![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version |
Description: A commonly used pattern in the spirit of r19.29 3120. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
2 | 1 | rexlimdva2 3163 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: fimaproj 8176 summolem2 15764 ghmqusnsglem1 19320 ghmquskerlem1 19323 cygabl 19933 dissnlocfin 23558 utopsnneiplem 24277 restmetu 24604 elqaa 26382 2sqmo 27499 colline 28675 axcontlem2 28998 grpoidinvlem4 30539 2ndimaxp 32665 fnpreimac 32689 mndlrinvb 33011 mndlactfo 33013 mndractfo 33015 mndlactf1o 33016 mndractf1o 33017 cyc3genpm 33145 isarchi3 33167 fracerl 33273 dvdsruasso 33378 dvdsruasso2 33379 grplsmid 33397 quslsm 33398 nsgqusf1olem2 33407 nsgqusf1olem3 33408 elrspunidl 33421 elrspunsn 33422 ssdifidllem 33449 ssdifidlprm 33451 ssmxidllem 33466 1arithidom 33530 1arithufdlem3 33539 constrconj 33735 constrfin 33736 constrelextdg2 33737 ist0cld 33779 qtophaus 33782 locfinreflem 33786 cmpcref 33796 ordtconnlem1 33870 esumpcvgval 34042 esumcvg 34050 eulerpartlems 34325 eulerpartlemgvv 34341 reprinfz1 34599 reprpmtf1o 34603 satffunlem2lem2 35374 isbnd3 37744 eldiophss 42730 eldioph4b 42767 pellfund14b 42855 opeoALTV 47558 |
Copyright terms: Public domain | W3C validator |