| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern in the spirit of r19.29 3101. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
| Ref | Expression |
|---|---|
| rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | rexlimdva2 3143 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: fimaproj 8134 summolem2 15732 ghmqusnsglem1 19263 ghmquskerlem1 19266 cygabl 19872 dissnlocfin 23467 utopsnneiplem 24186 restmetu 24509 elqaa 26282 2sqmo 27400 colline 28628 axcontlem2 28944 grpoidinvlem4 30488 2ndimaxp 32624 fnpreimac 32649 mndlrinvb 33020 mndlactfo 33022 mndractfo 33024 mndlactf1o 33025 mndractf1o 33026 cyc3genpm 33163 isarchi3 33185 elrgspn 33241 elrgspnsubrun 33244 fracerl 33300 dvdsruasso 33400 dvdsruasso2 33401 grplsmid 33419 quslsm 33420 nsgqusf1olem2 33429 nsgqusf1olem3 33430 elrspunidl 33443 elrspunsn 33444 ssdifidllem 33471 ssdifidlprm 33473 ssmxidllem 33488 1arithidom 33552 1arithufdlem3 33561 fldextrspunlsp 33715 constrconj 33779 constrfin 33780 constrelextdg2 33781 constrfiss 33785 ist0cld 33864 qtophaus 33867 locfinreflem 33871 cmpcref 33881 ordtconnlem1 33955 esumpcvgval 34109 esumcvg 34117 eulerpartlems 34392 eulerpartlemgvv 34408 reprinfz1 34654 reprpmtf1o 34658 satffunlem2lem2 35428 isbnd3 37808 eldiophss 42797 eldioph4b 42834 pellfund14b 42922 opeoALTV 47698 |
| Copyright terms: Public domain | W3C validator |