Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reff Structured version   Visualization version   GIF version

Theorem reff 31789
Description: For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a definition of refinement. Note that this definition uses the axiom of choice through ac6sg 10244. (Contributed by Thierry Arnoux, 12-Jan-2020.)
Assertion
Ref Expression
reff (𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))))
Distinct variable groups:   𝐴,𝑓,𝑣   𝐵,𝑓,𝑣   𝑓,𝑉,𝑣

Proof of Theorem reff
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3943 . . . 4 𝐵 𝐵
2 eqid 2738 . . . . . 6 𝐴 = 𝐴
3 eqid 2738 . . . . . 6 𝐵 = 𝐵
42, 3isref 22660 . . . . 5 (𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑣𝐴𝑢𝐵 𝑣𝑢)))
54simprbda 499 . . . 4 ((𝐴𝑉𝐴Ref𝐵) → 𝐵 = 𝐴)
61, 5sseqtrid 3973 . . 3 ((𝐴𝑉𝐴Ref𝐵) → 𝐵 𝐴)
74simplbda 500 . . . 4 ((𝐴𝑉𝐴Ref𝐵) → ∀𝑣𝐴𝑢𝐵 𝑣𝑢)
8 sseq2 3947 . . . . . 6 (𝑢 = (𝑓𝑣) → (𝑣𝑢𝑣 ⊆ (𝑓𝑣)))
98ac6sg 10244 . . . . 5 (𝐴𝑉 → (∀𝑣𝐴𝑢𝐵 𝑣𝑢 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))))
109adantr 481 . . . 4 ((𝐴𝑉𝐴Ref𝐵) → (∀𝑣𝐴𝑢𝐵 𝑣𝑢 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))))
117, 10mpd 15 . . 3 ((𝐴𝑉𝐴Ref𝐵) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))
126, 11jca 512 . 2 ((𝐴𝑉𝐴Ref𝐵) → ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))))
13 simplr 766 . . . . . . 7 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → 𝐵 𝐴)
14 nfv 1917 . . . . . . . . . . 11 𝑣(𝐴𝑉 𝐵 𝐴)
15 nfv 1917 . . . . . . . . . . . 12 𝑣 𝑓:𝐴𝐵
16 nfra1 3144 . . . . . . . . . . . 12 𝑣𝑣𝐴 𝑣 ⊆ (𝑓𝑣)
1715, 16nfan 1902 . . . . . . . . . . 11 𝑣(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))
1814, 17nfan 1902 . . . . . . . . . 10 𝑣((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))
19 nfv 1917 . . . . . . . . . 10 𝑣 𝑥 𝐴
2018, 19nfan 1902 . . . . . . . . 9 𝑣(((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴)
21 simplrl 774 . . . . . . . . . . . . 13 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → 𝑓:𝐴𝐵)
22 simpr 485 . . . . . . . . . . . . 13 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → 𝑣𝐴)
2321, 22ffvelrnd 6962 . . . . . . . . . . . 12 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → (𝑓𝑣) ∈ 𝐵)
2423adantlr 712 . . . . . . . . . . 11 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → (𝑓𝑣) ∈ 𝐵)
2524adantr 481 . . . . . . . . . 10 ((((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) ∧ 𝑥𝑣) → (𝑓𝑣) ∈ 𝐵)
26 simplrr 775 . . . . . . . . . . . . 13 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))
2726adantlr 712 . . . . . . . . . . . 12 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))
28 simpr 485 . . . . . . . . . . . 12 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → 𝑣𝐴)
29 rspa 3132 . . . . . . . . . . . 12 ((∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣) ∧ 𝑣𝐴) → 𝑣 ⊆ (𝑓𝑣))
3027, 28, 29syl2anc 584 . . . . . . . . . . 11 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → 𝑣 ⊆ (𝑓𝑣))
3130sselda 3921 . . . . . . . . . 10 ((((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑓𝑣))
32 eleq2 2827 . . . . . . . . . . 11 (𝑢 = (𝑓𝑣) → (𝑥𝑢𝑥 ∈ (𝑓𝑣)))
3332rspcev 3561 . . . . . . . . . 10 (((𝑓𝑣) ∈ 𝐵𝑥 ∈ (𝑓𝑣)) → ∃𝑢𝐵 𝑥𝑢)
3425, 31, 33syl2anc 584 . . . . . . . . 9 ((((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) ∧ 𝑥𝑣) → ∃𝑢𝐵 𝑥𝑢)
35 simpr 485 . . . . . . . . . 10 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → 𝑥 𝐴)
36 eluni2 4843 . . . . . . . . . 10 (𝑥 𝐴 ↔ ∃𝑣𝐴 𝑥𝑣)
3735, 36sylib 217 . . . . . . . . 9 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → ∃𝑣𝐴 𝑥𝑣)
3820, 34, 37r19.29af 3262 . . . . . . . 8 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → ∃𝑢𝐵 𝑥𝑢)
39 eluni2 4843 . . . . . . . 8 (𝑥 𝐵 ↔ ∃𝑢𝐵 𝑥𝑢)
4038, 39sylibr 233 . . . . . . 7 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → 𝑥 𝐵)
4113, 40eqelssd 3942 . . . . . 6 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → 𝐵 = 𝐴)
4226, 22, 29syl2anc 584 . . . . . . . . 9 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → 𝑣 ⊆ (𝑓𝑣))
438rspcev 3561 . . . . . . . . 9 (((𝑓𝑣) ∈ 𝐵𝑣 ⊆ (𝑓𝑣)) → ∃𝑢𝐵 𝑣𝑢)
4423, 42, 43syl2anc 584 . . . . . . . 8 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → ∃𝑢𝐵 𝑣𝑢)
4544ex 413 . . . . . . 7 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → (𝑣𝐴 → ∃𝑢𝐵 𝑣𝑢))
4618, 45ralrimi 3141 . . . . . 6 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → ∀𝑣𝐴𝑢𝐵 𝑣𝑢)
474ad2antrr 723 . . . . . 6 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → (𝐴Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑣𝐴𝑢𝐵 𝑣𝑢)))
4841, 46, 47mpbir2and 710 . . . . 5 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → 𝐴Ref𝐵)
4948ex 413 . . . 4 ((𝐴𝑉 𝐵 𝐴) → ((𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)) → 𝐴Ref𝐵))
5049exlimdv 1936 . . 3 ((𝐴𝑉 𝐵 𝐴) → (∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)) → 𝐴Ref𝐵))
5150impr 455 . 2 ((𝐴𝑉 ∧ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))) → 𝐴Ref𝐵)
5212, 51impbida 798 1 (𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  wss 3887   cuni 4839   class class class wbr 5074  wf 6429  cfv 6433  Refcref 22653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-en 8734  df-r1 9522  df-rank 9523  df-card 9697  df-ac 9872  df-ref 22656
This theorem is referenced by:  locfinreflem  31790
  Copyright terms: Public domain W3C validator