| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern in the spirit of r19.29 3095. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
| Ref | Expression |
|---|---|
| rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | rexlimdva2 3137 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: fimaproj 8117 summolem2 15689 ghmqusnsglem1 19219 ghmquskerlem1 19222 cygabl 19828 dissnlocfin 23423 utopsnneiplem 24142 restmetu 24465 elqaa 26237 2sqmo 27355 colline 28583 axcontlem2 28899 grpoidinvlem4 30443 2ndimaxp 32577 fnpreimac 32602 mndlrinvb 32973 mndlactfo 32975 mndractfo 32977 mndlactf1o 32978 mndractf1o 32979 cyc3genpm 33116 isarchi3 33148 elrgspn 33204 elrgspnsubrun 33207 fracerl 33263 dvdsruasso 33363 dvdsruasso2 33364 grplsmid 33382 quslsm 33383 nsgqusf1olem2 33392 nsgqusf1olem3 33393 elrspunidl 33406 elrspunsn 33407 ssdifidllem 33434 ssdifidlprm 33436 ssmxidllem 33451 1arithidom 33515 1arithufdlem3 33524 fldextrspunlsp 33676 constrconj 33742 constrfin 33743 constrelextdg2 33744 constrfiss 33748 ist0cld 33830 qtophaus 33833 locfinreflem 33837 cmpcref 33847 ordtconnlem1 33921 esumpcvgval 34075 esumcvg 34083 eulerpartlems 34358 eulerpartlemgvv 34374 reprinfz1 34620 reprpmtf1o 34624 satffunlem2lem2 35400 isbnd3 37785 eldiophss 42769 eldioph4b 42806 pellfund14b 42894 opeoALTV 47689 |
| Copyright terms: Public domain | W3C validator |