MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopsnneiplem Structured version   Visualization version   GIF version

Theorem utopsnneiplem 23972
Description: The neighborhoods of a point 𝑃 for the topology induced by an uniform space π‘ˆ. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypotheses
Ref Expression
utoptop.1 𝐽 = (unifTopβ€˜π‘ˆ)
utopsnneip.1 𝐾 = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)}
utopsnneip.2 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})))
Assertion
Ref Expression
utopsnneiplem ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ ((neiβ€˜π½)β€˜{𝑃}) = ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})))
Distinct variable groups:   𝑝,π‘Ž,𝐾   𝑁,π‘Ž,𝑝   𝑣,𝑝,𝑃   𝑣,π‘Ž,π‘ˆ,𝑝   𝑋,π‘Ž,𝑝,𝑣
Allowed substitution hints:   𝑃(π‘Ž)   𝐽(𝑣,𝑝,π‘Ž)   𝐾(𝑣)   𝑁(𝑣)

Proof of Theorem utopsnneiplem
Dummy variables 𝑏 π‘ž 𝑒 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utoptop.1 . . . . . . . 8 𝐽 = (unifTopβ€˜π‘ˆ)
2 utopval 23957 . . . . . . . 8 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (unifTopβ€˜π‘ˆ) = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž βˆƒπ‘€ ∈ π‘ˆ (𝑀 β€œ {𝑝}) βŠ† π‘Ž})
31, 2eqtrid 2782 . . . . . . 7 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ 𝐽 = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž βˆƒπ‘€ ∈ π‘ˆ (𝑀 β€œ {𝑝}) βŠ† π‘Ž})
4 simpll 763 . . . . . . . . . . 11 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) β†’ π‘ˆ ∈ (UnifOnβ€˜π‘‹))
5 simpr 483 . . . . . . . . . . . . 13 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) β†’ π‘Ž ∈ 𝒫 𝑋)
65elpwid 4610 . . . . . . . . . . . 12 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) β†’ π‘Ž βŠ† 𝑋)
76sselda 3981 . . . . . . . . . . 11 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) β†’ 𝑝 ∈ 𝑋)
8 simpr 483 . . . . . . . . . . . . . 14 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) β†’ 𝑝 ∈ 𝑋)
9 mptexg 7224 . . . . . . . . . . . . . . . 16 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})) ∈ V)
10 rnexg 7897 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})) ∈ V β†’ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})) ∈ V)
119, 10syl 17 . . . . . . . . . . . . . . 15 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})) ∈ V)
1211adantr 479 . . . . . . . . . . . . . 14 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) β†’ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})) ∈ V)
13 utopsnneip.2 . . . . . . . . . . . . . . 15 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})))
1413fvmpt2 7008 . . . . . . . . . . . . . 14 ((𝑝 ∈ 𝑋 ∧ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})) ∈ V) β†’ (π‘β€˜π‘) = ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})))
158, 12, 14syl2anc 582 . . . . . . . . . . . . 13 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) β†’ (π‘β€˜π‘) = ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})))
1615eleq2d 2817 . . . . . . . . . . . 12 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) β†’ (π‘Ž ∈ (π‘β€˜π‘) ↔ π‘Ž ∈ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝}))))
17 eqid 2730 . . . . . . . . . . . . . 14 (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})) = (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝}))
