| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern in the spirit of r19.29 3094. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
| Ref | Expression |
|---|---|
| rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | rexlimdva2 3136 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: fimaproj 8091 summolem2 15658 ghmqusnsglem1 19188 ghmquskerlem1 19191 cygabl 19797 dissnlocfin 23392 utopsnneiplem 24111 restmetu 24434 elqaa 26206 2sqmo 27324 colline 28552 axcontlem2 28868 grpoidinvlem4 30409 2ndimaxp 32543 fnpreimac 32568 mndlrinvb 32939 mndlactfo 32941 mndractfo 32943 mndlactf1o 32944 mndractf1o 32945 cyc3genpm 33082 isarchi3 33114 elrgspn 33170 elrgspnsubrun 33173 fracerl 33229 dvdsruasso 33329 dvdsruasso2 33330 grplsmid 33348 quslsm 33349 nsgqusf1olem2 33358 nsgqusf1olem3 33359 elrspunidl 33372 elrspunsn 33373 ssdifidllem 33400 ssdifidlprm 33402 ssmxidllem 33417 1arithidom 33481 1arithufdlem3 33490 fldextrspunlsp 33642 constrconj 33708 constrfin 33709 constrelextdg2 33710 constrfiss 33714 ist0cld 33796 qtophaus 33799 locfinreflem 33803 cmpcref 33813 ordtconnlem1 33887 esumpcvgval 34041 esumcvg 34049 eulerpartlems 34324 eulerpartlemgvv 34340 reprinfz1 34586 reprpmtf1o 34590 satffunlem2lem2 35366 isbnd3 37751 eldiophss 42735 eldioph4b 42772 pellfund14b 42860 opeoALTV 47658 |
| Copyright terms: Public domain | W3C validator |