![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version |
Description: A commonly used pattern in the spirit of r19.29 3113. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
2 | 1 | rexlimdva2 3156 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∃wrex 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-rex 3070 |
This theorem is referenced by: fimaproj 8124 summolem2 15667 cygabl 19801 dissnlocfin 23254 utopsnneiplem 23973 restmetu 24300 elqaa 26068 2sqmo 27173 colline 28164 axcontlem2 28487 grpoidinvlem4 30024 2ndimaxp 32136 fnpreimac 32160 cyc3genpm 32578 isarchi3 32600 dvdsruasso 32761 grplsmid 32785 quslsm 32787 nsgqusf1olem2 32796 nsgqusf1olem3 32797 ghmquskerlem1 32799 elrspunidl 32817 elrspunsn 32818 ssmxidllem 32860 ist0cld 33108 qtophaus 33111 locfinreflem 33115 cmpcref 33125 ordtconnlem1 33199 esumpcvgval 33371 esumcvg 33379 eulerpartlems 33654 eulerpartlemgvv 33670 reprinfz1 33929 reprpmtf1o 33933 satffunlem2lem2 34692 isbnd3 36956 eldiophss 41815 eldioph4b 41852 pellfund14b 41940 opeoALTV 46652 |
Copyright terms: Public domain | W3C validator |