| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern in the spirit of r19.29 3092. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
| Ref | Expression |
|---|---|
| rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | rexlimdva2 3132 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: fimaproj 8068 summolem2 15623 ghmqusnsglem1 19159 ghmquskerlem1 19162 cygabl 19770 dissnlocfin 23414 utopsnneiplem 24133 restmetu 24456 elqaa 26228 2sqmo 27346 colline 28594 axcontlem2 28910 grpoidinvlem4 30451 2ndimaxp 32589 fnpreimac 32614 mndlrinvb 32979 mndlactfo 32981 mndractfo 32983 mndlactf1o 32984 mndractf1o 32985 cyc3genpm 33094 isarchi3 33129 elrgspn 33186 elrgspnsubrun 33189 fracerl 33245 dvdsruasso 33322 dvdsruasso2 33323 grplsmid 33341 quslsm 33342 nsgqusf1olem2 33351 nsgqusf1olem3 33352 elrspunidl 33365 elrspunsn 33366 ssdifidllem 33393 ssdifidlprm 33395 ssmxidllem 33410 1arithidom 33474 1arithufdlem3 33483 fldextrspunlsp 33641 constrconj 33712 constrfin 33713 constrelextdg2 33714 constrfiss 33718 ist0cld 33800 qtophaus 33803 locfinreflem 33807 cmpcref 33817 ordtconnlem1 33891 esumpcvgval 34045 esumcvg 34053 eulerpartlems 34328 eulerpartlemgvv 34344 reprinfz1 34590 reprpmtf1o 34594 satffunlem2lem2 35379 isbnd3 37764 eldiophss 42747 eldioph4b 42784 pellfund14b 42872 opeoALTV 47668 |
| Copyright terms: Public domain | W3C validator |