MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29an Structured version   Visualization version   GIF version

Theorem r19.29an 3253
Description: A commonly used pattern in the spirit of r19.29 3220. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.)
Hypothesis
Ref Expression
rexlimdva2.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
Assertion
Ref Expression
r19.29an ((𝜑 ∧ ∃𝑥𝐴 𝜓) → 𝜒)
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.29an
StepHypRef Expression
1 rexlimdva2.1 . . 3 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
21rexlimdva2 3252 . 2 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
32imp 407 1 ((𝜑 ∧ ∃𝑥𝐴 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2083  wrex 3108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1766  df-ral 3112  df-rex 3113
This theorem is referenced by:  summolem2  14910  cygabl  18736  dissnlocfin  21825  utopsnneiplem  22543  restmetu  22867  elqaa  24598  2sqmo  25699  colline  26121  axcontlem2  26438  grpoidinvlem4  27971  fnpreimac  30102  cyc3genpm  30428  isarchi3  30450  fimaproj  30710  qtophaus  30713  locfinreflem  30717  cmpcref  30727  ordtconnlem1  30780  esumpcvgval  30950  esumcvg  30958  eulerpartlems  31231  eulerpartlemgvv  31247  reprinfz1  31506  reprpmtf1o  31510  satffunlem2lem2  32263  isbnd3  34615  eldiophss  38877  eldioph4b  38914  pellfund14b  39002  opeoALTV  43353
  Copyright terms: Public domain W3C validator