MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeu Structured version   Visualization version   GIF version

Theorem oeeu 8396
Description: The division algorithm for ordinal exponentiation. (Contributed by Mario Carneiro, 25-May-2015.)
Assertion
Ref Expression
oeeu ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧

Proof of Theorem oeeu
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} = {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}
21oeeulem 8394 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∈ On ∧ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ⊆ 𝐵𝐵 ∈ (𝐴o suc {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})))
32simp1d 1140 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∈ On)
4 fvexd 6771 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) ∈ V)
5 fvexd 6771 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) ∈ V)
6 eqid 2738 . . . 4 (℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵)) = (℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))
7 eqid 2738 . . . 4 (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) = (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵)))
8 eqid 2738 . . . 4 (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) = (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵)))
91, 6, 7, 8oeeui 8395 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵) ↔ (𝑥 = {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∧ 𝑦 = (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) ∧ 𝑧 = (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))))))
103, 4, 5, 9euotd 5421 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
11 df-3an 1087 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ 𝑧 ∈ (𝐴o 𝑥)))
1211biancomi 462 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ↔ (𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))))
1312anbi1i 623 . . . . . . . . 9 (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
1413anbi2i 622 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
15 an12 641 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
16 anass 468 . . . . . . . 8 (((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ (𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
1714, 15, 163bitri 296 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ (𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
1817exbii 1851 . . . . . 6 (∃𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑧(𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
19 df-rex 3069 . . . . . 6 (∃𝑧 ∈ (𝐴o 𝑥)((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑧(𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
20 r19.42v 3276 . . . . . 6 (∃𝑧 ∈ (𝐴o 𝑥)((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
2118, 19, 203bitr2i 298 . . . . 5 (∃𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
22212exbii 1852 . . . 4 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
23 r2ex 3231 . . . 4 (∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
2422, 23bitr4i 277 . . 3 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
2524eubii 2585 . 2 (∃!𝑤𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
2610, 25sylib 217 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  ∃!weu 2568  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  cop 4564  cotp 4566   cuni 4836   cint 4876  Oncon0 6251  suc csuc 6253  cio 6374  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  1oc1o 8260  2oc2o 8261   +o coa 8264   ·o comu 8265  o coe 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator