Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  breprexplema Structured version   Visualization version   GIF version

Theorem breprexplema 31159
Description: Lemma for breprexp 31162 (induction step for weighted sums over representations) (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
breprexp.n (𝜑𝑁 ∈ ℕ0)
breprexp.s (𝜑𝑆 ∈ ℕ0)
breprexplema.m (𝜑𝑀 ∈ ℕ0)
breprexplema.1 (𝜑𝑀 ≤ ((𝑆 + 1) · 𝑁))
breprexplema.l (((𝜑𝑥 ∈ (0..^(𝑆 + 1))) ∧ 𝑦 ∈ ℕ) → ((𝐿𝑥)‘𝑦) ∈ ℂ)
Assertion
Ref Expression
breprexplema (𝜑 → Σ𝑑 ∈ ((1...𝑁)(repr‘(𝑆 + 1))𝑀)∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑏 ∈ (1...𝑁𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)))
Distinct variable groups:   𝑆,𝑎   𝐿,𝑎,𝑏,𝑑,𝑥,𝑦   𝑀,𝑎,𝑏,𝑑   𝑁,𝑎,𝑏,𝑑   𝑆,𝑏,𝑑,𝑥,𝑦   𝜑,𝑎,𝑏,𝑑,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem breprexplema
Dummy variables 𝑐 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fz1ssnn 12579 . . . . 5 (1...𝑁) ⊆ ℕ
21a1i 11 . . . 4 (𝜑 → (1...𝑁) ⊆ ℕ)
3 breprexplema.m . . . . 5 (𝜑𝑀 ∈ ℕ0)
43nn0zd 11727 . . . 4 (𝜑𝑀 ∈ ℤ)
5 breprexp.s . . . 4 (𝜑𝑆 ∈ ℕ0)
6 eqid 2765 . . . 4 (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) = (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
72, 4, 5, 6reprsuc 31144 . . 3 (𝜑 → ((1...𝑁)(repr‘(𝑆 + 1))𝑀) = 𝑏 ∈ (1...𝑁)ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))
87sumeq1d 14716 . 2 (𝜑 → Σ𝑑 ∈ ((1...𝑁)(repr‘(𝑆 + 1))𝑀)∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑑 𝑏 ∈ (1...𝑁)ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)))
9 fzfid 12980 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
101a1i 11 . . . . . 6 ((𝜑𝑏 ∈ (1...𝑁)) → (1...𝑁) ⊆ ℕ)
114adantr 472 . . . . . . 7 ((𝜑𝑏 ∈ (1...𝑁)) → 𝑀 ∈ ℤ)
12 fzssz 12550 . . . . . . . 8 (1...𝑁) ⊆ ℤ
13 simpr 477 . . . . . . . 8 ((𝜑𝑏 ∈ (1...𝑁)) → 𝑏 ∈ (1...𝑁))
1412, 13sseldi 3759 . . . . . . 7 ((𝜑𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℤ)
1511, 14zsubcld 11734 . . . . . 6 ((𝜑𝑏 ∈ (1...𝑁)) → (𝑀𝑏) ∈ ℤ)
165adantr 472 . . . . . 6 ((𝜑𝑏 ∈ (1...𝑁)) → 𝑆 ∈ ℕ0)
179adantr 472 . . . . . 6 ((𝜑𝑏 ∈ (1...𝑁)) → (1...𝑁) ∈ Fin)
1810, 15, 16, 17reprfi 31145 . . . . 5 ((𝜑𝑏 ∈ (1...𝑁)) → ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ∈ Fin)
19 mptfi 8472 . . . . 5 (((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ∈ Fin → (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) ∈ Fin)
2018, 19syl 17 . . . 4 ((𝜑𝑏 ∈ (1...𝑁)) → (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) ∈ Fin)
21 rnfi 8456 . . . 4 ((𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) ∈ Fin → ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) ∈ Fin)
2220, 21syl 17 . . 3 ((𝜑𝑏 ∈ (1...𝑁)) → ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) ∈ Fin)
2310, 15, 16reprval 31139 . . . . 5 ((𝜑𝑏 ∈ (1...𝑁)) → ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) = {𝑐 ∈ ((1...𝑁) ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = (𝑀𝑏)})
24 ssrab2 3847 . . . . 5 {𝑐 ∈ ((1...𝑁) ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = (𝑀𝑏)} ⊆ ((1...𝑁) ↑𝑚 (0..^𝑆))
2523, 24syl6eqss 3815 . . . 4 ((𝜑𝑏 ∈ (1...𝑁)) → ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ⊆ ((1...𝑁) ↑𝑚 (0..^𝑆)))
269elexd 3367 . . . 4 (𝜑 → (1...𝑁) ∈ V)
27 fzonel 12691 . . . . 5 ¬ 𝑆 ∈ (0..^𝑆)
2827a1i 11 . . . 4 (𝜑 → ¬ 𝑆 ∈ (0..^𝑆))
2925, 26, 5, 28, 6actfunsnrndisj 31134 . . 3 (𝜑Disj 𝑏 ∈ (1...𝑁)ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))
30 fzofi 12981 . . . . . 6 (0..^(𝑆 + 1)) ∈ Fin
3130a1i 11 . . . . 5 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) → (0..^(𝑆 + 1)) ∈ Fin)
32 breprexplema.l . . . . . . . . 9 (((𝜑𝑥 ∈ (0..^(𝑆 + 1))) ∧ 𝑦 ∈ ℕ) → ((𝐿𝑥)‘𝑦) ∈ ℂ)
3332ralrimiva 3113 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(𝑆 + 1))) → ∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ)
3433ralrimiva 3113 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ)
3534ad3antrrr 721 . . . . . 6 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → ∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ)
36 simpr 477 . . . . . . 7 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → 𝑎 ∈ (0..^(𝑆 + 1)))
37 nfv 2009 . . . . . . . . . . . 12 𝑣(𝜑𝑏 ∈ (1...𝑁))
38 nfcv 2907 . . . . . . . . . . . . 13 𝑣𝑑
39 nfmpt1 4906 . . . . . . . . . . . . . 14 𝑣(𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
4039nfrn 5537 . . . . . . . . . . . . 13 𝑣ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
4138, 40nfel 2920 . . . . . . . . . . . 12 𝑣 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
4237, 41nfan 1998 . . . . . . . . . . 11 𝑣((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))
431a1i 11 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → (1...𝑁) ⊆ ℕ)
4415ad3antrrr 721 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → (𝑀𝑏) ∈ ℤ)
4516ad3antrrr 721 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → 𝑆 ∈ ℕ0)
46 simplr 785 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)))
4743, 44, 45, 46reprf 31141 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → 𝑣:(0..^𝑆)⟶(1...𝑁))
4813ad3antrrr 721 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → 𝑏 ∈ (1...𝑁))
4945, 48fsnd 6362 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → {⟨𝑆, 𝑏⟩}:{𝑆}⟶(1...𝑁))
50 fzodisjsn 12714 . . . . . . . . . . . . . 14 ((0..^𝑆) ∩ {𝑆}) = ∅
5150a1i 11 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → ((0..^𝑆) ∩ {𝑆}) = ∅)
52 fun2 6249 . . . . . . . . . . . . 13 (((𝑣:(0..^𝑆)⟶(1...𝑁) ∧ {⟨𝑆, 𝑏⟩}:{𝑆}⟶(1...𝑁)) ∧ ((0..^𝑆) ∩ {𝑆}) = ∅) → (𝑣 ∪ {⟨𝑆, 𝑏⟩}):((0..^𝑆) ∪ {𝑆})⟶(1...𝑁))
5347, 49, 51, 52syl21anc 866 . . . . . . . . . . . 12 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → (𝑣 ∪ {⟨𝑆, 𝑏⟩}):((0..^𝑆) ∪ {𝑆})⟶(1...𝑁))
54 simpr 477 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
55 nn0uz 11922 . . . . . . . . . . . . . . . 16 0 = (ℤ‘0)
565, 55syl6eleq 2854 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ (ℤ‘0))
57 fzosplitsn 12784 . . . . . . . . . . . . . . 15 (𝑆 ∈ (ℤ‘0) → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆}))
5856, 57syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆}))
5958ad4antr 724 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆}))
6054, 59feq12d 6211 . . . . . . . . . . . 12 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → (𝑑:(0..^(𝑆 + 1))⟶(1...𝑁) ↔ (𝑣 ∪ {⟨𝑆, 𝑏⟩}):((0..^𝑆) ∪ {𝑆})⟶(1...𝑁)))
6153, 60mpbird 248 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → 𝑑:(0..^(𝑆 + 1))⟶(1...𝑁))
62 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) → 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))
63 vex 3353 . . . . . . . . . . . . . 14 𝑣 ∈ V
64 snex 5064 . . . . . . . . . . . . . 14 {⟨𝑆, 𝑏⟩} ∈ V
6563, 64unex 7154 . . . . . . . . . . . . 13 (𝑣 ∪ {⟨𝑆, 𝑏⟩}) ∈ V
666, 65elrnmpti 5545 . . . . . . . . . . . 12 (𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) ↔ ∃𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
6762, 66sylib 209 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) → ∃𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
6842, 61, 67r19.29af 3223 . . . . . . . . . 10 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) → 𝑑:(0..^(𝑆 + 1))⟶(1...𝑁))
6968adantr 472 . . . . . . . . 9 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → 𝑑:(0..^(𝑆 + 1))⟶(1...𝑁))
7069, 36ffvelrnd 6550 . . . . . . . 8 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → (𝑑𝑎) ∈ (1...𝑁))
711, 70sseldi 3759 . . . . . . 7 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → (𝑑𝑎) ∈ ℕ)
72 fveq2 6375 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐿𝑥) = (𝐿𝑎))
7372fveq1d 6377 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝐿𝑥)‘𝑦) = ((𝐿𝑎)‘𝑦))
7473eleq1d 2829 . . . . . . . 8 (𝑥 = 𝑎 → (((𝐿𝑥)‘𝑦) ∈ ℂ ↔ ((𝐿𝑎)‘𝑦) ∈ ℂ))
75 fveq2 6375 . . . . . . . . 9 (𝑦 = (𝑑𝑎) → ((𝐿𝑎)‘𝑦) = ((𝐿𝑎)‘(𝑑𝑎)))
7675eleq1d 2829 . . . . . . . 8 (𝑦 = (𝑑𝑎) → (((𝐿𝑎)‘𝑦) ∈ ℂ ↔ ((𝐿𝑎)‘(𝑑𝑎)) ∈ ℂ))
7774, 76rspc2v 3474 . . . . . . 7 ((𝑎 ∈ (0..^(𝑆 + 1)) ∧ (𝑑𝑎) ∈ ℕ) → (∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ → ((𝐿𝑎)‘(𝑑𝑎)) ∈ ℂ))
7836, 71, 77syl2anc 579 . . . . . 6 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → (∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ → ((𝐿𝑎)‘(𝑑𝑎)) ∈ ℂ))
7935, 78mpd 15 . . . . 5 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → ((𝐿𝑎)‘(𝑑𝑎)) ∈ ℂ)
8031, 79fprodcl 14965 . . . 4 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) → ∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) ∈ ℂ)
8180anasss 458 . . 3 ((𝜑 ∧ (𝑏 ∈ (1...𝑁) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))) → ∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) ∈ ℂ)
829, 22, 29, 81fsumiun 14837 . 2 (𝜑 → Σ𝑑 𝑏 ∈ (1...𝑁)ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑏 ∈ (1...𝑁𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)))
8358ad2antrr 717 . . . . . . 7 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆}))
8483prodeq1d 14934 . . . . . 6 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = ∏𝑎 ∈ ((0..^𝑆) ∪ {𝑆})((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)))
85 nfv 2009 . . . . . . 7 𝑎((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)))
86 nfcv 2907 . . . . . . 7 𝑎((𝐿𝑆)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆))
87 fzofi 12981 . . . . . . . 8 (0..^𝑆) ∈ Fin
8887a1i 11 . . . . . . 7 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (0..^𝑆) ∈ Fin)
8916adantr 472 . . . . . . 7 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑆 ∈ ℕ0)
9027a1i 11 . . . . . . 7 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ¬ 𝑆 ∈ (0..^𝑆))
911a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (1...𝑁) ⊆ ℕ)
9215adantr 472 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (𝑀𝑏) ∈ ℤ)
93 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)))
9491, 92, 89, 93reprf 31141 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑒:(0..^𝑆)⟶(1...𝑁))
9594ffnd 6224 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑒 Fn (0..^𝑆))
9695adantr 472 . . . . . . . . . 10 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑒 Fn (0..^𝑆))
9713adantr 472 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑏 ∈ (1...𝑁))
98 fnsng 6119 . . . . . . . . . . . 12 ((𝑆 ∈ ℕ0𝑏 ∈ (1...𝑁)) → {⟨𝑆, 𝑏⟩} Fn {𝑆})
9989, 97, 98syl2anc 579 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → {⟨𝑆, 𝑏⟩} Fn {𝑆})
10099adantr 472 . . . . . . . . . 10 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → {⟨𝑆, 𝑏⟩} Fn {𝑆})
10150a1i 11 . . . . . . . . . 10 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → ((0..^𝑆) ∩ {𝑆}) = ∅)
102 simpr 477 . . . . . . . . . 10 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
103 fvun1 6458 . . . . . . . . . 10 ((𝑒 Fn (0..^𝑆) ∧ {⟨𝑆, 𝑏⟩} Fn {𝑆} ∧ (((0..^𝑆) ∩ {𝑆}) = ∅ ∧ 𝑎 ∈ (0..^𝑆))) → ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎) = (𝑒𝑎))
10496, 100, 101, 102, 103syl112anc 1493 . . . . . . . . 9 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎) = (𝑒𝑎))
105104fveq2d 6379 . . . . . . . 8 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = ((𝐿𝑎)‘(𝑒𝑎)))
10634ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ)
107106adantr 472 . . . . . . . . 9 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → ∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ)
108 fzossfzop1 12754 . . . . . . . . . . . . 13 (𝑆 ∈ ℕ0 → (0..^𝑆) ⊆ (0..^(𝑆 + 1)))
1095, 108syl 17 . . . . . . . . . . . 12 (𝜑 → (0..^𝑆) ⊆ (0..^(𝑆 + 1)))
110109ad2antrr 717 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (0..^𝑆) ⊆ (0..^(𝑆 + 1)))
111110sselda 3761 . . . . . . . . . 10 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^(𝑆 + 1)))
11294ffvelrnda 6549 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑒𝑎) ∈ (1...𝑁))
1131, 112sseldi 3759 . . . . . . . . . 10 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑒𝑎) ∈ ℕ)
114 fveq2 6375 . . . . . . . . . . . 12 (𝑦 = (𝑒𝑎) → ((𝐿𝑎)‘𝑦) = ((𝐿𝑎)‘(𝑒𝑎)))
115114eleq1d 2829 . . . . . . . . . . 11 (𝑦 = (𝑒𝑎) → (((𝐿𝑎)‘𝑦) ∈ ℂ ↔ ((𝐿𝑎)‘(𝑒𝑎)) ∈ ℂ))
11674, 115rspc2v 3474 . . . . . . . . . 10 ((𝑎 ∈ (0..^(𝑆 + 1)) ∧ (𝑒𝑎) ∈ ℕ) → (∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ → ((𝐿𝑎)‘(𝑒𝑎)) ∈ ℂ))
117111, 113, 116syl2anc 579 . . . . . . . . 9 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → (∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ → ((𝐿𝑎)‘(𝑒𝑎)) ∈ ℂ))
118107, 117mpd 15 . . . . . . . 8 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑒𝑎)) ∈ ℂ)
119105, 118eqeltrd 2844 . . . . . . 7 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) ∈ ℂ)
120 fveq2 6375 . . . . . . . 8 (𝑎 = 𝑆 → (𝐿𝑎) = (𝐿𝑆))
121 fveq2 6375 . . . . . . . 8 (𝑎 = 𝑆 → ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎) = ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆))
122120, 121fveq12d 6382 . . . . . . 7 (𝑎 = 𝑆 → ((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = ((𝐿𝑆)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆)))
12350a1i 11 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((0..^𝑆) ∩ {𝑆}) = ∅)
124 snidg 4364 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0𝑆 ∈ {𝑆})
