MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeu Structured version   Visualization version   GIF version

Theorem oeeu 8223
Description: The division algorithm for ordinal exponentiation. (Contributed by Mario Carneiro, 25-May-2015.)
Assertion
Ref Expression
oeeu ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧

Proof of Theorem oeeu
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . . 6 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} = {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}
21oeeulem 8221 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∈ On ∧ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ⊆ 𝐵𝐵 ∈ (𝐴o suc {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})))
32simp1d 1138 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∈ On)
43elexd 3514 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∈ V)
5 fvexd 6679 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) ∈ V)
6 fvexd 6679 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) ∈ V)
7 eqid 2821 . . . 4 (℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵)) = (℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))
8 eqid 2821 . . . 4 (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) = (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵)))
9 eqid 2821 . . . 4 (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) = (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵)))
101, 7, 8, 9oeeui 8222 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵) ↔ (𝑥 = {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∧ 𝑦 = (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) ∧ 𝑧 = (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))))))
114, 5, 6, 10euotd 5395 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
12 df-3an 1085 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ 𝑧 ∈ (𝐴o 𝑥)))
1312biancomi 465 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ↔ (𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))))
1413anbi1i 625 . . . . . . . . 9 (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
1514anbi2i 624 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
16 an12 643 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
17 anass 471 . . . . . . . 8 (((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ (𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
1815, 16, 173bitri 299 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ (𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
1918exbii 1844 . . . . . 6 (∃𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑧(𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
20 df-rex 3144 . . . . . 6 (∃𝑧 ∈ (𝐴o 𝑥)((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑧(𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
21 r19.42v 3350 . . . . . 6 (∃𝑧 ∈ (𝐴o 𝑥)((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
2219, 20, 213bitr2i 301 . . . . 5 (∃𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
23222exbii 1845 . . . 4 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
24 r2ex 3303 . . . 4 (∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
2523, 24bitr4i 280 . . 3 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
2625eubii 2666 . 2 (∃!𝑤𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
2711, 26sylib 220 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  ∃!weu 2649  wrex 3139  {crab 3142  cdif 3932  wss 3935  cop 4566  cotp 4568   cuni 4831   cint 4868  Oncon0 6185  suc csuc 6187  cio 6306  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  1oc1o 8089  2oc2o 8090   +o coa 8093   ·o comu 8094  o coe 8095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-ot 4569  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-oexp 8102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator