MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem6 Structured version   Visualization version   GIF version

Theorem pzriprnglem6 21393
Description: Lemma 6 for pzriprng 21404: 𝐽 has a ring unity. (Contributed by AV, 19-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
Assertion
Ref Expression
pzriprnglem6 (𝑋𝐼 → ((⟨1, 0⟩(.r𝐽)𝑋) = 𝑋 ∧ (𝑋(.r𝐽)⟨1, 0⟩) = 𝑋))

Proof of Theorem pzriprnglem6
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . 3 𝑅 = (ℤring ×sring)
2 pzriprng.i . . 3 𝐼 = (ℤ × {0})
31, 2pzriprnglem3 21390 . 2 (𝑋𝐼 ↔ ∃𝑎 ∈ ℤ 𝑋 = ⟨𝑎, 0⟩)
41, 2pzriprnglem5 21392 . . . . . . . . 9 𝐼 ∈ (SubRng‘𝑅)
5 pzriprng.j . . . . . . . . . . 11 𝐽 = (𝑅s 𝐼)
6 eqid 2729 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
75, 6ressmulr 17211 . . . . . . . . . 10 (𝐼 ∈ (SubRng‘𝑅) → (.r𝑅) = (.r𝐽))
87eqcomd 2735 . . . . . . . . 9 (𝐼 ∈ (SubRng‘𝑅) → (.r𝐽) = (.r𝑅))
94, 8ax-mp 5 . . . . . . . 8 (.r𝐽) = (.r𝑅)
109oveqi 7362 . . . . . . 7 (⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩) = (⟨1, 0⟩(.r𝑅)⟨𝑎, 0⟩)
1110a1i 11 . . . . . 6 (𝑎 ∈ ℤ → (⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩) = (⟨1, 0⟩(.r𝑅)⟨𝑎, 0⟩))
12 zringbas 21360 . . . . . . 7 ℤ = (Base‘ℤring)
13 zringring 21356 . . . . . . . 8 ring ∈ Ring
1413a1i 11 . . . . . . 7 (𝑎 ∈ ℤ → ℤring ∈ Ring)
15 1zzd 12506 . . . . . . 7 (𝑎 ∈ ℤ → 1 ∈ ℤ)
16 0z 12482 . . . . . . . 8 0 ∈ ℤ
1716a1i 11 . . . . . . 7 (𝑎 ∈ ℤ → 0 ∈ ℤ)
18 id 22 . . . . . . 7 (𝑎 ∈ ℤ → 𝑎 ∈ ℤ)
19 zringmulr 21364 . . . . . . . . 9 · = (.r‘ℤring)
2019oveqi 7362 . . . . . . . 8 (1 · 𝑎) = (1(.r‘ℤring)𝑎)
2115, 18zmulcld 12586 . . . . . . . 8 (𝑎 ∈ ℤ → (1 · 𝑎) ∈ ℤ)
2220, 21eqeltrrid 2833 . . . . . . 7 (𝑎 ∈ ℤ → (1(.r‘ℤring)𝑎) ∈ ℤ)
2319eqcomi 2738 . . . . . . . . . 10 (.r‘ℤring) = ·
2423oveqi 7362 . . . . . . . . 9 (0(.r‘ℤring)0) = (0 · 0)
25 id 22 . . . . . . . . . . 11 (0 ∈ ℤ → 0 ∈ ℤ)
2625, 25zmulcld 12586 . . . . . . . . . 10 (0 ∈ ℤ → (0 · 0) ∈ ℤ)
2716, 26ax-mp 5 . . . . . . . . 9 (0 · 0) ∈ ℤ
2824, 27eqeltri 2824 . . . . . . . 8 (0(.r‘ℤring)0) ∈ ℤ
2928a1i 11 . . . . . . 7 (𝑎 ∈ ℤ → (0(.r‘ℤring)0) ∈ ℤ)
30 eqid 2729 . . . . . . 7 (.r‘ℤring) = (.r‘ℤring)
311, 12, 12, 14, 14, 15, 17, 18, 17, 22, 29, 30, 30, 6xpsmul 17479 . . . . . 6 (𝑎 ∈ ℤ → (⟨1, 0⟩(.r𝑅)⟨𝑎, 0⟩) = ⟨(1(.r‘ℤring)𝑎), (0(.r‘ℤring)0)⟩)
32 zcn 12476 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
3332mullidd 11133 . . . . . . . 8 (𝑎 ∈ ℤ → (1 · 𝑎) = 𝑎)
3420, 33eqtr3id 2778 . . . . . . 7 (𝑎 ∈ ℤ → (1(.r‘ℤring)𝑎) = 𝑎)
35 0cn 11107 . . . . . . . . . 10 0 ∈ ℂ
3635mul02i 11305 . . . . . . . . 9 (0 · 0) = 0
3724, 36eqtri 2752 . . . . . . . 8 (0(.r‘ℤring)0) = 0
3837a1i 11 . . . . . . 7 (𝑎 ∈ ℤ → (0(.r‘ℤring)0) = 0)
3934, 38opeq12d 4832 . . . . . 6 (𝑎 ∈ ℤ → ⟨(1(.r‘ℤring)𝑎), (0(.r‘ℤring)0)⟩ = ⟨𝑎, 0⟩)