1817elrnmpt 5954 . . . . . . . . . . . . 13 (π‘Ž ∈ V β†’ (π‘Ž ∈ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})) ↔ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝})))
1918elv 3478 . . . . . . . . . . . 12 (π‘Ž ∈ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})) ↔ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝}))
2016, 19bitrdi 286 . . . . . . . . . . 11 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) β†’ (π‘Ž ∈ (π‘β€˜π‘) ↔ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝})))
214, 7, 20syl2anc 582 . . . . . . . . . 10 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) β†’ (π‘Ž ∈ (π‘β€˜π‘) ↔ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝})))
22 nfv 1915 . . . . . . . . . . . . 13 Ⅎ𝑣((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž)
23 nfre1 3280 . . . . . . . . . . . . 13 β„²π‘£βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝})
2422, 23nfan 1900 . . . . . . . . . . . 12 Ⅎ𝑣(((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝}))
25 simplr 765 . . . . . . . . . . . . 13 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝})) ∧ 𝑣 ∈ π‘ˆ) ∧ π‘Ž = (𝑣 β€œ {𝑝})) β†’ 𝑣 ∈ π‘ˆ)
26 eqimss2 4040 . . . . . . . . . . . . . 14 (π‘Ž = (𝑣 β€œ {𝑝}) β†’ (𝑣 β€œ {𝑝}) βŠ† π‘Ž)
2726adantl 480 . . . . . . . . . . . . 13 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝})) ∧ 𝑣 ∈ π‘ˆ) ∧ π‘Ž = (𝑣 β€œ {𝑝})) β†’ (𝑣 β€œ {𝑝}) βŠ† π‘Ž)
28 imaeq1 6053 . . . . . . . . . . . . . . 15 (𝑀 = 𝑣 β†’ (𝑀 β€œ {𝑝}) = (𝑣 β€œ {𝑝}))
2928sseq1d 4012 . . . . . . . . . . . . . 14 (𝑀 = 𝑣 β†’ ((𝑀 β€œ {𝑝}) βŠ† π‘Ž ↔ (𝑣 β€œ {𝑝}) βŠ† π‘Ž))
3029rspcev 3611 . . . . . . . . . . . . 13 ((𝑣 ∈ π‘ˆ ∧ (𝑣 β€œ {𝑝}) βŠ† π‘Ž) β†’ βˆƒπ‘€ ∈ π‘ˆ (𝑀 β€œ {𝑝}) βŠ† π‘Ž)
3125, 27, 30syl2anc 582 . . . . . . . . . . . 12 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝})) ∧ 𝑣 ∈ π‘ˆ) ∧ π‘Ž = (𝑣 β€œ {𝑝})) β†’ βˆƒπ‘€ ∈ π‘ˆ (𝑀 β€œ {𝑝}) βŠ† π‘Ž)
32 simpr 483 . . . . . . . . . . . 12 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝})) β†’ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝}))
3324, 31, 32r19.29af 3263 . . . . . . . . . . 11 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝})) β†’ βˆƒπ‘€ ∈ π‘ˆ (𝑀 β€œ {𝑝}) βŠ† π‘Ž)
344ad2antrr 722 . . . . . . . . . . . . . . 15 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ 𝑀 ∈ π‘ˆ) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž) β†’ π‘ˆ ∈ (UnifOnβ€˜π‘‹))
357ad2antrr 722 . . . . . . . . . . . . . . 15 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ 𝑀 ∈ π‘ˆ) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž) β†’ 𝑝 ∈ 𝑋)
3634, 35jca 510 . . . . . . . . . . . . . 14 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ 𝑀 ∈ π‘ˆ) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž) β†’ (π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋))
37 simpr 483 . . . . . . . . . . . . . 14 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ 𝑀 ∈ π‘ˆ) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž) β†’ (𝑀 β€œ {𝑝}) βŠ† π‘Ž)
386ad3antrrr 726 . . . . . . . . . . . . . 14 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ 𝑀 ∈ π‘ˆ) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž) β†’ π‘Ž βŠ† 𝑋)
39 simplr 765 . . . . . . . . . . . . . . 15 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ 𝑀 ∈ π‘ˆ) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž) β†’ 𝑀 ∈ π‘ˆ)
