Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reff Structured version   Visualization version   GIF version

Theorem reff 30504
Description: For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a defintion of refinement. Note that this definition uses the axiom of choice through ac6sg 9645. (Contributed by Thierry Arnoux, 12-Jan-2020.)
Assertion
Ref Expression
reff (𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))))
Distinct variable groups:   𝐴,𝑓,𝑣   𝐵,𝑓,𝑣   𝑓,𝑉,𝑣

Proof of Theorem reff
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3842 . . . 4 𝐵 𝐵
2 eqid 2778 . . . . . 6 𝐴 = 𝐴
3 eqid 2778 . . . . . 6 𝐵 = 𝐵
42, 3isref 21721 . . . . 5 (𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑣𝐴𝑢𝐵 𝑣𝑢)))
54simprbda 494 . . . 4 ((𝐴𝑉𝐴Ref𝐵) → 𝐵 = 𝐴)
61, 5syl5sseq 3872 . . 3 ((𝐴𝑉𝐴Ref𝐵) → 𝐵 𝐴)
74simplbda 495 . . . 4 ((𝐴𝑉𝐴Ref𝐵) → ∀𝑣𝐴𝑢𝐵 𝑣𝑢)
8 sseq2 3846 . . . . . 6 (𝑢 = (𝑓𝑣) → (𝑣𝑢𝑣 ⊆ (𝑓𝑣)))
98ac6sg 9645 . . . . 5 (𝐴𝑉 → (∀𝑣𝐴𝑢𝐵 𝑣𝑢 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))))
109adantr 474 . . . 4 ((𝐴𝑉𝐴Ref𝐵) → (∀𝑣𝐴𝑢𝐵 𝑣𝑢 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))))
117, 10mpd 15 . . 3 ((𝐴𝑉𝐴Ref𝐵) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))
126, 11jca 507 . 2 ((𝐴𝑉𝐴Ref𝐵) → ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))))
13 simplr 759 . . . . . . 7 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → 𝐵 𝐴)
14 nfv 1957 . . . . . . . . . . 11 𝑣(𝐴𝑉 𝐵 𝐴)
15 nfv 1957 . . . . . . . . . . . 12 𝑣 𝑓:𝐴𝐵
16 nfra1 3123 . . . . . . . . . . . 12 𝑣𝑣𝐴 𝑣 ⊆ (𝑓𝑣)
1715, 16nfan 1946 . . . . . . . . . . 11 𝑣(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))
1814, 17nfan 1946 . . . . . . . . . 10 𝑣((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))
19 nfv 1957 . . . . . . . . . 10 𝑣 𝑥 𝐴
2018, 19nfan 1946 . . . . . . . . 9 𝑣(((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴)
21 simplrl 767 . . . . . . . . . . . . 13 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → 𝑓:𝐴𝐵)
22 simpr 479 . . . . . . . . . . . . 13 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → 𝑣𝐴)
2321, 22ffvelrnd 6624 . . . . . . . . . . . 12 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → (𝑓𝑣) ∈ 𝐵)
2423adantlr 705 . . . . . . . . . . 11 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → (𝑓𝑣) ∈ 𝐵)
2524adantr 474 . . . . . . . . . 10 ((((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) ∧ 𝑥𝑣) → (𝑓𝑣) ∈ 𝐵)
26 simplrr 768 . . . . . . . . . . . . 13 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))
2726adantlr 705 . . . . . . . . . . . 12 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))
28 simpr 479 . . . . . . . . . . . 12 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → 𝑣𝐴)
29 rspa 3112 . . . . . . . . . . . 12 ((∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣) ∧ 𝑣𝐴) → 𝑣 ⊆ (𝑓𝑣))
3027, 28, 29syl2anc 579 . . . . . . . . . . 11 (((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) → 𝑣 ⊆ (𝑓𝑣))
3130sselda 3821 . . . . . . . . . 10 ((((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑓𝑣))
32 eleq2 2848 . . . . . . . . . . 11 (𝑢 = (𝑓𝑣) → (𝑥𝑢𝑥 ∈ (𝑓𝑣)))
3332rspcev 3511 . . . . . . . . . 10 (((𝑓𝑣) ∈ 𝐵𝑥 ∈ (𝑓𝑣)) → ∃𝑢𝐵 𝑥𝑢)
3425, 31, 33syl2anc 579 . . . . . . . . 9 ((((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) ∧ 𝑣𝐴) ∧ 𝑥𝑣) → ∃𝑢𝐵 𝑥𝑢)
35 simpr 479 . . . . . . . . . 10 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → 𝑥 𝐴)
36 eluni2 4675 . . . . . . . . . 10 (𝑥 𝐴 ↔ ∃𝑣𝐴 𝑥𝑣)
3735, 36sylib 210 . . . . . . . . 9 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → ∃𝑣𝐴 𝑥𝑣)
3820, 34, 37r19.29af 3262 . . . . . . . 8 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → ∃𝑢𝐵 𝑥𝑢)
39 eluni2 4675 . . . . . . . 8 (𝑥 𝐵 ↔ ∃𝑢𝐵 𝑥𝑢)
4038, 39sylibr 226 . . . . . . 7 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑥 𝐴) → 𝑥 𝐵)
4113, 40eqelssd 3841 . . . . . 6 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → 𝐵 = 𝐴)
4226, 22, 29syl2anc 579 . . . . . . . . 9 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → 𝑣 ⊆ (𝑓𝑣))
438rspcev 3511 . . . . . . . . 9 (((𝑓𝑣) ∈ 𝐵𝑣 ⊆ (𝑓𝑣)) → ∃𝑢𝐵 𝑣𝑢)
4423, 42, 43syl2anc 579 . . . . . . . 8 ((((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) ∧ 𝑣𝐴) → ∃𝑢𝐵 𝑣𝑢)
4544ex 403 . . . . . . 7 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → (𝑣𝐴 → ∃𝑢𝐵 𝑣𝑢))
4618, 45ralrimi 3139 . . . . . 6 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → ∀𝑣𝐴𝑢𝐵 𝑣𝑢)
474ad2antrr 716 . . . . . 6 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → (𝐴Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑣𝐴𝑢𝐵 𝑣𝑢)))
4841, 46, 47mpbir2and 703 . . . . 5 (((𝐴𝑉 𝐵 𝐴) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣))) → 𝐴Ref𝐵)
4948ex 403 . . . 4 ((𝐴𝑉 𝐵 𝐴) → ((𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)) → 𝐴Ref𝐵))
5049exlimdv 1976 . . 3 ((𝐴𝑉 𝐵 𝐴) → (∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)) → 𝐴Ref𝐵))
5150impr 448 . 2 ((𝐴𝑉 ∧ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))) → 𝐴Ref𝐵)
5212, 51impbida 791 1 (𝐴𝑉 → (𝐴Ref𝐵 ↔ ( 𝐵 𝐴 ∧ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑣𝐴 𝑣 ⊆ (𝑓𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wex 1823  wcel 2107  wral 3090  wrex 3091  wss 3792   cuni 4671   class class class wbr 4886  wf 6131  cfv 6135  Refcref 21714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-reg 8786  ax-inf2 8835  ax-ac2 9620
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-en 8242  df-r1 8924  df-rank 8925  df-card 9098  df-ac 9272  df-ref 21717
This theorem is referenced by:  locfinreflem  30505
  Copyright terms: Public domain W3C validator