Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version |
Description: A commonly used pattern in the spirit of r19.29 3114. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
2 | 1 | rexlimdva2 3151 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
3 | 2 | imp 408 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-rex 3072 |
This theorem is referenced by: fimaproj 8007 summolem2 15473 cygabl 19536 cygablOLD 19537 dissnlocfin 22725 utopsnneiplem 23444 restmetu 23771 elqaa 25527 2sqmo 26630 colline 27055 axcontlem2 27378 grpoidinvlem4 28914 2ndimaxp 31029 fnpreimac 31053 cyc3genpm 31464 isarchi3 31486 grplsmid 31637 quslsm 31638 nsgqusf1olem2 31644 nsgqusf1olem3 31645 elrspunidl 31651 ssmxidllem 31686 ist0cld 31828 qtophaus 31831 locfinreflem 31835 cmpcref 31845 ordtconnlem1 31919 esumpcvgval 32091 esumcvg 32099 eulerpartlems 32372 eulerpartlemgvv 32388 reprinfz1 32647 reprpmtf1o 32651 satffunlem2lem2 33413 isbnd3 35986 eldiophss 40633 eldioph4b 40670 pellfund14b 40758 opeoALTV 45194 |
Copyright terms: Public domain | W3C validator |