40 eqid 2730 . . . . . . . . . . . . . . . . . 18 (𝑀 β€œ {𝑝}) = (𝑀 β€œ {𝑝})
41 imaeq1 6053 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑀 β†’ (𝑒 β€œ {𝑝}) = (𝑀 β€œ {𝑝}))
4241rspceeqv 3632 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ π‘ˆ ∧ (𝑀 β€œ {𝑝}) = (𝑀 β€œ {𝑝})) β†’ βˆƒπ‘’ ∈ π‘ˆ (𝑀 β€œ {𝑝}) = (𝑒 β€œ {𝑝}))
4340, 42mpan2 687 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ π‘ˆ β†’ βˆƒπ‘’ ∈ π‘ˆ (𝑀 β€œ {𝑝}) = (𝑒 β€œ {𝑝}))
4443adantl 480 . . . . . . . . . . . . . . . 16 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ 𝑀 ∈ π‘ˆ) β†’ βˆƒπ‘’ ∈ π‘ˆ (𝑀 β€œ {𝑝}) = (𝑒 β€œ {𝑝}))
45 vex 3476 . . . . . . . . . . . . . . . . . . 19 𝑀 ∈ V
4645imaex 7909 . . . . . . . . . . . . . . . . . 18 (𝑀 β€œ {𝑝}) ∈ V
4713ustuqtoplem 23964 . . . . . . . . . . . . . . . . . 18 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ (𝑀 β€œ {𝑝}) ∈ V) β†’ ((𝑀 β€œ {𝑝}) ∈ (π‘β€˜π‘) ↔ βˆƒπ‘’ ∈ π‘ˆ (𝑀 β€œ {𝑝}) = (𝑒 β€œ {𝑝})))
4846, 47mpan2 687 . . . . . . . . . . . . . . . . 17 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) β†’ ((𝑀 β€œ {𝑝}) ∈ (π‘β€˜π‘) ↔ βˆƒπ‘’ ∈ π‘ˆ (𝑀 β€œ {𝑝}) = (𝑒 β€œ {𝑝})))
4948adantr 479 . . . . . . . . . . . . . . . 16 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ 𝑀 ∈ π‘ˆ) β†’ ((𝑀 β€œ {𝑝}) ∈ (π‘β€˜π‘) ↔ βˆƒπ‘’ ∈ π‘ˆ (𝑀 β€œ {𝑝}) = (𝑒 β€œ {𝑝})))
5044, 49mpbird 256 . . . . . . . . . . . . . . 15 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ 𝑀 ∈ π‘ˆ) β†’ (𝑀 β€œ {𝑝}) ∈ (π‘β€˜π‘))
5134, 35, 39, 50syl21anc 834 . . . . . . . . . . . . . 14 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ 𝑀 ∈ π‘ˆ) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž) β†’ (𝑀 β€œ {𝑝}) ∈ (π‘β€˜π‘))
52 sseq1 4006 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑀 β€œ {𝑝}) β†’ (𝑏 βŠ† π‘Ž ↔ (𝑀 β€œ {𝑝}) βŠ† π‘Ž))
53523anbi2d 1439 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑀 β€œ {𝑝}) β†’ (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 βŠ† π‘Ž ∧ π‘Ž βŠ† 𝑋) ↔ ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž ∧ π‘Ž βŠ† 𝑋)))
54 eleq1 2819 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑀 β€œ {𝑝}) β†’ (𝑏 ∈ (π‘β€˜π‘) ↔ (𝑀 β€œ {𝑝}) ∈ (π‘β€˜π‘)))
5553, 54anbi12d 629 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑀 β€œ {𝑝}) β†’ ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 βŠ† π‘Ž ∧ π‘Ž βŠ† 𝑋) ∧ 𝑏 ∈ (π‘β€˜π‘)) ↔ (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž ∧ π‘Ž βŠ† 𝑋) ∧ (𝑀 β€œ {𝑝}) ∈ (π‘β€˜π‘))))
5655imbi1d 340 . . . . . . . . . . . . . . 15 (𝑏 = (𝑀 β€œ {𝑝}) β†’ (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 βŠ† π‘Ž ∧ π‘Ž βŠ† 𝑋) ∧ 𝑏 ∈ (π‘β€˜π‘)) β†’ π‘Ž ∈ (π‘β€˜π‘)) ↔ ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž ∧ π‘Ž βŠ† 𝑋) ∧ (𝑀 β€œ {𝑝}) ∈ (π‘β€˜π‘)) β†’ π‘Ž ∈ (π‘β€˜π‘))))
5713ustuqtop1 23966 . . . . . . . . . . . . . . 15 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 βŠ† π‘Ž ∧ π‘Ž βŠ† 𝑋) ∧ 𝑏 ∈ (π‘β€˜π‘)) β†’ π‘Ž ∈ (π‘β€˜π‘))
5846, 56, 57vtocl 3544 . . . . . . . . . . . . . 14 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž ∧ π‘Ž βŠ† 𝑋) ∧ (𝑀 β€œ {𝑝}) ∈ (π‘β€˜π‘)) β†’ π‘Ž ∈ (π‘β€˜π‘))
5936, 37, 38, 51, 58syl31anc 1371 . . . . . . . . . . . . 13 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ 𝑀 ∈ π‘ˆ) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž) β†’ π‘Ž ∈ (π‘β€˜π‘))
