![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29an | Structured version Visualization version GIF version |
Description: A commonly used pattern in the spirit of r19.29 3114. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
Ref | Expression |
---|---|
rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
r19.29an | ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
2 | 1 | rexlimdva2 3157 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
3 | 2 | imp 407 | 1 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-rex 3071 |
This theorem is referenced by: fimaproj 8117 summolem2 15658 cygabl 19753 dissnlocfin 23024 utopsnneiplem 23743 restmetu 24070 elqaa 25826 2sqmo 26929 colline 27889 axcontlem2 28212 grpoidinvlem4 29747 2ndimaxp 31859 fnpreimac 31883 cyc3genpm 32298 isarchi3 32320 dvdsruasso 32478 grplsmid 32502 quslsm 32504 nsgqusf1olem2 32513 nsgqusf1olem3 32514 ghmquskerlem1 32516 elrspunidl 32534 elrspunsn 32535 ssmxidllem 32577 ist0cld 32801 qtophaus 32804 locfinreflem 32808 cmpcref 32818 ordtconnlem1 32892 esumpcvgval 33064 esumcvg 33072 eulerpartlems 33347 eulerpartlemgvv 33363 reprinfz1 33622 reprpmtf1o 33626 satffunlem2lem2 34385 isbnd3 36640 eldiophss 41497 eldioph4b 41534 pellfund14b 41622 opeoALTV 46338 |
Copyright terms: Public domain | W3C validator |