![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version |
Description: A commonly used pattern in the spirit of r19.29 3112. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
2 | 1 | rexlimdva2 3155 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-rex 3069 |
This theorem is referenced by: fimaproj 8159 summolem2 15749 ghmqusnsglem1 19311 ghmquskerlem1 19314 cygabl 19924 dissnlocfin 23553 utopsnneiplem 24272 restmetu 24599 elqaa 26379 2sqmo 27496 colline 28672 axcontlem2 28995 grpoidinvlem4 30536 2ndimaxp 32663 fnpreimac 32688 mndlrinvb 33013 mndlactfo 33015 mndractfo 33017 mndlactf1o 33018 mndractf1o 33019 cyc3genpm 33155 isarchi3 33177 fracerl 33288 dvdsruasso 33393 dvdsruasso2 33394 grplsmid 33412 quslsm 33413 nsgqusf1olem2 33422 nsgqusf1olem3 33423 elrspunidl 33436 elrspunsn 33437 ssdifidllem 33464 ssdifidlprm 33466 ssmxidllem 33481 1arithidom 33545 1arithufdlem3 33554 constrconj 33750 constrfin 33751 constrelextdg2 33752 ist0cld 33794 qtophaus 33797 locfinreflem 33801 cmpcref 33811 ordtconnlem1 33885 esumpcvgval 34059 esumcvg 34067 eulerpartlems 34342 eulerpartlemgvv 34358 reprinfz1 34616 reprpmtf1o 34620 satffunlem2lem2 35391 isbnd3 37771 eldiophss 42762 eldioph4b 42799 pellfund14b 42887 opeoALTV 47609 |
Copyright terms: Public domain | W3C validator |