6036, 20syl 17 . . . . . . . . . . . . 13 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ 𝑀 ∈ π‘ˆ) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž) β†’ (π‘Ž ∈ (π‘β€˜π‘) ↔ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝})))
6159, 60mpbid 231 . . . . . . . . . . . 12 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ 𝑀 ∈ π‘ˆ) ∧ (𝑀 β€œ {𝑝}) βŠ† π‘Ž) β†’ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝}))
6261r19.29an 3156 . . . . . . . . . . 11 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) ∧ βˆƒπ‘€ ∈ π‘ˆ (𝑀 β€œ {𝑝}) βŠ† π‘Ž) β†’ βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝}))
6333, 62impbida 797 . . . . . . . . . 10 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) β†’ (βˆƒπ‘£ ∈ π‘ˆ π‘Ž = (𝑣 β€œ {𝑝}) ↔ βˆƒπ‘€ ∈ π‘ˆ (𝑀 β€œ {𝑝}) βŠ† π‘Ž))
6421, 63bitrd 278 . . . . . . . . 9 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) ∧ 𝑝 ∈ π‘Ž) β†’ (π‘Ž ∈ (π‘β€˜π‘) ↔ βˆƒπ‘€ ∈ π‘ˆ (𝑀 β€œ {𝑝}) βŠ† π‘Ž))
6564ralbidva 3173 . . . . . . . 8 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ π‘Ž ∈ 𝒫 𝑋) β†’ (βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘) ↔ βˆ€π‘ ∈ π‘Ž βˆƒπ‘€ ∈ π‘ˆ (𝑀 β€œ {𝑝}) βŠ† π‘Ž))
6665rabbidva 3437 . . . . . . 7 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)} = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž βˆƒπ‘€ ∈ π‘ˆ (𝑀 β€œ {𝑝}) βŠ† π‘Ž})
673, 66eqtr4d 2773 . . . . . 6 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ 𝐽 = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)})
68 utopsnneip.1 . . . . . 6 𝐾 = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)}
6967, 68eqtr4di 2788 . . . . 5 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ 𝐽 = 𝐾)
7069fveq2d 6894 . . . 4 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (neiβ€˜π½) = (neiβ€˜πΎ))
7170fveq1d 6892 . . 3 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ ((neiβ€˜π½)β€˜{𝑃}) = ((neiβ€˜πΎ)β€˜{𝑃}))
7271adantr 479 . 2 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ ((neiβ€˜π½)β€˜{𝑃}) = ((neiβ€˜πΎ)β€˜{𝑃}))
7313ustuqtop0 23965 . . . . 5 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ 𝑁:π‘‹βŸΆπ’« 𝒫 𝑋)
7413ustuqtop1 23966 . . . . 5 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž βŠ† 𝑏 ∧ 𝑏 βŠ† 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑏 ∈ (π‘β€˜π‘))
7513ustuqtop2 23967 . . . . 5 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) β†’ (fiβ€˜(π‘β€˜π‘)) βŠ† (π‘β€˜π‘))
7613ustuqtop3 23968 . . . . 5 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑝 ∈ π‘Ž)
7713ustuqtop4 23969 . . . . 5 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ βˆƒπ‘ ∈ (π‘β€˜π‘)βˆ€π‘ž ∈ 𝑏 π‘Ž ∈ (π‘β€˜π‘ž))
7813ustuqtop5 23970 . . . . 5 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) β†’ 𝑋 ∈ (π‘β€˜π‘))
7968, 73, 74, 75, 76, 77, 78neiptopnei 22856 . . . 4 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜πΎ)β€˜{𝑝})))
8079adantr 479 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜πΎ)β€˜{𝑝})))
81 simpr 483 . . . . 5 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ 𝑝 = 𝑃) β†’ 𝑝 = 𝑃)
8281sneqd 4639 . . . 4 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ 𝑝 = 𝑃) β†’ {𝑝} = {𝑃})
8382fveq2d 6894 . . 3 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ 𝑝 = 𝑃) β†’ ((neiβ€˜πΎ)β€˜{𝑝}) = ((neiβ€˜πΎ)β€˜{𝑃}))
84 simpr 483 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ 𝑃 ∈ 𝑋)
