MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeu Structured version   Visualization version   GIF version

Theorem oeeu 8421
Description: The division algorithm for ordinal exponentiation. (Contributed by Mario Carneiro, 25-May-2015.)
Assertion
Ref Expression
oeeu ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧

Proof of Theorem oeeu
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} = {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}
21oeeulem 8419 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∈ On ∧ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ⊆ 𝐵𝐵 ∈ (𝐴o suc {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})))
32simp1d 1141 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∈ On)
4 fvexd 6781 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) ∈ V)
5 fvexd 6781 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) ∈ V)
6 eqid 2738 . . . 4 (℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵)) = (℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))
7 eqid 2738 . . . 4 (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) = (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵)))
8 eqid 2738 . . . 4 (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) = (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵)))
91, 6, 7, 8oeeui 8420 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵) ↔ (𝑥 = {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)} ∧ 𝑦 = (1st ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))) ∧ 𝑧 = (2nd ‘(℩𝑑𝑏 ∈ On ∃𝑐 ∈ (𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)})(𝑑 = ⟨𝑏, 𝑐⟩ ∧ (((𝐴o {𝑎 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑎)}) ·o 𝑏) +o 𝑐) = 𝐵))))))
103, 4, 5, 9euotd 5425 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
11 df-3an 1088 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ 𝑧 ∈ (𝐴o 𝑥)))
1211biancomi 463 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ↔ (𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))))
1312anbi1i 624 . . . . . . . . 9 (((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
1413anbi2i 623 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
15 an12 642 . . . . . . . 8 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
16 anass 469 . . . . . . . 8 (((𝑧 ∈ (𝐴o 𝑥) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o))) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ (𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
1714, 15, 163bitri 297 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ (𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
1817exbii 1850 . . . . . 6 (∃𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑧(𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
19 df-rex 3070 . . . . . 6 (∃𝑧 ∈ (𝐴o 𝑥)((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑧(𝑧 ∈ (𝐴o 𝑥) ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))))
20 r19.42v 3277 . . . . . 6 (∃𝑧 ∈ (𝐴o 𝑥)((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ (𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
2118, 19, 203bitr2i 299 . . . . 5 (∃𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
22212exbii 1851 . . . 4 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
23 r2ex 3230 . . . 4 (∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o)) ∧ ∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)))
2422, 23bitr4i 277 . . 3 (∃𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
2524eubii 2585 . 2 (∃!𝑤𝑥𝑦𝑧(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ (𝐴 ∖ 1o) ∧ 𝑧 ∈ (𝐴o 𝑥)) ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) ↔ ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
2610, 25sylib 217 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴o 𝑥)(𝑤 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ (((𝐴o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568  wrex 3065  {crab 3068  Vcvv 3429  cdif 3883  wss 3886  cop 4567  cotp 4569   cuni 4839   cint 4879  Oncon0 6259  suc csuc 6261  cio 6382  cfv 6426  (class class class)co 7267  1st c1st 7818  2nd c2nd 7819  1oc1o 8277  2oc2o 8278   +o coa 8281   ·o comu 8282  o coe 8283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-2o 8285  df-oadd 8288  df-omul 8289  df-oexp 8290
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator