Proof of Theorem fsnex
| Step | Hyp | Ref
| Expression |
| 1 | | fsn2g 7158 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (𝑓:{𝐴}⟶𝐷 ↔ ((𝑓‘𝐴) ∈ 𝐷 ∧ 𝑓 = {〈𝐴, (𝑓‘𝐴)〉}))) |
| 2 | 1 | simprbda 498 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓:{𝐴}⟶𝐷) → (𝑓‘𝐴) ∈ 𝐷) |
| 3 | 2 | adantrr 717 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) → (𝑓‘𝐴) ∈ 𝐷) |
| 4 | | fsnex.1 |
. . . . . . 7
⊢ (𝑥 = (𝑓‘𝐴) → (𝜓 ↔ 𝜑)) |
| 5 | 4 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) ∧ 𝑥 = (𝑓‘𝐴)) → (𝜓 ↔ 𝜑)) |
| 6 | | simprr 773 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) → 𝜑) |
| 7 | 3, 5, 6 | rspcedvd 3624 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) → ∃𝑥 ∈ 𝐷 𝜓) |
| 8 | 7 | ex 412 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑓:{𝐴}⟶𝐷 ∧ 𝜑) → ∃𝑥 ∈ 𝐷 𝜓)) |
| 9 | 8 | exlimdv 1933 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝜑) → ∃𝑥 ∈ 𝐷 𝜓)) |
| 10 | 9 | imp 406 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) → ∃𝑥 ∈ 𝐷 𝜓) |
| 11 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑥 𝐴 ∈ 𝑉 |
| 12 | | nfre1 3285 |
. . . 4
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐷 𝜓 |
| 13 | 11, 12 | nfan 1899 |
. . 3
⊢
Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) |
| 14 | | f1osng 6889 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V) → {〈𝐴, 𝑥〉}:{𝐴}–1-1-onto→{𝑥}) |
| 15 | 14 | elvd 3486 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → {〈𝐴, 𝑥〉}:{𝐴}–1-1-onto→{𝑥}) |
| 16 | 15 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → {〈𝐴, 𝑥〉}:{𝐴}–1-1-onto→{𝑥}) |
| 17 | | f1of 6848 |
. . . . . . 7
⊢
({〈𝐴, 𝑥〉}:{𝐴}–1-1-onto→{𝑥} → {〈𝐴, 𝑥〉}:{𝐴}⟶{𝑥}) |
| 18 | 16, 17 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → {〈𝐴, 𝑥〉}:{𝐴}⟶{𝑥}) |
| 19 | | simplr 769 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → 𝑥 ∈ 𝐷) |
| 20 | 19 | snssd 4809 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → {𝑥} ⊆ 𝐷) |
| 21 | 18, 20 | fssd 6753 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → {〈𝐴, 𝑥〉}:{𝐴}⟶𝐷) |
| 22 | | fvsng 7200 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V) → ({〈𝐴, 𝑥〉}‘𝐴) = 𝑥) |
| 23 | 22 | elvd 3486 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ({〈𝐴, 𝑥〉}‘𝐴) = 𝑥) |
| 24 | 23 | eqcomd 2743 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝑥 = ({〈𝐴, 𝑥〉}‘𝐴)) |
| 25 | 24 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → 𝑥 = ({〈𝐴, 𝑥〉}‘𝐴)) |
| 26 | | snex 5436 |
. . . . . 6
⊢
{〈𝐴, 𝑥〉} ∈
V |
| 27 | | feq1 6716 |
. . . . . . 7
⊢ (𝑓 = {〈𝐴, 𝑥〉} → (𝑓:{𝐴}⟶𝐷 ↔ {〈𝐴, 𝑥〉}:{𝐴}⟶𝐷)) |
| 28 | | fveq1 6905 |
. . . . . . . 8
⊢ (𝑓 = {〈𝐴, 𝑥〉} → (𝑓‘𝐴) = ({〈𝐴, 𝑥〉}‘𝐴)) |
| 29 | 28 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑓 = {〈𝐴, 𝑥〉} → (𝑥 = (𝑓‘𝐴) ↔ 𝑥 = ({〈𝐴, 𝑥〉}‘𝐴))) |
| 30 | 27, 29 | anbi12d 632 |
. . . . . 6
⊢ (𝑓 = {〈𝐴, 𝑥〉} → ((𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴)) ↔ ({〈𝐴, 𝑥〉}:{𝐴}⟶𝐷 ∧ 𝑥 = ({〈𝐴, 𝑥〉}‘𝐴)))) |
| 31 | 26, 30 | spcev 3606 |
. . . . 5
⊢
(({〈𝐴, 𝑥〉}:{𝐴}⟶𝐷 ∧ 𝑥 = ({〈𝐴, 𝑥〉}‘𝐴)) → ∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) |
| 32 | 21, 25, 31 | syl2anc 584 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → ∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) |
| 33 | | simprl 771 |
. . . . . . 7
⊢
(((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) → 𝑓:{𝐴}⟶𝐷) |
| 34 | | simpllr 776 |
. . . . . . . . 9
⊢
((((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) ∧ 𝑓:{𝐴}⟶𝐷) → 𝜓) |
| 35 | | simplrr 778 |
. . . . . . . . . 10
⊢
((((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) ∧ 𝑓:{𝐴}⟶𝐷) → 𝑥 = (𝑓‘𝐴)) |
| 36 | 35, 4 | syl 17 |
. . . . . . . . 9
⊢
((((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) ∧ 𝑓:{𝐴}⟶𝐷) → (𝜓 ↔ 𝜑)) |
| 37 | 34, 36 | mpbid 232 |
. . . . . . . 8
⊢
((((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) ∧ 𝑓:{𝐴}⟶𝐷) → 𝜑) |
| 38 | 33, 37 | mpdan 687 |
. . . . . . 7
⊢
(((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) → 𝜑) |
| 39 | 33, 38 | jca 511 |
. . . . . 6
⊢
(((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴))) → (𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) |
| 40 | 39 | ex 412 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → ((𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴)) → (𝑓:{𝐴}⟶𝐷 ∧ 𝜑))) |
| 41 | 40 | eximdv 1917 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → (∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝑥 = (𝑓‘𝐴)) → ∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝜑))) |
| 42 | 32, 41 | mpd 15 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) ∧ 𝑥 ∈ 𝐷) ∧ 𝜓) → ∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) |
| 43 | | simpr 484 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) → ∃𝑥 ∈ 𝐷 𝜓) |
| 44 | 13, 42, 43 | r19.29af 3268 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 𝜓) → ∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝜑)) |
| 45 | 10, 44 | impbida 801 |
1
⊢ (𝐴 ∈ 𝑉 → (∃𝑓(𝑓:{𝐴}⟶𝐷 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐷 𝜓)) |