MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem6 Structured version   Visualization version   GIF version

Theorem pzriprnglem6 21428
Description: Lemma 6 for pzriprng 21439: 𝐽 has a ring unity. (Contributed by AV, 19-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
Assertion
Ref Expression
pzriprnglem6 (𝑋𝐼 → ((⟨1, 0⟩(.r𝐽)𝑋) = 𝑋 ∧ (𝑋(.r𝐽)⟨1, 0⟩) = 𝑋))

Proof of Theorem pzriprnglem6
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . 3 𝑅 = (ℤring ×sring)
2 pzriprng.i . . 3 𝐼 = (ℤ × {0})
31, 2pzriprnglem3 21425 . 2 (𝑋𝐼 ↔ ∃𝑎 ∈ ℤ 𝑋 = ⟨𝑎, 0⟩)
41, 2pzriprnglem5 21427 . . . . . . . . 9 𝐼 ∈ (SubRng‘𝑅)
5 pzriprng.j . . . . . . . . . . 11 𝐽 = (𝑅s 𝐼)
6 eqid 2729 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
75, 6ressmulr 17246 . . . . . . . . . 10 (𝐼 ∈ (SubRng‘𝑅) → (.r𝑅) = (.r𝐽))
87eqcomd 2735 . . . . . . . . 9 (𝐼 ∈ (SubRng‘𝑅) → (.r𝐽) = (.r𝑅))
94, 8ax-mp 5 . . . . . . . 8 (.r𝐽) = (.r𝑅)
109oveqi 7382 . . . . . . 7 (⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩) = (⟨1, 0⟩(.r𝑅)⟨𝑎, 0⟩)
1110a1i 11 . . . . . 6 (𝑎 ∈ ℤ → (⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩) = (⟨1, 0⟩(.r𝑅)⟨𝑎, 0⟩))
12 zringbas 21395 . . . . . . 7 ℤ = (Base‘ℤring)
13 zringring 21391 . . . . . . . 8 ring ∈ Ring
1413a1i 11 . . . . . . 7 (𝑎 ∈ ℤ → ℤring ∈ Ring)
15 1zzd 12540 . . . . . . 7 (𝑎 ∈ ℤ → 1 ∈ ℤ)
16 0z 12516 . . . . . . . 8 0 ∈ ℤ
1716a1i 11 . . . . . . 7 (𝑎 ∈ ℤ → 0 ∈ ℤ)
18 id 22 . . . . . . 7 (𝑎 ∈ ℤ → 𝑎 ∈ ℤ)
19 zringmulr 21399 . . . . . . . . 9 · = (.r‘ℤring)
2019oveqi 7382 . . . . . . . 8 (1 · 𝑎) = (1(.r‘ℤring)𝑎)
2115, 18zmulcld 12620 . . . . . . . 8 (𝑎 ∈ ℤ → (1 · 𝑎) ∈ ℤ)
2220, 21eqeltrrid 2833 . . . . . . 7 (𝑎 ∈ ℤ → (1(.r‘ℤring)𝑎) ∈ ℤ)
2319eqcomi 2738 . . . . . . . . . 10 (.r‘ℤring) = ·
2423oveqi 7382 . . . . . . . . 9 (0(.r‘ℤring)0) = (0 · 0)
25 id 22 . . . . . . . . . . 11 (0 ∈ ℤ → 0 ∈ ℤ)
2625, 25zmulcld 12620 . . . . . . . . . 10 (0 ∈ ℤ → (0 · 0) ∈ ℤ)
2716, 26ax-mp 5 . . . . . . . . 9 (0 · 0) ∈ ℤ
2824, 27eqeltri 2824 . . . . . . . 8 (0(.r‘ℤring)0) ∈ ℤ
2928a1i 11 . . . . . . 7 (𝑎 ∈ ℤ → (0(.r‘ℤring)0) ∈ ℤ)
30 eqid 2729 . . . . . . 7 (.r‘ℤring) = (.r‘ℤring)
311, 12, 12, 14, 14, 15, 17, 18, 17, 22, 29, 30, 30, 6xpsmul 17514 . . . . . 6 (𝑎 ∈ ℤ → (⟨1, 0⟩(.r𝑅)⟨𝑎, 0⟩) = ⟨(1(.r‘ℤring)𝑎), (0(.r‘ℤring)0)⟩)
32 zcn 12510 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
3332mullidd 11168 . . . . . . . 8 (𝑎 ∈ ℤ → (1 · 𝑎) = 𝑎)
3420, 33eqtr3id 2778 . . . . . . 7 (𝑎 ∈ ℤ → (1(.r‘ℤring)𝑎) = 𝑎)
35 0cn 11142 . . . . . . . . . 10 0 ∈ ℂ
3635mul02i 11339 . . . . . . . . 9 (0 · 0) = 0
3724, 36eqtri 2752 . . . . . . . 8 (0(.r‘ℤring)0) = 0
3837a1i 11 . . . . . . 7 (𝑎 ∈ ℤ → (0(.r‘ℤring)0) = 0)
3934, 38opeq12d 4841 . . . . . 6 (𝑎 ∈ ℤ → ⟨(1(.r‘ℤring)𝑎), (0(.r‘ℤring)0)⟩ = ⟨𝑎, 0⟩)
4011, 31, 393eqtrd 2768 . . . . 5 (𝑎 ∈ ℤ → (⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩) = ⟨𝑎, 0⟩)
