Step | Hyp | Ref
| Expression |
1 | | utoptop.1 |
. . . . . . . 8
⊢ 𝐽 = (unifTop‘𝑈) |
2 | | utopval 22923 |
. . . . . . . 8
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎}) |
3 | 1, 2 | syl5eq 2806 |
. . . . . . 7
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎}) |
4 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) → 𝑈 ∈ (UnifOn‘𝑋)) |
5 | | simpr 489 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑎 ∈ 𝒫 𝑋) |
6 | 5 | elpwid 4503 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑎 ⊆ 𝑋) |
7 | 6 | sselda 3893 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) → 𝑝 ∈ 𝑋) |
8 | | simpr 489 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑝 ∈ 𝑋) |
9 | | mptexg 6973 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) |
10 | | rnexg 7612 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) |
11 | 9, 10 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) |
12 | 11 | adantr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) |
13 | | utopsnneip.2 |
. . . . . . . . . . . . . . 15
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
14 | 13 | fvmpt2 6768 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ 𝑋 ∧ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) → (𝑁‘𝑝) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
15 | 8, 12, 14 | syl2anc 588 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑁‘𝑝) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
16 | 15 | eleq2d 2838 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑎 ∈ (𝑁‘𝑝) ↔ 𝑎 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})))) |
17 | | eqid 2759 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) |
18 | 17 | elrnmpt 5795 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ V → (𝑎 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ↔ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝}))) |
19 | 18 | elv 3416 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ↔ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝})) |
20 | 16, 19 | bitrdi 290 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝}))) |
21 | 4, 7, 20 | syl2anc 588 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝}))) |
22 | | nfv 1916 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) |
23 | | nfre1 3231 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝}) |
24 | 22, 23 | nfan 1901 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑣(((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝})) |
25 | | simplr 769 |
. . . . . . . . . . . . 13
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝})) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑝})) → 𝑣 ∈ 𝑈) |
26 | | eqimss2 3950 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑣 “ {𝑝}) → (𝑣 “ {𝑝}) ⊆ 𝑎) |
27 | 26 | adantl 486 |
. . . . . . . . . . . . 13
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝})) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑝})) → (𝑣 “ {𝑝}) ⊆ 𝑎) |
28 | | imaeq1 5894 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑣 → (𝑤 “ {𝑝}) = (𝑣 “ {𝑝})) |
29 | 28 | sseq1d 3924 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑣 → ((𝑤 “ {𝑝}) ⊆ 𝑎 ↔ (𝑣 “ {𝑝}) ⊆ 𝑎)) |
30 | 29 | rspcev 3542 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ 𝑈 ∧ (𝑣 “ {𝑝}) ⊆ 𝑎) → ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎) |
31 | 25, 27, 30 | syl2anc 588 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝})) ∧ 𝑣 ∈ 𝑈) ∧ 𝑎 = (𝑣 “ {𝑝})) → ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎) |
32 | | simpr 489 |
. . . . . . . . . . . 12
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝})) → ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝})) |
33 | 24, 31, 32 | r19.29af 3255 |
. . . . . . . . . . 11
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝})) → ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎) |
34 | 4 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → 𝑈 ∈ (UnifOn‘𝑋)) |
35 | 7 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → 𝑝 ∈ 𝑋) |
36 | 34, 35 | jca 516 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋)) |
37 | | simpr 489 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → (𝑤 “ {𝑝}) ⊆ 𝑎) |
38 | 6 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → 𝑎 ⊆ 𝑋) |
39 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → 𝑤 ∈ 𝑈) |
40 | | eqid 2759 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 “ {𝑝}) = (𝑤 “ {𝑝}) |
41 | | imaeq1 5894 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 = 𝑤 → (𝑢 “ {𝑝}) = (𝑤 “ {𝑝})) |
42 | 41 | rspceeqv 3557 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ 𝑈 ∧ (𝑤 “ {𝑝}) = (𝑤 “ {𝑝})) → ∃𝑢 ∈ 𝑈 (𝑤 “ {𝑝}) = (𝑢 “ {𝑝})) |
43 | 40, 42 | mpan2 691 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ 𝑈 → ∃𝑢 ∈ 𝑈 (𝑤 “ {𝑝}) = (𝑢 “ {𝑝})) |
44 | 43 | adantl 486 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) → ∃𝑢 ∈ 𝑈 (𝑤 “ {𝑝}) = (𝑢 “ {𝑝})) |
45 | | vex 3414 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑤 ∈ V |
46 | 45 | imaex 7624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 “ {𝑝}) ∈ V |
47 | 13 | ustuqtoplem 22930 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ (𝑤 “ {𝑝}) ∈ V) → ((𝑤 “ {𝑝}) ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 (𝑤 “ {𝑝}) = (𝑢 “ {𝑝}))) |
48 | 46, 47 | mpan2 691 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ((𝑤 “ {𝑝}) ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 (𝑤 “ {𝑝}) = (𝑢 “ {𝑝}))) |
49 | 48 | adantr 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) → ((𝑤 “ {𝑝}) ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 (𝑤 “ {𝑝}) = (𝑢 “ {𝑝}))) |
50 | 44, 49 | mpbird 260 |
. . . . . . . . . . . . . . 15
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) → (𝑤 “ {𝑝}) ∈ (𝑁‘𝑝)) |
51 | 34, 35, 39, 50 | syl21anc 837 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → (𝑤 “ {𝑝}) ∈ (𝑁‘𝑝)) |
52 | | sseq1 3918 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = (𝑤 “ {𝑝}) → (𝑏 ⊆ 𝑎 ↔ (𝑤 “ {𝑝}) ⊆ 𝑎)) |
53 | 52 | 3anbi2d 1439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = (𝑤 “ {𝑝}) → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋) ↔ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋))) |
54 | | eleq1 2840 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = (𝑤 “ {𝑝}) → (𝑏 ∈ (𝑁‘𝑝) ↔ (𝑤 “ {𝑝}) ∈ (𝑁‘𝑝))) |
55 | 53, 54 | anbi12d 634 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑤 “ {𝑝}) → ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋) ∧ 𝑏 ∈ (𝑁‘𝑝)) ↔ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋) ∧ (𝑤 “ {𝑝}) ∈ (𝑁‘𝑝)))) |
56 | 55 | imbi1d 346 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑤 “ {𝑝}) → (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋) ∧ 𝑏 ∈ (𝑁‘𝑝)) → 𝑎 ∈ (𝑁‘𝑝)) ↔ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋) ∧ (𝑤 “ {𝑝}) ∈ (𝑁‘𝑝)) → 𝑎 ∈ (𝑁‘𝑝)))) |
57 | 13 | ustuqtop1 22932 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋) ∧ 𝑏 ∈ (𝑁‘𝑝)) → 𝑎 ∈ (𝑁‘𝑝)) |
58 | 46, 56, 57 | vtocl 3478 |
. . . . . . . . . . . . . 14
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋) ∧ (𝑤 “ {𝑝}) ∈ (𝑁‘𝑝)) → 𝑎 ∈ (𝑁‘𝑝)) |
59 | 36, 37, 38, 51, 58 | syl31anc 1371 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → 𝑎 ∈ (𝑁‘𝑝)) |
60 | 36, 20 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝}))) |
61 | 59, 60 | mpbid 235 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ 𝑤 ∈ 𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝})) |
62 | 61 | r19.29an 3213 |
. . . . . . . . . . 11
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) ∧ ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎) → ∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝})) |
63 | 33, 62 | impbida 801 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) → (∃𝑣 ∈ 𝑈 𝑎 = (𝑣 “ {𝑝}) ↔ ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎)) |
64 | 21, 63 | bitrd 282 |
. . . . . . . . 9
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝 ∈ 𝑎) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎)) |
65 | 64 | ralbidva 3126 |
. . . . . . . 8
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝) ↔ ∀𝑝 ∈ 𝑎 ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎)) |
66 | 65 | rabbidva 3391 |
. . . . . . 7
⊢ (𝑈 ∈ (UnifOn‘𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 ∃𝑤 ∈ 𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎}) |
67 | 3, 66 | eqtr4d 2797 |
. . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)}) |
68 | | utopsnneip.1 |
. . . . . 6
⊢ 𝐾 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} |
