MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2prb Structured version   Visualization version   GIF version

Theorem hash2prb 13823
Description: A set of size two is a proper unordered pair. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
hash2prb (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
Distinct variable groups:   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem hash2prb
StepHypRef Expression
1 hash2exprb 13822 . 2 (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏})))
2 vex 3502 . . . . . . . . 9 𝑎 ∈ V
32prid1 4696 . . . . . . . 8 𝑎 ∈ {𝑎, 𝑏}
4 vex 3502 . . . . . . . . 9 𝑏 ∈ V
54prid2 4697 . . . . . . . 8 𝑏 ∈ {𝑎, 𝑏}
63, 5pm3.2i 471 . . . . . . 7 (𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})
7 eleq2 2905 . . . . . . . 8 (𝑉 = {𝑎, 𝑏} → (𝑎𝑉𝑎 ∈ {𝑎, 𝑏}))
8 eleq2 2905 . . . . . . . 8 (𝑉 = {𝑎, 𝑏} → (𝑏𝑉𝑏 ∈ {𝑎, 𝑏}))
97, 8anbi12d 630 . . . . . . 7 (𝑉 = {𝑎, 𝑏} → ((𝑎𝑉𝑏𝑉) ↔ (𝑎 ∈ {𝑎, 𝑏} ∧ 𝑏 ∈ {𝑎, 𝑏})))
106, 9mpbiri 259 . . . . . 6 (𝑉 = {𝑎, 𝑏} → (𝑎𝑉𝑏𝑉))
1110adantl 482 . . . . 5 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑎𝑉𝑏𝑉))
1211pm4.71ri 561 . . . 4 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})))
13122exbii 1842 . . 3 (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})))
1413a1i 11 . 2 (𝑉𝑊 → (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏}))))
15 r2ex 3307 . . . 4 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})))
1615bicomi 225 . . 3 (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏}))
1716a1i 11 . 2 (𝑉𝑊 → (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
181, 14, 173bitrd 306 1 (𝑉𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wex 1773  wcel 2107  wne 3020  wrex 3143  {cpr 4565  cfv 6351  2c2 11684  chash 13683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-hash 13684
This theorem is referenced by:  hash2prd  13826  elss2prb  13838  nbgr2vtx1edg  27048  nbuhgr2vtx1edgb  27050  prpair  43497  requad2  43622
  Copyright terms: Public domain W3C validator