419oveqi 7382 . . . . . . 7 (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩) = (⟨𝑎, 0⟩(.r𝑅)⟨1, 0⟩)
4241a1i 11 . . . . . 6 (𝑎 ∈ ℤ → (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩) = (⟨𝑎, 0⟩(.r𝑅)⟨1, 0⟩))
4319oveqi 7382 . . . . . . . 8 (𝑎 · 1) = (𝑎(.r‘ℤring)1)
4418, 15zmulcld 12620 . . . . . . . 8 (𝑎 ∈ ℤ → (𝑎 · 1) ∈ ℤ)
4543, 44eqeltrrid 2833 . . . . . . 7 (𝑎 ∈ ℤ → (𝑎(.r‘ℤring)1) ∈ ℤ)
461, 12, 12, 14, 14, 18, 17, 15, 17, 45, 29, 30, 30, 6xpsmul 17514 . . . . . 6 (𝑎 ∈ ℤ → (⟨𝑎, 0⟩(.r𝑅)⟨1, 0⟩) = ⟨(𝑎(.r‘ℤring)1), (0(.r‘ℤring)0)⟩)
4723oveqi 7382 . . . . . . . 8 (𝑎(.r‘ℤring)1) = (𝑎 · 1)
4832mulridd 11167 . . . . . . . 8 (𝑎 ∈ ℤ → (𝑎 · 1) = 𝑎)
4947, 48eqtrid 2776 . . . . . . 7 (𝑎 ∈ ℤ → (𝑎(.r‘ℤring)1) = 𝑎)
5049, 38opeq12d 4841 . . . . . 6 (𝑎 ∈ ℤ → ⟨(𝑎(.r‘ℤring)1), (0(.r‘ℤring)0)⟩ = ⟨𝑎, 0⟩)
5142, 46, 503eqtrd 2768 . . . . 5 (𝑎 ∈ ℤ → (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩) = ⟨𝑎, 0⟩)
5240, 51jca 511 . . . 4 (𝑎 ∈ ℤ → ((⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩) = ⟨𝑎, 0⟩ ∧ (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩) = ⟨𝑎, 0⟩))
53 oveq2 7377 . . . . . 6 (𝑋 = ⟨𝑎, 0⟩ → (⟨1, 0⟩(.r𝐽)𝑋) = (⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩))
54 id 22 . . . . . 6 (𝑋 = ⟨𝑎, 0⟩ → 𝑋 = ⟨𝑎, 0⟩)
5553, 54eqeq12d 2745 . . . . 5 (𝑋 = ⟨𝑎, 0⟩ → ((⟨1, 0⟩(.r𝐽)𝑋) = 𝑋 ↔ (⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩) = ⟨𝑎, 0⟩))
56 oveq1 7376 . . . . . 6 (𝑋 = ⟨𝑎, 0⟩ → (𝑋(.r𝐽)⟨1, 0⟩) = (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩))
5756, 54eqeq12d 2745 . . . . 5 (𝑋 = ⟨𝑎, 0⟩ → ((𝑋(.r𝐽)⟨1, 0⟩) = 𝑋 ↔ (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩) = ⟨𝑎, 0⟩))
5855, 57anbi12d 632 . . . 4 (𝑋 = ⟨𝑎, 0⟩ → (((⟨1, 0⟩(.r𝐽)𝑋) = 𝑋 ∧ (𝑋(.r𝐽)⟨1, 0⟩) = 𝑋) ↔ ((⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩) = ⟨𝑎, 0⟩ ∧ (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩) = ⟨𝑎, 0⟩)))
5952, 58syl5ibrcom 247 . . 3 (𝑎 ∈ ℤ → (𝑋 = ⟨𝑎, 0⟩ → ((⟨1, 0⟩(.r𝐽)𝑋) = 𝑋 ∧ (𝑋(.r𝐽)⟨1, 0⟩) = 𝑋)))
6059rexlimiv 3127 . 2 (∃𝑎 ∈ ℤ 𝑋 = ⟨𝑎, 0⟩ → ((⟨1, 0⟩(.r𝐽)𝑋) = 𝑋 ∧ (𝑋(.r𝐽)⟨1, 0⟩) = 𝑋))
613, 60sylbi 217 1 (𝑋𝐼 → ((⟨1, 0⟩(.r𝐽)𝑋) = 𝑋 ∧ (𝑋(.r𝐽)⟨1, 0⟩) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {csn 4585  cop 4591   × cxp 5629  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   · cmul 11049  cz 12505  s cress 17176  .rcmulr 17197   ×s cxps 17445  Ringcrg 20153  SubRngcsubrng 20465  ringczring 21388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-imas 17447  df-xps 17449  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-subg 19037  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20466  df-subrg 20490  df-cnfld 21297  df-zring 21389
This theorem is referenced by:  pzriprnglem7  21429  pzriprnglem9  21431
  Copyright terms: Public domain W3C validator