12589, 124syl 17 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑆 ∈ {𝑆})
126 fvun2 6459 . . . . . . . . . . 11 ((𝑒 Fn (0..^𝑆) ∧ {⟨𝑆, 𝑏⟩} Fn {𝑆} ∧ (((0..^𝑆) ∩ {𝑆}) = ∅ ∧ 𝑆 ∈ {𝑆})) → ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆) = ({⟨𝑆, 𝑏⟩}‘𝑆))
12795, 99, 123, 125, 126syl112anc 1493 . . . . . . . . . 10 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆) = ({⟨𝑆, 𝑏⟩}‘𝑆))
128 fvsng 6640 . . . . . . . . . . 11 ((𝑆 ∈ ℕ0𝑏 ∈ (1...𝑁)) → ({⟨𝑆, 𝑏⟩}‘𝑆) = 𝑏)
12989, 97, 128syl2anc 579 . . . . . . . . . 10 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ({⟨𝑆, 𝑏⟩}‘𝑆) = 𝑏)
130127, 129eqtrd 2799 . . . . . . . . 9 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆) = 𝑏)
131130fveq2d 6379 . . . . . . . 8 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((𝐿𝑆)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆)) = ((𝐿𝑆)‘𝑏))
132 fzonn0p1 12753 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0𝑆 ∈ (0..^(𝑆 + 1)))
1335, 132syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ (0..^(𝑆 + 1)))
134133ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑆 ∈ (0..^(𝑆 + 1)))
1351, 97sseldi 3759 . . . . . . . . . 10 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑏 ∈ ℕ)
136 fveq2 6375 . . . . . . . . . . . . 13 (𝑥 = 𝑆 → (𝐿𝑥) = (𝐿𝑆))
137136fveq1d 6377 . . . . . . . . . . . 12 (𝑥 = 𝑆 → ((𝐿𝑥)‘𝑦) = ((𝐿𝑆)‘𝑦))
138137eleq1d 2829 . . . . . . . . . . 11 (𝑥 = 𝑆 → (((𝐿𝑥)‘𝑦) ∈ ℂ ↔ ((𝐿𝑆)‘𝑦) ∈ ℂ))
139 fveq2 6375 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ((𝐿𝑆)‘𝑦) = ((𝐿𝑆)‘𝑏))
140139eleq1d 2829 . . . . . . . . . . 11 (𝑦 = 𝑏 → (((𝐿𝑆)‘𝑦) ∈ ℂ ↔ ((𝐿𝑆)‘𝑏) ∈ ℂ))
141138, 140rspc2v 3474 . . . . . . . . . 10 ((𝑆 ∈ (0..^(𝑆 + 1)) ∧ 𝑏 ∈ ℕ) → (∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ → ((𝐿𝑆)‘𝑏) ∈ ℂ))
142134, 135, 141syl2anc 579 . . . . . . . . 9 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ → ((𝐿𝑆)‘𝑏) ∈ ℂ))
143106, 142mpd 15 . . . . . . . 8 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((𝐿𝑆)‘𝑏) ∈ ℂ)
144131, 143eqeltrd 2844 . . . . . . 7 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((𝐿𝑆)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆)) ∈ ℂ)
14585, 86, 88, 89, 90, 119, 122, 144fprodsplitsn 15002 . . . . . 6 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ∏𝑎 ∈ ((0..^𝑆) ∪ {𝑆})((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) · ((𝐿𝑆)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆))))
146105prodeq2dv 14936 . . . . . . 7 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)))
147146, 131oveq12d 6860 . . . . . 6 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) · ((𝐿𝑆)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)) · ((𝐿𝑆)‘𝑏)))
14884, 145, 1473eqtrd 2803 . . . . 5 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)) · ((𝐿𝑆)‘𝑏)))
149148sumeq2dv 14718 . . . 4 ((𝜑𝑏 ∈ (1...𝑁)) → Σ𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = Σ𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)) · ((𝐿𝑆)‘𝑏)))
150 simpl 474 . . . . . . . 8 ((𝑑 = (𝑒 ∪ {⟨𝑆, 𝑏⟩}) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → 𝑑 = (𝑒 ∪ {⟨𝑆, 𝑏⟩}))
151150fveq1d 6377 . . . . . . 7 ((𝑑 = (𝑒 ∪ {⟨𝑆, 𝑏⟩}) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → (𝑑𝑎) = ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎))
