MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnex Structured version   Visualization version   GIF version

Theorem fsnex 7319
Description: Relate a function with a singleton as domain and one variable. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Hypothesis
Ref Expression
fsnex.1 (𝑥 = (𝑓𝐴) → (𝜓𝜑))
Assertion
Ref Expression
fsnex (𝐴𝑉 → (∃𝑓(𝑓:{𝐴}⟶𝐷𝜑) ↔ ∃𝑥𝐷 𝜓))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐷,𝑓,𝑥   𝑓,𝑉,𝑥   𝜓,𝑓   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑥)

Proof of Theorem fsnex
StepHypRef Expression
1 fsn2g 7172 . . . . . . . 8 (𝐴𝑉 → (𝑓:{𝐴}⟶𝐷 ↔ ((𝑓𝐴) ∈ 𝐷𝑓 = {⟨𝐴, (𝑓𝐴)⟩})))
21simprbda 498 . . . . . . 7 ((𝐴𝑉𝑓:{𝐴}⟶𝐷) → (𝑓𝐴) ∈ 𝐷)
32adantrr 716 . . . . . 6 ((𝐴𝑉 ∧ (𝑓:{𝐴}⟶𝐷𝜑)) → (𝑓𝐴) ∈ 𝐷)
4 fsnex.1 . . . . . . 7 (𝑥 = (𝑓𝐴) → (𝜓𝜑))
54adantl 481 . . . . . 6 (((𝐴𝑉 ∧ (𝑓:{𝐴}⟶𝐷𝜑)) ∧ 𝑥 = (𝑓𝐴)) → (𝜓𝜑))
6 simprr 772 . . . . . 6 ((𝐴𝑉 ∧ (𝑓:{𝐴}⟶𝐷𝜑)) → 𝜑)
73, 5, 6rspcedvd 3637 . . . . 5 ((𝐴𝑉 ∧ (𝑓:{𝐴}⟶𝐷𝜑)) → ∃𝑥𝐷 𝜓)
87ex 412 . . . 4 (𝐴𝑉 → ((𝑓:{𝐴}⟶𝐷𝜑) → ∃𝑥𝐷 𝜓))
98exlimdv 1932 . . 3 (𝐴𝑉 → (∃𝑓(𝑓:{𝐴}⟶𝐷𝜑) → ∃𝑥𝐷 𝜓))
109imp 406 . 2 ((𝐴𝑉 ∧ ∃𝑓(𝑓:{𝐴}⟶𝐷𝜑)) → ∃𝑥𝐷 𝜓)
11 nfv 1913 . . . 4 𝑥 𝐴𝑉
12 nfre1 3291 . . . 4 𝑥𝑥𝐷 𝜓
1311, 12nfan 1898 . . 3 𝑥(𝐴𝑉 ∧ ∃𝑥𝐷 𝜓)
14 f1osng 6903 . . . . . . . . 9 ((𝐴𝑉𝑥 ∈ V) → {⟨𝐴, 𝑥⟩}:{𝐴}–1-1-onto→{𝑥})
1514elvd 3494 . . . . . . . 8 (𝐴𝑉 → {⟨𝐴, 𝑥⟩}:{𝐴}–1-1-onto→{𝑥})
1615ad3antrrr 729 . . . . . . 7 ((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) → {⟨𝐴, 𝑥⟩}:{𝐴}–1-1-onto→{𝑥})
17 f1of 6862 . . . . . . 7 ({⟨𝐴, 𝑥⟩}:{𝐴}–1-1-onto→{𝑥} → {⟨𝐴, 𝑥⟩}:{𝐴}⟶{𝑥})
1816, 17syl 17 . . . . . 6 ((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) → {⟨𝐴, 𝑥⟩}:{𝐴}⟶{𝑥})
19 simplr 768 . . . . . . 7 ((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) → 𝑥𝐷)
2019snssd 4834 . . . . . 6 ((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) → {𝑥} ⊆ 𝐷)
2118, 20fssd 6764 . . . . 5 ((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) → {⟨𝐴, 𝑥⟩}:{𝐴}⟶𝐷)
22 fvsng 7214 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ V) → ({⟨𝐴, 𝑥⟩}‘𝐴) = 𝑥)
2322elvd 3494 . . . . . . 7 (𝐴𝑉 → ({⟨𝐴, 𝑥⟩}‘𝐴) = 𝑥)
2423eqcomd 2746 . . . . . 6 (𝐴𝑉𝑥 = ({⟨𝐴, 𝑥⟩}‘𝐴))
2524ad3antrrr 729 . . . . 5 ((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) → 𝑥 = ({⟨𝐴, 𝑥⟩}‘𝐴))
26 snex 5451 . . . . . 6 {⟨𝐴, 𝑥⟩} ∈ V
27 feq1 6728 . . . . . . 7 (𝑓 = {⟨𝐴, 𝑥⟩} → (𝑓:{𝐴}⟶𝐷 ↔ {⟨𝐴, 𝑥⟩}:{𝐴}⟶𝐷))
28 fveq1 6919 . . . . . . . 8 (𝑓 = {⟨𝐴, 𝑥⟩} → (𝑓𝐴) = ({⟨𝐴, 𝑥⟩}‘𝐴))
2928eqeq2d 2751 . . . . . . 7 (𝑓 = {⟨𝐴, 𝑥⟩} → (𝑥 = (𝑓𝐴) ↔ 𝑥 = ({⟨𝐴, 𝑥⟩}‘𝐴)))
3027, 29anbi12d 631 . . . . . 6 (𝑓 = {⟨𝐴, 𝑥⟩} → ((𝑓:{𝐴}⟶𝐷𝑥 = (𝑓𝐴)) ↔ ({⟨𝐴, 𝑥⟩}:{𝐴}⟶𝐷𝑥 = ({⟨𝐴, 𝑥⟩}‘𝐴))))
3126, 30spcev 3619 . . . . 5 (({⟨𝐴, 𝑥⟩}:{𝐴}⟶𝐷𝑥 = ({⟨𝐴, 𝑥⟩}‘𝐴)) → ∃𝑓(𝑓:{𝐴}⟶𝐷𝑥 = (𝑓𝐴)))
3221, 25, 31syl2anc 583 . . . 4 ((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) → ∃𝑓(𝑓:{𝐴}⟶𝐷𝑥 = (𝑓𝐴)))
33 simprl 770 . . . . . . 7 (((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷𝑥 = (𝑓𝐴))) → 𝑓:{𝐴}⟶𝐷)
34 simpllr 775 . . . . . . . . 9 ((((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷𝑥 = (𝑓𝐴))) ∧ 𝑓:{𝐴}⟶𝐷) → 𝜓)
35 simplrr 777 . . . . . . . . . 10 ((((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷𝑥 = (𝑓𝐴))) ∧ 𝑓:{𝐴}⟶𝐷) → 𝑥 = (𝑓𝐴))
3635, 4syl 17 . . . . . . . . 9 ((((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷𝑥 = (𝑓𝐴))) ∧ 𝑓:{𝐴}⟶𝐷) → (𝜓𝜑))
3734, 36mpbid 232 . . . . . . . 8 ((((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷𝑥 = (𝑓𝐴))) ∧ 𝑓:{𝐴}⟶𝐷) → 𝜑)
3833, 37mpdan 686 . . . . . . 7 (((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷𝑥 = (𝑓𝐴))) → 𝜑)
3933, 38jca 511 . . . . . 6 (((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) ∧ (𝑓:{𝐴}⟶𝐷𝑥 = (𝑓𝐴))) → (𝑓:{𝐴}⟶𝐷𝜑))
4039ex 412 . . . . 5 ((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) → ((𝑓:{𝐴}⟶𝐷𝑥 = (𝑓𝐴)) → (𝑓:{𝐴}⟶𝐷𝜑)))
4140eximdv 1916 . . . 4 ((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) → (∃𝑓(𝑓:{𝐴}⟶𝐷𝑥 = (𝑓𝐴)) → ∃𝑓(𝑓:{𝐴}⟶𝐷𝜑)))
4232, 41mpd 15 . . 3 ((((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) ∧ 𝑥𝐷) ∧ 𝜓) → ∃𝑓(𝑓:{𝐴}⟶𝐷𝜑))
43 simpr 484 . . 3 ((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) → ∃𝑥𝐷 𝜓)
4413, 42, 43r19.29af 3274 . 2 ((𝐴𝑉 ∧ ∃𝑥𝐷 𝜓) → ∃𝑓(𝑓:{𝐴}⟶𝐷𝜑))
4510, 44impbida 800 1 (𝐴𝑉 → (∃𝑓(𝑓:{𝐴}⟶𝐷𝜑) ↔ ∃𝑥𝐷 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076  Vcvv 3488  {csn 4648  cop 4654  wf 6569  1-1-ontowf1o 6572  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator