| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern in the spirit of r19.29 3094. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
| Ref | Expression |
|---|---|
| rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | rexlimdva2 3136 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: fimaproj 8114 summolem2 15682 ghmqusnsglem1 19212 ghmquskerlem1 19215 cygabl 19821 dissnlocfin 23416 utopsnneiplem 24135 restmetu 24458 elqaa 26230 2sqmo 27348 colline 28576 axcontlem2 28892 grpoidinvlem4 30436 2ndimaxp 32570 fnpreimac 32595 mndlrinvb 32966 mndlactfo 32968 mndractfo 32970 mndlactf1o 32971 mndractf1o 32972 cyc3genpm 33109 isarchi3 33141 elrgspn 33197 elrgspnsubrun 33200 fracerl 33256 dvdsruasso 33356 dvdsruasso2 33357 grplsmid 33375 quslsm 33376 nsgqusf1olem2 33385 nsgqusf1olem3 33386 elrspunidl 33399 elrspunsn 33400 ssdifidllem 33427 ssdifidlprm 33429 ssmxidllem 33444 1arithidom 33508 1arithufdlem3 33517 fldextrspunlsp 33669 constrconj 33735 constrfin 33736 constrelextdg2 33737 constrfiss 33741 ist0cld 33823 qtophaus 33826 locfinreflem 33830 cmpcref 33840 ordtconnlem1 33914 esumpcvgval 34068 esumcvg 34076 eulerpartlems 34351 eulerpartlemgvv 34367 reprinfz1 34613 reprpmtf1o 34617 satffunlem2lem2 35393 isbnd3 37778 eldiophss 42762 eldioph4b 42799 pellfund14b 42887 opeoALTV 47685 |
| Copyright terms: Public domain | W3C validator |