| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern in the spirit of r19.29 3095. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
| Ref | Expression |
|---|---|
| rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | rexlimdva2 3135 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| 3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: fimaproj 8060 summolem2 15618 ghmqusnsglem1 19187 ghmquskerlem1 19190 cygabl 19798 dissnlocfin 23439 utopsnneiplem 24157 restmetu 24480 elqaa 26252 2sqmo 27370 colline 28622 axcontlem2 28938 grpoidinvlem4 30479 2ndimaxp 32620 fnpreimac 32645 mndlrinvb 32998 mndlactfo 33000 mndractfo 33002 mndlactf1o 33003 mndractf1o 33004 cyc3genpm 33113 isarchi3 33148 elrgspn 33205 elrgspnsubrun 33208 fracerl 33264 dvdsruasso 33342 dvdsruasso2 33343 grplsmid 33361 quslsm 33362 nsgqusf1olem2 33371 nsgqusf1olem3 33372 elrspunidl 33385 elrspunsn 33386 ssdifidllem 33413 ssdifidlprm 33415 ssmxidllem 33430 1arithidom 33494 1arithufdlem3 33503 fldextrspunlsp 33679 constrconj 33750 constrfin 33751 constrelextdg2 33752 constrfiss 33756 ist0cld 33838 qtophaus 33841 locfinreflem 33845 cmpcref 33855 ordtconnlem1 33929 esumpcvgval 34083 esumcvg 34091 eulerpartlems 34365 eulerpartlemgvv 34381 reprinfz1 34627 reprpmtf1o 34631 satffunlem2lem2 35442 isbnd3 37824 eldiophss 42807 eldioph4b 42844 pellfund14b 42932 opeoALTV 47715 |
| Copyright terms: Public domain | W3C validator |