69 | 67, 68 | eqtr4di 2812 |
. . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 = 𝐾) |
70 | 69 | fveq2d 6660 |
. . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (nei‘𝐽) = (nei‘𝐾)) |
71 | 70 | fveq1d 6658 |
. . 3
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ((nei‘𝐽)‘{𝑃}) = ((nei‘𝐾)‘{𝑃})) |
72 | 71 | adantr 485 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ((nei‘𝐾)‘{𝑃})) |
73 | 13 | ustuqtop0 22931 |
. . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
74 | 13 | ustuqtop1 22932 |
. . . . 5
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |
75 | 13 | ustuqtop2 22933 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) |
76 | 13 | ustuqtop3 22934 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) |
77 | 13 | ustuqtop4 22935 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) |
78 | 13 | ustuqtop5 22936 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
79 | 68, 73, 74, 75, 76, 77, 78 | neiptopnei 21822 |
. . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐾)‘{𝑝}))) |
80 | 79 | adantr 485 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐾)‘{𝑝}))) |
81 | | simpr 489 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) |
82 | 81 | sneqd 4532 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑝 = 𝑃) → {𝑝} = {𝑃}) |
83 | 82 | fveq2d 6660 |
. . 3
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑝 = 𝑃) → ((nei‘𝐾)‘{𝑝}) = ((nei‘𝐾)‘{𝑃})) |
84 | | simpr 489 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
85 | | fvexd 6671 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐾)‘{𝑃}) ∈ V) |
86 | 80, 83, 84, 85 | fvmptd 6764 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁‘𝑃) = ((nei‘𝐾)‘{𝑃})) |
87 | | mptexg 6973 |
. . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
88 | | rnexg 7612 |
. . . . 5
⊢ ((𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
89 | 87, 88 | syl 17 |
. . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
90 | 89 | adantr 485 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
91 | | nfv 1916 |
. . . . . . . 8
⊢
Ⅎ𝑣 𝑃 ∈ 𝑋 |
92 | | nfmpt1 5128 |
. . . . . . . . . 10
⊢
Ⅎ𝑣(𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) |
93 | 92 | nfrn 5791 |
. . . . . . . . 9
⊢
Ⅎ𝑣ran
(𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) |
94 | 93 | nfel1 2936 |
. . . . . . . 8
⊢
Ⅎ𝑣ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V |
95 | 91, 94 | nfan 1901 |
. . . . . . 7
⊢
Ⅎ𝑣(𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
96 | | nfv 1916 |
. . . . . . 7
⊢
Ⅎ𝑣 𝑝 = 𝑃 |
97 | 95, 96 | nfan 1901 |
. . . . . 6
⊢
Ⅎ𝑣((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) ∧ 𝑝 = 𝑃) |
98 | | simpr2 1193 |
. . . . . . . . 9
⊢ ((𝑃 ∈ 𝑋 ∧ (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V ∧ 𝑝 = 𝑃 ∧ 𝑣 ∈ 𝑈)) → 𝑝 = 𝑃) |
99 | 98 | sneqd 4532 |
. . . . . . . 8
⊢ ((𝑃 ∈ 𝑋 ∧ (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V ∧ 𝑝 = 𝑃 ∧ 𝑣 ∈ 𝑈)) → {𝑝} = {𝑃}) |
100 | 99 | imaeq2d 5899 |
. . . . . . 7
⊢ ((𝑃 ∈ 𝑋 ∧ (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V ∧ 𝑝 = 𝑃 ∧ 𝑣 ∈ 𝑈)) → (𝑣 “ {𝑝}) = (𝑣 “ {𝑃})) |
101 | 100 | 3anassrs 1358 |
. . . . . 6
⊢ ((((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) ∧ 𝑝 = 𝑃) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑝}) = (𝑣 “ {𝑃})) |
102 | 97, 101 | mpteq2da 5124 |
. . . . 5
⊢ (((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) ∧ 𝑝 = 𝑃) → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
103 | 102 | rneqd 5777 |
. . . 4
⊢ (((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) ∧ 𝑝 = 𝑃) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
104 | | simpl 487 |
. . . 4
⊢ ((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) → 𝑃 ∈ 𝑋) |
105 | | simpr 489 |
. . . 4
⊢ ((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) |
106 | 13, 103, 104, 105 | fvmptd2 6765 |
. . 3
⊢ ((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) → (𝑁‘𝑃) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
107 | 84, 90, 106 | syl2anc 588 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁‘𝑃) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
108 | 72, 86, 107 | 3eqtr2d 2800 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |