![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version |
Description: A commonly used pattern in the spirit of r19.29 3114. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
2 | 1 | rexlimdva2 3157 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
3 | 2 | imp 407 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-rex 3071 |
This theorem is referenced by: fimaproj 8123 summolem2 15664 cygabl 19761 dissnlocfin 23040 utopsnneiplem 23759 restmetu 24086 elqaa 25842 2sqmo 26947 colline 27938 axcontlem2 28261 grpoidinvlem4 29798 2ndimaxp 31910 fnpreimac 31934 cyc3genpm 32352 isarchi3 32374 dvdsruasso 32535 grplsmid 32559 quslsm 32561 nsgqusf1olem2 32570 nsgqusf1olem3 32571 ghmquskerlem1 32573 elrspunidl 32591 elrspunsn 32592 ssmxidllem 32634 ist0cld 32882 qtophaus 32885 locfinreflem 32889 cmpcref 32899 ordtconnlem1 32973 esumpcvgval 33145 esumcvg 33153 eulerpartlems 33428 eulerpartlemgvv 33444 reprinfz1 33703 reprpmtf1o 33707 satffunlem2lem2 34466 isbnd3 36738 eldiophss 41594 eldioph4b 41631 pellfund14b 41719 opeoALTV 46431 |
Copyright terms: Public domain | W3C validator |