| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern in the spirit of r19.29 3114. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
| Ref | Expression |
|---|---|
| rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | rexlimdva2 3157 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3071 |
| This theorem is referenced by: fimaproj 8160 summolem2 15752 ghmqusnsglem1 19298 ghmquskerlem1 19301 cygabl 19909 dissnlocfin 23537 utopsnneiplem 24256 restmetu 24583 elqaa 26364 2sqmo 27481 colline 28657 axcontlem2 28980 grpoidinvlem4 30526 2ndimaxp 32656 fnpreimac 32681 mndlrinvb 33030 mndlactfo 33032 mndractfo 33034 mndlactf1o 33035 mndractf1o 33036 cyc3genpm 33172 isarchi3 33194 elrgspn 33250 elrgspnsubrun 33253 fracerl 33308 dvdsruasso 33413 dvdsruasso2 33414 grplsmid 33432 quslsm 33433 nsgqusf1olem2 33442 nsgqusf1olem3 33443 elrspunidl 33456 elrspunsn 33457 ssdifidllem 33484 ssdifidlprm 33486 ssmxidllem 33501 1arithidom 33565 1arithufdlem3 33574 fldextrspunlsp 33724 constrconj 33786 constrfin 33787 constrelextdg2 33788 ist0cld 33832 qtophaus 33835 locfinreflem 33839 cmpcref 33849 ordtconnlem1 33923 esumpcvgval 34079 esumcvg 34087 eulerpartlems 34362 eulerpartlemgvv 34378 reprinfz1 34637 reprpmtf1o 34641 satffunlem2lem2 35411 isbnd3 37791 eldiophss 42785 eldioph4b 42822 pellfund14b 42910 opeoALTV 47671 |
| Copyright terms: Public domain | W3C validator |