex 7446 . . . . . . . . . . . . . . 15 (0 · 𝑏) ∈ V
2221elsn 4621 . . . . . . . . . . . . . 14 ((0 · 𝑏) ∈ {0} ↔ (0 · 𝑏) = 0)
2320, 22sylibr 234 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (0 · 𝑏) ∈ {0})
2419, 23opelxpd 5704 . . . . . . . . . . . 12 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → ⟨(𝑐 · 𝑎), (0 · 𝑏)⟩ ∈ (ℤ × {0}))
25 zringbas 21426 . . . . . . . . . . . . . . 15 ℤ = (Base‘ℤring)
26 zringring 21422 . . . . . . . . . . . . . . . 16 ring ∈ Ring
2726a1i 11 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → ℤring ∈ Ring)
28 simplr 768 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → 𝑏 ∈ ℤ)
29 0zd 12608 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → 0 ∈ ℤ)
3028, 29zmulcld 12711 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑏 · 0) ∈ ℤ)
31 zringmulr 21430 . . . . . . . . . . . . . . 15 · = (.r‘ℤring)
32 eqid 2734 . . . . . . . . . . . . . . 15 (.r𝑅) = (.r𝑅)
331, 25, 25, 27, 27, 8, 28, 9, 29, 10, 30, 31, 31, 32xpsmul 17591 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) = ⟨(𝑎 · 𝑐), (𝑏 · 0)⟩)
3433eleq1d 2818 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → ((⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) ∈ (ℤ × {0}) ↔ ⟨(𝑎 · 𝑐), (𝑏 · 0)⟩ ∈ (ℤ × {0})))
35 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑐 ∈ ℤ)
36 simprl 770 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
3735, 36zmulcld 12711 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑐 · 𝑎) ∈ ℤ)
3837ancoms 458 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑐 · 𝑎) ∈ ℤ)
39 0zd 12608 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 0 ∈ ℤ)
40 simprr 772 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
4139, 40zmulcld 12711 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℤ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (0 · 𝑏) ∈ ℤ)
4241ancoms 458 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (0 · 𝑏) ∈ ℤ)
431, 25, 25, 27, 27, 9, 29, 8, 28, 38, 42, 31, 31, 32xpsmul 17591 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) = ⟨(𝑐 · 𝑎), (0 · 𝑏)⟩)
4443eleq1d 2818 . . . . . . . . . . . . 13 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → ((⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) ∈ (ℤ × {0}) ↔ ⟨(𝑐 · 𝑎), (0 · 𝑏)⟩ ∈ (ℤ × {0})))
4534, 44anbi12d 632 . . . . . . . . . . . 12 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (((⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) ∈ (ℤ × {0}) ∧ (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) ∈ (ℤ × {0})) ↔ (⟨(𝑎 · 𝑐), (𝑏 · 0)⟩ ∈ (ℤ × {0}) ∧ ⟨(𝑐 · 𝑎), (0 · 𝑏)⟩ ∈ (ℤ × {0}))))
4618, 24, 45mpbir2and 713 . . . . . . . . . . 11 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → ((⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) ∈ (ℤ × {0}) ∧ (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) ∈ (ℤ × {0})))
4746adantr 480 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → ((⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) ∈ (ℤ × {0}) ∧ (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) ∈ (ℤ × {0})))
48 oveq12 7422 . . . . . . . . . . . . . 14 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ 𝑦 = ⟨𝑐, 0⟩) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩))
4948ancoms 458 . . . . . . . . . . . . 13 ((𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩))
5049adantl 481 . . . . . . . . . . . 12 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → (𝑥(.r𝑅)𝑦) = (⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩))
516a1i 11 . . . . . . . . . . . 12 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → 𝐼 = (ℤ × {0}))
5250, 51eleq12d 2827 . . . . . . . . . . 11 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ↔ (⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) ∈ (ℤ × {0})))
53 oveq12 7422 . . . . . . . . . . . . 13 ((𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩) → (𝑦(.r𝑅)𝑥) = (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩))
5453adantl 481 . . . . . . . . . . . 12 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → (𝑦(.r𝑅)𝑥) = (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩))
5554, 51eleq12d 2827 . . . . . . . . . . 11 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → ((𝑦(.r𝑅)𝑥) ∈ 𝐼 ↔ (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) ∈ (ℤ × {0})))
5652, 55anbi12d 632 . . . . . . . . . 10 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → (((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼) ↔ ((⟨𝑎, 𝑏⟩(.r𝑅)⟨𝑐, 0⟩) ∈ (ℤ × {0}) ∧ (⟨𝑐, 0⟩(.r𝑅)⟨𝑎, 𝑏⟩) ∈ (ℤ × {0}))))
5747, 56mpbird 257 . . . . . . . . 9 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) ∧ (𝑦 = ⟨𝑐, 0⟩ ∧ 𝑥 = ⟨𝑎, 𝑏⟩)) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))
5857exp32 420 . . . . . . . 8 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝑐 ∈ ℤ) → (𝑦 = ⟨𝑐, 0⟩ → (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))))
5958rexlimdva 3142 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (∃𝑐 ∈ ℤ 𝑦 = ⟨𝑐, 0⟩ → (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))))
6059com23 86 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑥 = ⟨𝑎, 𝑏⟩ → (∃𝑐 ∈ ℤ 𝑦 = ⟨𝑐, 0⟩ → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))))
6160rexlimivv 3188 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑥 = ⟨𝑎, 𝑏⟩ → (∃𝑐 ∈ ℤ 𝑦 = ⟨𝑐, 0⟩ → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼)))
6261imp 406 . . . 4 ((∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑥 = ⟨𝑎, 𝑏⟩ ∧ ∃𝑐 ∈ ℤ 𝑦 = ⟨𝑐, 0⟩) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))
635, 7, 62syl2anb 598 . . 3 ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐼) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))
6463rgen2 3186 . 2 𝑥 ∈ (Base‘𝑅)∀𝑦𝐼 ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼)
651pzriprnglem1 21454 . . 3 𝑅 ∈ Rng
661, 6pzriprnglem4 21457 . . 3 𝐼 ∈ (SubGrp‘𝑅)
67 eqid 2734 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
68 eqid 2734 . . . 4 (Base‘𝑅) = (Base‘𝑅)
6967, 68, 32df2idl2rng 21228 . . 3 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ (2Ideal‘𝑅) ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑦𝐼 ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼)))
7065, 66, 69mp2an 692 . 2 (𝐼 ∈ (2Ideal‘𝑅) ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑦𝐼 ((𝑥(.r𝑅)𝑦) ∈ 𝐼 ∧ (𝑦(.r𝑅)𝑥) ∈ 𝐼))
7164, 70mpbir 231 1 𝐼 ∈ (2Ideal‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  {csn 4606  cop 4612   × cxp 5663  cfv 6541  (class class class)co 7413  cc 11135  0cc0 11137   · cmul 11142  cz 12596  Basecbs 17229  s cress 17252  .rcmulr 17274   ×s cxps 17522  SubGrpcsubg 19107  Rngcrng 20117  Ringcrg 20198  2Idealc2idl 21221  ringczring 21419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-0g 17457  df-prds 17463  df-imas 17524  df-xps 17526  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-subg 19110  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-subrng 20514  df-subrg 20538  df-lss 20898  df-sra 21140  df-rgmod 21141  df-lidl 21180  df-2idl 21222  df-cnfld 21327  df-zring 21420
This theorem is referenced by:  pzriprnglem12  21465  pzriprnglem13  21466  pzriprngALT  21468  pzriprng1ALT  21469
  Copyright terms: Public domain W3C validator