MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prb Structured version   Visualization version   GIF version

Theorem hash2prb 14475
Description: A set of size two is a proper unordered pair. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
hash2prb (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
Distinct variable groups:   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem hash2prb
StepHypRef Expression
1 hash2exprb 14474 . 2 (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏})))
2 vex 3477 . . . . . . . . 9 𝑎 ∈ V
32prid1 4771 . . . . . . . 8 𝑎 ∈ {𝑎, 𝑏}
4 vex 3477 . . . . . . . . 9 𝑏 ∈ V
54prid2 4772 . . . . . . . 8 𝑏 ∈ {𝑎, 𝑏}
63, 5pm3.2i 469 . . . . . . 7 (𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})
7 eleq2 2818 . . . . . . . 8 (𝑉 = {𝑎, 𝑏} → (𝑎𝑉𝑎 ∈ {𝑎, 𝑏}))
8 eleq2 2818 . . . . . . . 8 (𝑉 = {𝑎, 𝑏} → (𝑏𝑉𝑏 ∈ {𝑎, 𝑏}))
97, 8anbi12d 630 . . . . . . 7 (𝑉 = {𝑎, 𝑏} → ((𝑎𝑉𝑏𝑉) ↔ (𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})))
106, 9mpbiri 257 . . . . . 6 (𝑉 = {𝑎, 𝑏} → (𝑎𝑉𝑏𝑉))
1110adantl 480 . . . . 5 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑎𝑉𝑏𝑉))
1211pm4.71ri 559 . . . 4 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})))
13122exbii 1843 . . 3 (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})))
1413a1i 11 . 2 (𝑉𝑊 → (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏}))))
15 r2ex 3193 . . . 4 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})))
1615bicomi 223 . . 3 (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏}))
1716a1i 11 . 2 (𝑉𝑊 → (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
181, 14, 173bitrd 304 1 (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wne 2937  wrex 3067  {cpr 4634  cfv 6553  2c2 12307  chash 14331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-oadd 8499  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-dju 9934  df-card 9972  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-2 12315  df-n0 12513  df-z 12599  df-uz 12863  df-fz 13527  df-hash 14332
This theorem is referenced by:  hash2prd  14478  elss2prb  14490  nbgr2vtx1edg  29191  nbuhgr2vtx1edgb  29193  prpair  46888  requad2  47010
  Copyright terms: Public domain W3C validator