85 fvexd 6905 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ ((neiβ€˜πΎ)β€˜{𝑃}) ∈ V)
8680, 83, 84, 85fvmptd 7004 . 2 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (π‘β€˜π‘ƒ) = ((neiβ€˜πΎ)β€˜{𝑃}))
87 mptexg 7224 . . . . 5 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V)
88 rnexg 7897 . . . . 5 ((𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V β†’ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V)
8987, 88syl 17 . . . 4 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V)
9089adantr 479 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V)
91 nfv 1915 . . . . . . . 8 Ⅎ𝑣 𝑃 ∈ 𝑋
92 nfmpt1 5255 . . . . . . . . . 10 Ⅎ𝑣(𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃}))
9392nfrn 5950 . . . . . . . . 9 Ⅎ𝑣ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃}))
9493nfel1 2917 . . . . . . . 8 Ⅎ𝑣ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V
9591, 94nfan 1900 . . . . . . 7 Ⅎ𝑣(𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V)
96 nfv 1915 . . . . . . 7 Ⅎ𝑣 𝑝 = 𝑃
9795, 96nfan 1900 . . . . . 6 Ⅎ𝑣((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V) ∧ 𝑝 = 𝑃)
98 simpr2 1193 . . . . . . . . 9 ((𝑃 ∈ 𝑋 ∧ (ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V ∧ 𝑝 = 𝑃 ∧ 𝑣 ∈ π‘ˆ)) β†’ 𝑝 = 𝑃)
9998sneqd 4639 . . . . . . . 8 ((𝑃 ∈ 𝑋 ∧ (ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V ∧ 𝑝 = 𝑃 ∧ 𝑣 ∈ π‘ˆ)) β†’ {𝑝} = {𝑃})
10099imaeq2d 6058 . . . . . . 7 ((𝑃 ∈ 𝑋 ∧ (ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V ∧ 𝑝 = 𝑃 ∧ 𝑣 ∈ π‘ˆ)) β†’ (𝑣 β€œ {𝑝}) = (𝑣 β€œ {𝑃}))
1011003anassrs 1358 . . . . . 6 ((((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V) ∧ 𝑝 = 𝑃) ∧ 𝑣 ∈ π‘ˆ) β†’ (𝑣 β€œ {𝑝}) = (𝑣 β€œ {𝑃}))
10297, 101mpteq2da 5245 . . . . 5 (((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V) ∧ 𝑝 = 𝑃) β†’ (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})) = (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})))
103102rneqd 5936 . . . 4 (((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V) ∧ 𝑝 = 𝑃) β†’ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})) = ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})))
104 simpl 481 . . . 4 ((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V) β†’ 𝑃 ∈ 𝑋)
105 simpr 483 . . . 4 ((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V) β†’ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V)
10613, 103, 104, 105fvmptd2 7005 . . 3 ((𝑃 ∈ 𝑋 ∧ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})) ∈ V) β†’ (π‘β€˜π‘ƒ) = ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})))
10784, 90, 106syl2anc 582 . 2 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (π‘β€˜π‘ƒ) = ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})))
10872, 86, 1073eqtr2d 2776 1 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ ((neiβ€˜π½)β€˜{𝑃}) = ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  βˆƒwrex 3068  {crab 3430  Vcvv 3472   βŠ† wss 3947  π’« cpw 4601  {csn 4627   ↦ cmpt 5230  ran crn 5676   β€œ cima 5678  β€˜cfv 6542  neicnei 22821  UnifOncust 23924  unifTopcutop 23955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7858  df-1o 8468  df-er 8705  df-en 8942  df-fin 8945  df-fi 9408  df-top 22616  df-nei 22822  df-ust 23925  df-utop 23956
This theorem is referenced by:  utopsnneip  23973
  Copyright terms: Public domain W3C validator