Proof of Theorem fsnex
Step | Hyp | Ref
| Expression |
1 | | fsn2g 6992 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (𝑓:{𝐴}⟶𝐷 ↔ ((𝑓‘𝐴) ∈ 𝐷 ∧ 𝑓 = {〈𝐴, (𝑓‘𝐴)〉}))) |
2 | 1 | simprbda 498 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓:{𝐴}⟶𝐷) → (𝑓‘𝐴) ∈ 𝐷) |
3 | 2 | adantrr 713 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) → (𝑓‘𝐴) ∈ 𝐷) |
4 | | fsnex.1 |
. . . . . . 7
⊢ (𝑥 = (𝑓‘𝐴) → (𝜓 ↔ 𝜑)) |
5 | 4 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) ∧ 𝑥 = (𝑓‘𝐴)) → (𝜓 ↔ 𝜑)) |
6 | | simprr 769 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) → 𝜑) |
7 | 3, 5, 6 | rspcedvd 3555 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) → ∃𝑥 ∈ 𝐷 𝜓) |
8 | 7 | ex 412 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑓:{𝐴}⟶𝐷 ∧ 𝜑) → ∃𝑥 ∈ 𝐷 𝜓)) |
9 | 8 | exlimdv 1937 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝜑) → ∃𝑥 ∈ 𝐷 𝜓)) |
10 | 9 | imp 406 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) → ∃𝑥 ∈ 𝐷 𝜓) |
11 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑥 𝐴 ∈ 𝑉 |
12 | | nfre1 3234 |
. . . 4
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐷 𝜓 |
13 | 11, 12 | nfan 1903 |
. . 3
⊢
Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) |
14 | | f1osng 6740 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V) → {〈𝐴, 𝑥〉}:{𝐴}–1-1-onto→{𝑥}) |
15 | 14 | elvd 3429 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → {〈𝐴, 𝑥〉}:{𝐴}–1-1-onto→{𝑥}) |
16 | 15 | ad3antrrr 726 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → {〈𝐴, 𝑥〉}:{𝐴}–1-1-onto→{𝑥}) |
17 | | f1of 6700 |
. . . . . . 7
⊢
({〈𝐴, 𝑥〉}:{𝐴}–1-1-onto→{𝑥} → {〈𝐴, 𝑥〉}:{𝐴}⟶{𝑥}) |
18 | 16, 17 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → {〈𝐴, 𝑥〉}:{𝐴}⟶{𝑥}) |
19 | | simplr 765 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → 𝑥 ∈ 𝐷) |
20 | 19 | snssd 4739 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → {𝑥} ⊆ 𝐷) |
21 | 18, 20 | fssd 6602 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → {〈𝐴, 𝑥〉}:{𝐴}⟶𝐷) |
22 | | fvsng 7034 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V) → ({〈𝐴, 𝑥〉}‘𝐴) = 𝑥) |
23 | 22 | elvd 3429 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ({〈𝐴, 𝑥〉}‘𝐴) = 𝑥) |
24 | 23 | eqcomd 2744 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝑥 = ({〈𝐴, 𝑥〉}‘𝐴)) |
25 | 24 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → 𝑥 = ({〈𝐴, 𝑥〉}‘𝐴)) |
26 | | snex 5349 |
. . . . . 6
⊢
{〈𝐴, 𝑥〉} ∈
V |
27 | | feq1 6565 |
. . . . . . 7
⊢ (𝑓 = {〈𝐴, 𝑥〉} → (𝑓:{𝐴}⟶𝐷 ↔ {〈𝐴, 𝑥〉}:{𝐴}⟶𝐷)) |
28 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑓 = {〈𝐴, 𝑥〉} → (𝑓‘𝐴) = ({〈𝐴, 𝑥〉}‘𝐴)) |
29 | 28 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑓 = {〈𝐴, 𝑥〉} → (𝑥 = (𝑓‘𝐴) ↔ 𝑥 = ({〈𝐴, 𝑥〉}‘𝐴))) |
30 | 27, 29 | anbi12d 630 |
. . . . . 6
⊢ (𝑓 = {〈𝐴, 𝑥〉} → ((𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴)) ↔ ({〈𝐴, 𝑥〉}:{𝐴}⟶𝐷 ∧ 𝑥 = ({〈𝐴, 𝑥〉}‘𝐴)))) |
31 | 26, 30 | spcev 3535 |
. . . . 5
⊢
(({〈𝐴, 𝑥〉}:{𝐴}⟶𝐷 ∧ 𝑥 = ({〈𝐴, 𝑥〉}‘𝐴)) → ∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) |
32 | 21, 25, 31 | syl2anc 583 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → ∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) |
33 | | simprl 767 |
. . . . . . 7
⊢
(((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) → 𝑓:{𝐴}⟶𝐷) |
34 | | simpllr 772 |
. . . . . . . . 9
⊢
((((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) ∧ 𝑓:{𝐴}⟶𝐷) → 𝜓) |
35 | | simplrr 774 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) ∧ 𝑓:{𝐴}⟶𝐷) → 𝑥 = (𝑓‘𝐴)) |
36 | 35, 4 | syl 17 |
. . . . . . . . 9
⊢
((((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) ∧ 𝑓:{𝐴}⟶𝐷) → (𝜓 ↔ 𝜑)) |
37 | 34, 36 | mpbid 231 |
. . . . . . . 8
⊢
((((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) ∧ 𝑓:{𝐴}⟶𝐷) → 𝜑) |
38 | 33, 37 | mpdan 683 |
. . . . . . 7
⊢
(((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) → 𝜑) |
39 | 33, 38 | jca 511 |
. . . . . 6
⊢
(((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) → (𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) |
40 | 39 | ex 412 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → ((𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴)) → (𝑓:{𝐴}⟶𝐷 ∧ 𝜑))) |
41 | 40 | eximdv 1921 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → (∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴)) → ∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝜑))) |
42 | 32, 41 | mpd 15 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → ∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) |
43 | | simpr 484 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) → ∃𝑥 ∈ 𝐷 𝜓) |
44 | 13, 42, 43 | r19.29af 3259 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) → ∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) |
45 | 10, 44 | impbida 797 |
1
⊢ (𝐴 ∈ 𝑉 → (∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐷 𝜓)) |