![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version |
Description: A commonly used pattern in the spirit of r19.29 3220. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
2 | 1 | rexlimdva2 3252 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
3 | 2 | imp 407 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2083 ∃wrex 3108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 df-ral 3112 df-rex 3113 |
This theorem is referenced by: summolem2 14910 cygabl 18736 dissnlocfin 21825 utopsnneiplem 22543 restmetu 22867 elqaa 24598 2sqmo 25699 colline 26121 axcontlem2 26438 grpoidinvlem4 27971 fnpreimac 30102 cyc3genpm 30428 isarchi3 30450 fimaproj 30710 qtophaus 30713 locfinreflem 30717 cmpcref 30727 ordtconnlem1 30780 esumpcvgval 30950 esumcvg 30958 eulerpartlems 31231 eulerpartlemgvv 31247 reprinfz1 31506 reprpmtf1o 31510 satffunlem2lem2 32263 isbnd3 34615 eldiophss 38877 eldioph4b 38914 pellfund14b 39002 opeoALTV 43353 |
Copyright terms: Public domain | W3C validator |