4011, 31, 393eqtrd 2768 . . . . 5 (𝑎 ∈ ℤ → (⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩) = ⟨𝑎, 0⟩)
419oveqi 7362 . . . . . . 7 (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩) = (⟨𝑎, 0⟩(.r𝑅)⟨1, 0⟩)
4241a1i 11 . . . . . 6 (𝑎 ∈ ℤ → (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩) = (⟨𝑎, 0⟩(.r𝑅)⟨1, 0⟩))
4319oveqi 7362 . . . . . . . 8 (𝑎 · 1) = (𝑎(.r‘ℤring)1)
4418, 15zmulcld 12586 . . . . . . . 8 (𝑎 ∈ ℤ → (𝑎 · 1) ∈ ℤ)
4543, 44eqeltrrid 2833 . . . . . . 7 (𝑎 ∈ ℤ → (𝑎(.r‘ℤring)1) ∈ ℤ)
461, 12, 12, 14, 14, 18, 17, 15, 17, 45, 29, 30, 30, 6xpsmul 17479 . . . . . 6 (𝑎 ∈ ℤ → (⟨𝑎, 0⟩(.r𝑅)⟨1, 0⟩) = ⟨(𝑎(.r‘ℤring)1), (0(.r‘ℤring)0)⟩)
4723oveqi 7362 . . . . . . . 8 (𝑎(.r‘ℤring)1) = (𝑎 · 1)
4832mulridd 11132 . . . . . . . 8 (𝑎 ∈ ℤ → (𝑎 · 1) = 𝑎)
4947, 48eqtrid 2776 . . . . . . 7 (𝑎 ∈ ℤ → (𝑎(.r‘ℤring)1) = 𝑎)
5049, 38opeq12d 4832 . . . . . 6 (𝑎 ∈ ℤ → ⟨(𝑎(.r‘ℤring)1), (0(.r‘ℤring)0)⟩ = ⟨𝑎, 0⟩)
5142, 46, 503eqtrd 2768 . . . . 5 (𝑎 ∈ ℤ → (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩) = ⟨𝑎, 0⟩)
5240, 51jca 511 . . . 4 (𝑎 ∈ ℤ → ((⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩) = ⟨𝑎, 0⟩ ∧ (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩) = ⟨𝑎, 0⟩))
53 oveq2 7357 . . . . . 6 (𝑋 = ⟨𝑎, 0⟩ → (⟨1, 0⟩(.r𝐽)𝑋) = (⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩))
54 id 22 . . . . . 6 (𝑋 = ⟨𝑎, 0⟩ → 𝑋 = ⟨𝑎, 0⟩)
5553, 54eqeq12d 2745 . . . . 5 (𝑋 = ⟨𝑎, 0⟩ → ((⟨1, 0⟩(.r𝐽)𝑋) = 𝑋 ↔ (⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩) = ⟨𝑎, 0⟩))
56 oveq1 7356 . . . . . 6 (𝑋 = ⟨𝑎, 0⟩ → (𝑋(.r𝐽)⟨1, 0⟩) = (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩))
5756, 54eqeq12d 2745 . . . . 5 (𝑋 = ⟨𝑎, 0⟩ → ((𝑋(.r𝐽)⟨1, 0⟩) = 𝑋 ↔ (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩) = ⟨𝑎, 0⟩))
5855, 57anbi12d 632 . . . 4 (𝑋 = ⟨𝑎, 0⟩ → (((⟨1, 0⟩(.r𝐽)𝑋) = 𝑋 ∧ (𝑋(.r𝐽)⟨1, 0⟩) = 𝑋) ↔ ((⟨1, 0⟩(.r𝐽)⟨𝑎, 0⟩) = ⟨𝑎, 0⟩ ∧ (⟨𝑎, 0⟩(.r𝐽)⟨1, 0⟩) = ⟨𝑎, 0⟩)))
5952, 58syl5ibrcom 247 . . 3 (𝑎 ∈ ℤ → (𝑋 = ⟨𝑎, 0⟩ → ((⟨1, 0⟩(.r𝐽)𝑋) = 𝑋 ∧ (𝑋(.r𝐽)⟨1, 0⟩) = 𝑋)))
6059rexlimiv 3123 . 2 (∃𝑎 ∈ ℤ 𝑋 = ⟨𝑎, 0⟩ → ((⟨1, 0⟩(.r𝐽)𝑋) = 𝑋 ∧ (𝑋(.r𝐽)⟨1, 0⟩) = 𝑋))
613, 60sylbi 217 1 (𝑋𝐼 → ((⟨1, 0⟩(.r𝐽)𝑋) = 𝑋 ∧ (𝑋(.r𝐽)⟨1, 0⟩) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {csn 4577  cop 4583   × cxp 5617  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   · cmul 11014  cz 12471  s cress 17141  .rcmulr 17162   ×s cxps 17410  Ringcrg 20118  SubRngcsubrng 20430  ringczring 21353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-imas 17412  df-xps 17414  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-cnfld 21262  df-zring 21354
This theorem is referenced by:  pzriprnglem7  21394  pzriprnglem9  21396
  Copyright terms: Public domain W3C validator