Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version |
Description: A commonly used pattern in the spirit of r19.29 3185. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
2 | 1 | rexlimdva2 3217 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-ral 3070 df-rex 3071 |
This theorem is referenced by: fimaproj 7960 summolem2 15409 cygabl 19472 cygablOLD 19473 dissnlocfin 22661 utopsnneiplem 23380 restmetu 23707 elqaa 25463 2sqmo 26566 colline 26991 axcontlem2 27314 grpoidinvlem4 28848 2ndimaxp 30963 fnpreimac 30987 cyc3genpm 31398 isarchi3 31420 grplsmid 31571 quslsm 31572 nsgqusf1olem2 31578 nsgqusf1olem3 31579 elrspunidl 31585 ssmxidllem 31620 ist0cld 31762 qtophaus 31765 locfinreflem 31769 cmpcref 31779 ordtconnlem1 31853 esumpcvgval 32025 esumcvg 32033 eulerpartlems 32306 eulerpartlemgvv 32322 reprinfz1 32581 reprpmtf1o 32585 satffunlem2lem2 33347 isbnd3 35921 eldiophss 40576 eldioph4b 40613 pellfund14b 40701 opeoALTV 45088 |
Copyright terms: Public domain | W3C validator |