![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version |
Description: A commonly used pattern in the spirit of r19.29 3115. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
2 | 1 | rexlimdva2 3158 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
3 | 2 | imp 408 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-rex 3072 |
This theorem is referenced by: fimaproj 8121 summolem2 15662 cygabl 19759 dissnlocfin 23033 utopsnneiplem 23752 restmetu 24079 elqaa 25835 2sqmo 26940 colline 27900 axcontlem2 28223 grpoidinvlem4 29760 2ndimaxp 31872 fnpreimac 31896 cyc3genpm 32311 isarchi3 32333 dvdsruasso 32490 grplsmid 32514 quslsm 32516 nsgqusf1olem2 32525 nsgqusf1olem3 32526 ghmquskerlem1 32528 elrspunidl 32546 elrspunsn 32547 ssmxidllem 32589 ist0cld 32813 qtophaus 32816 locfinreflem 32820 cmpcref 32830 ordtconnlem1 32904 esumpcvgval 33076 esumcvg 33084 eulerpartlems 33359 eulerpartlemgvv 33375 reprinfz1 33634 reprpmtf1o 33638 satffunlem2lem2 34397 isbnd3 36652 eldiophss 41512 eldioph4b 41549 pellfund14b 41637 opeoALTV 46352 |
Copyright terms: Public domain | W3C validator |