MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prb Structured version   Visualization version   GIF version

Theorem hash2prb 14378
Description: A set of size two is a proper unordered pair. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
hash2prb (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
Distinct variable groups:   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem hash2prb
StepHypRef Expression
1 hash2exprb 14377 . 2 (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏})))
2 vex 3452 . . . . . . . . 9 𝑎 ∈ V
32prid1 4728 . . . . . . . 8 𝑎 ∈ {𝑎, 𝑏}
4 vex 3452 . . . . . . . . 9 𝑏 ∈ V
54prid2 4729 . . . . . . . 8 𝑏 ∈ {𝑎, 𝑏}
63, 5pm3.2i 472 . . . . . . 7 (𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})
7 eleq2 2827 . . . . . . . 8 (𝑉 = {𝑎, 𝑏} → (𝑎𝑉𝑎 ∈ {𝑎, 𝑏}))
8 eleq2 2827 . . . . . . . 8 (𝑉 = {𝑎, 𝑏} → (𝑏𝑉𝑏 ∈ {𝑎, 𝑏}))
97, 8anbi12d 632 . . . . . . 7 (𝑉 = {𝑎, 𝑏} → ((𝑎𝑉𝑏𝑉) ↔ (𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})))
106, 9mpbiri 258 . . . . . 6 (𝑉 = {𝑎, 𝑏} → (𝑎𝑉𝑏𝑉))
1110adantl 483 . . . . 5 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑎𝑉𝑏𝑉))
1211pm4.71ri 562 . . . 4 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})))
13122exbii 1852 . . 3 (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})))
1413a1i 11 . 2 (𝑉𝑊 → (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏}))))
15 r2ex 3193 . . . 4 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})))
1615bicomi 223 . . 3 (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏}))
1716a1i 11 . 2 (𝑉𝑊 → (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
181, 14, 173bitrd 305 1 (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wne 2944  wrex 3074  {cpr 4593  cfv 6501  2c2 12215  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-hash 14238
This theorem is referenced by:  hash2prd  14381  elss2prb  14393  nbgr2vtx1edg  28340  nbuhgr2vtx1edgb  28342  prpair  45767  requad2  45889
  Copyright terms: Public domain W3C validator