MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeu Structured version   Visualization version   GIF version

Theorem oeeu 8309
Description: The division algorithm for ordinal exponentiation. (Contributed by Mario Carneiro, 25-May-2015.)
Assertion
Ref Expression
oeeu ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧

Proof of Theorem oeeu
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} = {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}
21oeeulem 8307 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∈ On ∧ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ⊆ 𝐵𝐵 ∈ (𝐴o suc {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})))
32simp1d 1144 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∈ On)
4 fvexd 6710 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) ∈ V)
5 fvexd 6710 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) ∈ V)
6 eqid 2736 . . . 4 (℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵)) = (℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))
7 eqid 2736 . . . 4 (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) = (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵)))
8 eqid 2736 . . . 4 (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) = (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵)))
91, 6, 7, 8oeeui 8308 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵) ↔ (𝑥 = {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∧ 𝑦 = (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) ∧ 𝑧 = (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))))))
103, 4, 5, 9euotd 5381 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
11 df-3an 1091 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ 𝑧 ∈ (𝐴o 𝑥)))
1211biancomi 466 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ↔ (𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))))
1312anbi1i 627 . . . . . . . . 9 (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
1413anbi2i 626 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
15 an12 645 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
16 anass 472 . . . . . . . 8 (((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ (𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
1714, 15, 163bitri 300 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ (𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
1817exbii 1855 . . . . . 6 (∃𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑧(𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
19 df-rex 3057 . . . . . 6 (∃𝑧 ∈ (𝐴o 𝑥)((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑧(𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
20 r19.42v 3253 . . . . . 6 (∃𝑧 ∈ (𝐴o 𝑥)((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
2118, 19, 203bitr2i 302 . . . . 5 (∃𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
22212exbii 1856 . . . 4 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
23 r2ex 3212 . . . 4 (∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
2422, 23bitr4i 281 . . 3 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
2524eubii 2584 . 2 (∃!𝑤𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
2610, 25sylib 221 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2112  ∃!weu 2567  wrex 3052  {crab 3055  Vcvv 3398  cdif 3850  wss 3853  cop 4533  cotp 4535   cuni 4805   cint 4845  Oncon0 6191  suc csuc 6193  cio 6314  cfv 6358  (class class class)co 7191  1st c1st 7737  2nd c2nd 7738  1oc1o 8173  2oc2o 8174   +o coa 8177   ·o comu 8178  o coe 8179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-ot 4536  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-oadd 8184  df-omul 8185  df-oexp 8186
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator