Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reff Structured version   Visualization version   GIF version

Theorem reff 33785
Description: For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a definition of refinement. Note that this definition uses the axiom of choice through ac6sg 10557. (Contributed by Thierry Arnoux, 12-Jan-2020.)
Assertion
Ref Expression
reff (𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))))
Distinct variable groups:   𝐴,𝑓,𝑣   𝐵,𝑓,𝑣   𝑓,𝑉,𝑣

Proof of Theorem reff
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 4031 . . . 4 𝐵 𝐵
2 eqid 2740 . . . . . 6 𝐴 = 𝐴
3 eqid 2740 . . . . . 6 𝐵 = 𝐵
42, 3isref 23538 . . . . 5 (𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑣𝐴𝑢𝐵 𝑣𝑢)))
54simprbda 498 . . . 4 ((𝐴𝑉𝐴Ref𝐵) → 𝐵 = 𝐴)
61, 5sseqtrid 4061 . . 3 ((𝐴𝑉𝐴Ref𝐵) → 𝐵 𝐴)
74simplbda 499 . . . 4 ((𝐴𝑉𝐴Ref𝐵) → ∀𝑣𝐴𝑢𝐵 𝑣𝑢)
8 sseq2 4035 . . . . . 6 (𝑢 = (𝑓𝑣) → (𝑣𝑢𝑣 ⊆ (𝑓𝑣)))
98ac6sg 10557 . . . . 5 (𝐴𝑉 → (∀𝑣𝐴𝑢𝐵 𝑣𝑢 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))))
109adantr 480 . . . 4 ((𝐴𝑉𝐴Ref𝐵) → (∀𝑣𝐴𝑢𝐵 𝑣𝑢 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))))
117, 10mpd 15 . . 3 ((𝐴𝑉𝐴Ref𝐵) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))
126, 11jca 511 . 2 ((𝐴𝑉𝐴Ref𝐵) → ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))))
13 simplr 768 . . . . . . 7 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → 𝐵 𝐴)
14 nfv 1913 . . . . . . . . . . 11 𝑣(𝐴𝑉 𝐵 𝐴)
15 nfv 1913 . . . . . . . . . . . 12 𝑣 𝑓:𝐴𝐵
16 nfra1 3290 . . . . . . . . . . . 12 𝑣𝑣𝐴 𝑣 ⊆ (𝑓𝑣)
1715, 16nfan 1898 . . . . . . . . . . 11 𝑣(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))
1814, 17nfan 1898 . . . . . . . . . 10 𝑣((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))
19 nfv 1913 . . . . . . . . . 10 𝑣 𝑥 𝐴
2018, 19nfan 1898 . . . . . . . . 9 𝑣(((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴)
21 simplrl 776 . . . . . . . . . . . . 13 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → 𝑓:𝐴𝐵)
22 simpr 484 . . . . . . . . . . . . 13 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → 𝑣𝐴)
2321, 22ffvelcdmd 7119 . . . . . . . . . . . 12 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → (𝑓𝑣) ∈ 𝐵)
2423adantlr 714 . . . . . . . . . . 11 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → (𝑓𝑣) ∈ 𝐵)
2524adantr 480 . . . . . . . . . 10 ((((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) ∧ 𝑥𝑣) → (𝑓𝑣) ∈ 𝐵)
26 simplrr 777 . . . . . . . . . . . . 13 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))
2726adantlr 714 . . . . . . . . . . . 12 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))
28 simpr 484 . . . . . . . . . . . 12 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → 𝑣𝐴)
29 rspa 3254 . . . . . . . . . . . 12 ((∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣) ∧ 𝑣𝐴) → 𝑣 ⊆ (𝑓𝑣))
3027, 28, 29syl2anc 583 . . . . . . . . . . 11 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → 𝑣 ⊆ (𝑓𝑣))
3130sselda 4008 . . . . . . . . . 10 ((((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑓𝑣))
32 eleq2 2833 . . . . . . . . . . 11 (𝑢 = (𝑓𝑣) → (𝑥𝑢𝑥 ∈ (𝑓𝑣)))
3332rspcev 3635 . . . . . . . . . 10 (((𝑓𝑣) ∈ 𝐵𝑥 ∈ (𝑓𝑣)) → ∃𝑢𝐵 𝑥𝑢)
3425, 31, 33syl2anc 583 . . . . . . . . 9 ((((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) ∧ 𝑥𝑣) → ∃𝑢𝐵 𝑥𝑢)
35 simpr 484 . . . . . . . . . 10 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → 𝑥 𝐴)
36 eluni2 4935 . . . . . . . . . 10 (𝑥 𝐴 ↔ ∃𝑣𝐴 𝑥𝑣)
3735, 36sylib 218 . . . . . . . . 9 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → ∃𝑣𝐴 𝑥𝑣)
3820, 34, 37r19.29af 3274 . . . . . . . 8 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → ∃𝑢𝐵 𝑥𝑢)
39 eluni2 4935 . . . . . . . 8 (𝑥 𝐵 ↔ ∃𝑢𝐵 𝑥𝑢)
4038, 39sylibr 234 . . . . . . 7 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → 𝑥 𝐵)
4113, 40eqelssd 4030 . . . . . 6 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → 𝐵 = 𝐴)
4226, 22, 29syl2anc 583 . . . . . . . . 9 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → 𝑣 ⊆ (𝑓𝑣))
438rspcev 3635 . . . . . . . . 9 (((𝑓𝑣) ∈ 𝐵𝑣 ⊆ (𝑓𝑣)) → ∃𝑢𝐵 𝑣𝑢)
4423, 42, 43syl2anc 583 . . . . . . . 8 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → ∃𝑢𝐵 𝑣𝑢)
4544ex 412 . . . . . . 7 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → (𝑣𝐴 → ∃𝑢𝐵 𝑣𝑢))
4618, 45ralrimi 3263 . . . . . 6 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → ∀𝑣𝐴𝑢𝐵 𝑣𝑢)
474ad2antrr 725 . . . . . 6 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → (𝐴Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑣𝐴𝑢𝐵 𝑣𝑢)))
4841, 46, 47mpbir2and 712 . . . . 5 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → 𝐴Ref𝐵)
4948ex 412 . . . 4 ((𝐴𝑉 𝐵 𝐴) → ((𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)) → 𝐴Ref𝐵))
5049exlimdv 1932 . . 3 ((𝐴𝑉 𝐵 𝐴) → (∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)) → 𝐴Ref𝐵))
5150impr 454 . 2 ((𝐴𝑉 ∧ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))) → 𝐴Ref𝐵)
5212, 51impbida 800 1 (𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  wss 3976   cuni 4931   class class class wbr 5166  wf 6569  cfv 6573  Refcref 23531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-en 9004  df-r1 9833  df-rank 9834  df-card 10008  df-ac 10185  df-ref 23534
This theorem is referenced by:  locfinreflem  33786
  Copyright terms: Public domain W3C validator