Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reff Structured version   Visualization version   GIF version

Theorem reff 33802
Description: For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a definition of refinement. Note that this definition uses the axiom of choice through ac6sg 10417. (Contributed by Thierry Arnoux, 12-Jan-2020.)
Assertion
Ref Expression
reff (𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))))
Distinct variable groups:   𝐴,𝑓,𝑣   𝐵,𝑓,𝑣   𝑓,𝑉,𝑣

Proof of Theorem reff
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3966 . . . 4 𝐵 𝐵
2 eqid 2729 . . . . . 6 𝐴 = 𝐴
3 eqid 2729 . . . . . 6 𝐵 = 𝐵
42, 3isref 23372 . . . . 5 (𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑣𝐴𝑢𝐵 𝑣𝑢)))
54simprbda 498 . . . 4 ((𝐴𝑉𝐴Ref𝐵) → 𝐵 = 𝐴)
61, 5sseqtrid 3986 . . 3 ((𝐴𝑉𝐴Ref𝐵) → 𝐵 𝐴)
74simplbda 499 . . . 4 ((𝐴𝑉𝐴Ref𝐵) → ∀𝑣𝐴𝑢𝐵 𝑣𝑢)
8 sseq2 3970 . . . . . 6 (𝑢 = (𝑓𝑣) → (𝑣𝑢𝑣 ⊆ (𝑓𝑣)))
98ac6sg 10417 . . . . 5 (𝐴𝑉 → (∀𝑣𝐴𝑢𝐵 𝑣𝑢 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))))
109adantr 480 . . . 4 ((𝐴𝑉𝐴Ref𝐵) → (∀𝑣𝐴𝑢𝐵 𝑣𝑢 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))))
117, 10mpd 15 . . 3 ((𝐴𝑉𝐴Ref𝐵) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))
126, 11jca 511 . 2 ((𝐴𝑉𝐴Ref𝐵) → ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))))
13 simplr 768 . . . . . . 7 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → 𝐵 𝐴)
14 nfv 1914 . . . . . . . . . . 11 𝑣(𝐴𝑉 𝐵 𝐴)
15 nfv 1914 . . . . . . . . . . . 12 𝑣 𝑓:𝐴𝐵
16 nfra1 3259 . . . . . . . . . . . 12 𝑣𝑣𝐴 𝑣 ⊆ (𝑓𝑣)
1715, 16nfan 1899 . . . . . . . . . . 11 𝑣(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))
1814, 17nfan 1899 . . . . . . . . . 10 𝑣((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))
19 nfv 1914 . . . . . . . . . 10 𝑣 𝑥 𝐴
2018, 19nfan 1899 . . . . . . . . 9 𝑣(((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴)
21 simplrl 776 . . . . . . . . . . . . 13 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → 𝑓:𝐴𝐵)
22 simpr 484 . . . . . . . . . . . . 13 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → 𝑣𝐴)
2321, 22ffvelcdmd 7039 . . . . . . . . . . . 12 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → (𝑓𝑣) ∈ 𝐵)
2423adantlr 715 . . . . . . . . . . 11 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → (𝑓𝑣) ∈ 𝐵)
2524adantr 480 . . . . . . . . . 10 ((((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) ∧ 𝑥𝑣) → (𝑓𝑣) ∈ 𝐵)
26 simplrr 777 . . . . . . . . . . . . 13 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))
2726adantlr 715 . . . . . . . . . . . 12 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))
28 simpr 484 . . . . . . . . . . . 12 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → 𝑣𝐴)
29 rspa 3224 . . . . . . . . . . . 12 ((∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣) ∧ 𝑣𝐴) → 𝑣 ⊆ (𝑓𝑣))
3027, 28, 29syl2anc 584 . . . . . . . . . . 11 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → 𝑣 ⊆ (𝑓𝑣))
3130sselda 3943 . . . . . . . . . 10 ((((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑓𝑣))
32 eleq2 2817 . . . . . . . . . . 11 (𝑢 = (𝑓𝑣) → (𝑥𝑢𝑥 ∈ (𝑓𝑣)))
3332rspcev 3585 . . . . . . . . . 10 (((𝑓𝑣) ∈ 𝐵𝑥 ∈ (𝑓𝑣)) → ∃𝑢𝐵 𝑥𝑢)
3425, 31, 33syl2anc 584 . . . . . . . . 9 ((((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) ∧ 𝑥𝑣) → ∃𝑢𝐵 𝑥𝑢)
35 simpr 484 . . . . . . . . . 10 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → 𝑥 𝐴)
36 eluni2 4871 . . . . . . . . . 10 (𝑥 𝐴 ↔ ∃𝑣𝐴 𝑥𝑣)
3735, 36sylib 218 . . . . . . . . 9 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → ∃𝑣𝐴 𝑥𝑣)
3820, 34, 37r19.29af 3244 . . . . . . . 8 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → ∃𝑢𝐵 𝑥𝑢)
39 eluni2 4871 . . . . . . . 8 (𝑥 𝐵 ↔ ∃𝑢𝐵 𝑥𝑢)
4038, 39sylibr 234 . . . . . . 7 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → 𝑥 𝐵)
4113, 40eqelssd 3965 . . . . . 6 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → 𝐵 = 𝐴)
4226, 22, 29syl2anc 584 . . . . . . . . 9 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → 𝑣 ⊆ (𝑓𝑣))
438rspcev 3585 . . . . . . . . 9 (((𝑓𝑣) ∈ 𝐵𝑣 ⊆ (𝑓𝑣)) → ∃𝑢𝐵 𝑣𝑢)
4423, 42, 43syl2anc 584 . . . . . . . 8 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → ∃𝑢𝐵 𝑣𝑢)
4544ex 412 . . . . . . 7 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → (𝑣𝐴 → ∃𝑢𝐵 𝑣𝑢))
4618, 45ralrimi 3233 . . . . . 6 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → ∀𝑣𝐴𝑢𝐵 𝑣𝑢)
474ad2antrr 726 . . . . . 6 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → (𝐴Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑣𝐴𝑢𝐵 𝑣𝑢)))
4841, 46, 47mpbir2and 713 . . . . 5 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → 𝐴Ref𝐵)
4948ex 412 . . . 4 ((𝐴𝑉 𝐵 𝐴) → ((𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)) → 𝐴Ref𝐵))
5049exlimdv 1933 . . 3 ((𝐴𝑉 𝐵 𝐴) → (∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)) → 𝐴Ref𝐵))
5150impr 454 . 2 ((𝐴𝑉 ∧ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))) → 𝐴Ref𝐵)
5212, 51impbida 800 1 (𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  wss 3911   cuni 4867   class class class wbr 5102  wf 6495  cfv 6499  Refcref 23365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-en 8896  df-r1 9693  df-rank 9694  df-card 9868  df-ac 10045  df-ref 23368
This theorem is referenced by:  locfinreflem  33803
  Copyright terms: Public domain W3C validator