152151fveq2d 6379 . . . . . 6 ((𝑑 = (𝑒 ∪ {⟨𝑆, 𝑏⟩}) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → ((𝐿𝑎)‘(𝑑𝑎)) = ((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)))
153152prodeq2dv 14936 . . . . 5 (𝑑 = (𝑒 ∪ {⟨𝑆, 𝑏⟩}) → ∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = ∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)))
15425, 26, 5, 28, 6actfunsnf1o 31133 . . . . 5 ((𝜑𝑏 ∈ (1...𝑁)) → (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})):((1...𝑁)(repr‘𝑆)(𝑀𝑏))–1-1-onto→ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))
1556a1i 11 . . . . . 6 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) = (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))
156 simpr 477 . . . . . . 7 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑣 = 𝑒) → 𝑣 = 𝑒)
157156uneq1d 3928 . . . . . 6 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑣 = 𝑒) → (𝑣 ∪ {⟨𝑆, 𝑏⟩}) = (𝑒 ∪ {⟨𝑆, 𝑏⟩}))
158 vex 3353 . . . . . . . 8 𝑒 ∈ V
159158, 64unex 7154 . . . . . . 7 (𝑒 ∪ {⟨𝑆, 𝑏⟩}) ∈ V
160159a1i 11 . . . . . 6 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (𝑒 ∪ {⟨𝑆, 𝑏⟩}) ∈ V)
161155, 157, 93, 160fvmptd 6477 . . . . 5 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))‘𝑒) = (𝑒 ∪ {⟨𝑆, 𝑏⟩}))
162153, 18, 154, 161, 80fsumf1o 14739 . . . 4 ((𝜑𝑏 ∈ (1...𝑁)) → Σ𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)))
163 simpl 474 . . . . . . . . . 10 ((𝑑 = 𝑒𝑎 ∈ (0..^𝑆)) → 𝑑 = 𝑒)
164163fveq1d 6377 . . . . . . . . 9 ((𝑑 = 𝑒𝑎 ∈ (0..^𝑆)) → (𝑑𝑎) = (𝑒𝑎))
165164fveq2d 6379 . . . . . . . 8 ((𝑑 = 𝑒𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑑𝑎)) = ((𝐿𝑎)‘(𝑒𝑎)))
166165prodeq2dv 14936 . . . . . . 7 (𝑑 = 𝑒 → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) = ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)))
167166oveq1d 6857 . . . . . 6 (𝑑 = 𝑒 → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)) · ((𝐿𝑆)‘𝑏)))
168167cbvsumv 14711 . . . . 5 Σ𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)) = Σ𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)) · ((𝐿𝑆)‘𝑏))
169168a1i 11 . . . 4 ((𝜑𝑏 ∈ (1...𝑁)) → Σ𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)) = Σ𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)) · ((𝐿𝑆)‘𝑏)))
170149, 162, 1693eqtr4d 2809 . . 3 ((𝜑𝑏 ∈ (1...𝑁)) → Σ𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)))
171170sumeq2dv 14718 . 2 (𝜑 → Σ𝑏 ∈ (1...𝑁𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑏 ∈ (1...𝑁𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)))
1728, 82, 1713eqtrd 2803 1 (𝜑 → Σ𝑑 ∈ ((1...𝑁)(repr‘(𝑆 + 1))𝑀)∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑏 ∈ (1...𝑁𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  cun 3730  cin 3731  wss 3732  c0 4079  {csn 4334  cop 4340   ciun 4676   class class class wbr 4809  cmpt 4888  ran crn 5278   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  Fincfn 8160  cc 10187  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  cle 10329  cmin 10520  cn 11274  0cn0 11538  cz 11624  cuz 11886  ...cfz 12533  ..^cfzo 12673  Σcsu 14701  cprod 14918  reprcrepr 31137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-prod 14919  df-repr 31138
This theorem is referenced by:  breprexplemc  31161
  Copyright terms: Public domain W3C validator