MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prb Structured version   Visualization version   GIF version

Theorem hash2prb 14432
Description: A set of size two is a proper unordered pair. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
hash2prb (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
Distinct variable groups:   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem hash2prb
StepHypRef Expression
1 hash2exprb 14431 . 2 (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏})))
2 vex 3478 . . . . . . . . 9 𝑎 ∈ V
32prid1 4766 . . . . . . . 8 𝑎 ∈ {𝑎, 𝑏}
4 vex 3478 . . . . . . . . 9 𝑏 ∈ V
54prid2 4767 . . . . . . . 8 𝑏 ∈ {𝑎, 𝑏}
63, 5pm3.2i 471 . . . . . . 7 (𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})
7 eleq2 2822 . . . . . . . 8 (𝑉 = {𝑎, 𝑏} → (𝑎𝑉𝑎 ∈ {𝑎, 𝑏}))
8 eleq2 2822 . . . . . . . 8 (𝑉 = {𝑎, 𝑏} → (𝑏𝑉𝑏 ∈ {𝑎, 𝑏}))
97, 8anbi12d 631 . . . . . . 7 (𝑉 = {𝑎, 𝑏} → ((𝑎𝑉𝑏𝑉) ↔ (𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})))
106, 9mpbiri 257 . . . . . 6 (𝑉 = {𝑎, 𝑏} → (𝑎𝑉𝑏𝑉))
1110adantl 482 . . . . 5 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑎𝑉𝑏𝑉))
1211pm4.71ri 561 . . . 4 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})))
13122exbii 1851 . . 3 (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})))
1413a1i 11 . 2 (𝑉𝑊 → (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏}))))
15 r2ex 3195 . . . 4 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})))
1615bicomi 223 . . 3 (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏}))
1716a1i 11 . 2 (𝑉𝑊 → (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
181, 14, 173bitrd 304 1 (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  wrex 3070  {cpr 4630  cfv 6543  2c2 12266  chash 14289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-oadd 8469  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-hash 14290
This theorem is referenced by:  hash2prd  14435  elss2prb  14447  nbgr2vtx1edg  28604  nbuhgr2vtx1edgb  28606  prpair  46159  requad2  46281
  Copyright terms: Public domain W3C validator