Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  omxpenlem Structured version   Visualization version   GIF version

Theorem omxpenlem 8639
 Description: Lemma for omxpen 8640. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 25-May-2015.)
Hypothesis
Ref Expression
omxpenlem.1 𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦))
Assertion
Ref Expression
omxpenlem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem omxpenlem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 6179 . . . . . . . . 9 (𝐵 ∈ On → Ord 𝐵)
21ad2antlr 726 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → Ord 𝐵)
3 simprl 770 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝑥𝐵)
4 ordsucss 7532 . . . . . . . 8 (Ord 𝐵 → (𝑥𝐵 → suc 𝑥𝐵))
52, 3, 4sylc 65 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → suc 𝑥𝐵)
6 onelon 6194 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
76ad2ant2lr 747 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝑥 ∈ On)
8 suceloni 7527 . . . . . . . . 9 (𝑥 ∈ On → suc 𝑥 ∈ On)
97, 8syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → suc 𝑥 ∈ On)
10 simplr 768 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝐵 ∈ On)
11 simpll 766 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝐴 ∈ On)
12 omwordi 8207 . . . . . . . 8 ((suc 𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (suc 𝑥𝐵 → (𝐴 ·o suc 𝑥) ⊆ (𝐴 ·o 𝐵)))
139, 10, 11, 12syl3anc 1368 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (suc 𝑥𝐵 → (𝐴 ·o suc 𝑥) ⊆ (𝐴 ·o 𝐵)))
145, 13mpd 15 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (𝐴 ·o suc 𝑥) ⊆ (𝐴 ·o 𝐵))
15 simprr 772 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝑦𝐴)
16 onelon 6194 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
1716ad2ant2rl 748 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝑦 ∈ On)
18 omcl 8171 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On)
1911, 7, 18syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (𝐴 ·o 𝑥) ∈ On)
20 oaord 8183 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝑥) ∈ On) → (𝑦𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴)))
2117, 11, 19, 20syl3anc 1368 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (𝑦𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴)))
2215, 21mpbid 235 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴))
23 omsuc 8161 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴))
2411, 7, 23syl2anc 587 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴))
2522, 24eleqtrrd 2855 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o suc 𝑥))
2614, 25sseldd 3893 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵))
2726ralrimivva 3120 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑥𝐵𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵))
28 omxpenlem.1 . . . . 5 𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦))
2928fmpo 7770 . . . 4 (∀𝑥𝐵𝑦𝐴 ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ↔ 𝐹:(𝐵 × 𝐴)⟶(𝐴 ·o 𝐵))
3027, 29sylib 221 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)⟶(𝐴 ·o 𝐵))
3130ffnd 6499 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹 Fn (𝐵 × 𝐴))
32 simpll 766 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → 𝐴 ∈ On)
33 omcl 8171 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
34 onelon 6194 . . . . . . . 8 (((𝐴 ·o 𝐵) ∈ On ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → 𝑚 ∈ On)
3533, 34sylan 583 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → 𝑚 ∈ On)
36 noel 4230 . . . . . . . . . . . 12 ¬ 𝑚 ∈ ∅
37 oveq1 7157 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
38 om0r 8174 . . . . . . . . . . . . . 14 (𝐵 ∈ On → (∅ ·o 𝐵) = ∅)
3937, 38sylan9eqr 2815 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅)
4039eleq2d 2837 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝑚 ∈ (𝐴 ·o 𝐵) ↔ 𝑚 ∈ ∅))
4136, 40mtbiri 330 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ¬ 𝑚 ∈ (𝐴 ·o 𝐵))
4241ex 416 . . . . . . . . . 10 (𝐵 ∈ On → (𝐴 = ∅ → ¬ 𝑚 ∈ (𝐴 ·o 𝐵)))
4342necon2ad 2966 . . . . . . . . 9 (𝐵 ∈ On → (𝑚 ∈ (𝐴 ·o 𝐵) → 𝐴 ≠ ∅))
4443adantl 485 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑚 ∈ (𝐴 ·o 𝐵) → 𝐴 ≠ ∅))
4544imp 410 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → 𝐴 ≠ ∅)
46 omeu 8221 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑚 ∈ On ∧ 𝐴 ≠ ∅) → ∃!𝑛𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚))
4732, 35, 45, 46syl3anc 1368 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → ∃!𝑛𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚))
48 vex 3413 . . . . . . . . 9 𝑚 ∈ V
49 vex 3413 . . . . . . . . 9 𝑛 ∈ V
5048, 49brcnv 5722 . . . . . . . 8 (𝑚𝐹𝑛𝑛𝐹𝑚)
51 eleq1 2839 . . . . . . . . . . . . . . . . 17 (𝑚 = ((𝐴 ·o 𝑥) +o 𝑦) → (𝑚 ∈ (𝐴 ·o 𝐵) ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)))
5251biimpac 482 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (𝐴 ·o 𝐵) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵))
536ex 416 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ On → (𝑥𝐵𝑥 ∈ On))
5453ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) → (𝑥𝐵𝑥 ∈ On))
55 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
56 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
5755, 56, 18syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On)
58 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝑦𝐴)
5955, 58, 16syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝑦 ∈ On)
60 oaword1 8188 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ·o 𝑥) ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑥) ⊆ ((𝐴 ·o 𝑥) +o 𝑦))
6157, 59, 60syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ⊆ ((𝐴 ·o 𝑥) +o 𝑦))
62 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵))
6333ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
64 ontr2 6216 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ·o 𝑥) ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → (((𝐴 ·o 𝑥) ⊆ ((𝐴 ·o 𝑥) +o 𝑦) ∧ ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)) → (𝐴 ·o 𝑥) ∈ (𝐴 ·o 𝐵)))
6557, 63, 64syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (((𝐴 ·o 𝑥) ⊆ ((𝐴 ·o 𝑥) +o 𝑦) ∧ ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)) → (𝐴 ·o 𝑥) ∈ (𝐴 ·o 𝐵)))
6661, 62, 65mp2and 698 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ (𝐴 ·o 𝐵))
67 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝐵 ∈ On)
6862ne0d 4234 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·o 𝐵) ≠ ∅)
69 on0eln0 6224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ·o 𝐵) ∈ On → (∅ ∈ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅))
7063, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅))
7168, 70mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → ∅ ∈ (𝐴 ·o 𝐵))
72 om00el 8212 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)))
7372ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)))
7471, 73mpbid 235 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))
7574simpld 498 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → ∅ ∈ 𝐴)
76 omord2 8203 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑥𝐵 ↔ (𝐴 ·o 𝑥) ∈ (𝐴 ·o 𝐵)))
7756, 67, 55, 75, 76syl31anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝑥𝐵 ↔ (𝐴 ·o 𝑥) ∈ (𝐴 ·o 𝐵)))
7866, 77mpbird 260 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝑥𝐵)
7978ex 416 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) → (𝑥 ∈ On → 𝑥𝐵))
8054, 79impbid 215 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦𝐴)) → (𝑥𝐵𝑥 ∈ On))
8180expr 460 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)) → (𝑦𝐴 → (𝑥𝐵𝑥 ∈ On)))
8281pm5.32rd 581 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)) → ((𝑥𝐵𝑦𝐴) ↔ (𝑥 ∈ On ∧ 𝑦𝐴)))
8352, 82sylan2 595 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑚 ∈ (𝐴 ·o 𝐵) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))) → ((𝑥𝐵𝑦𝐴) ↔ (𝑥 ∈ On ∧ 𝑦𝐴)))
8483expr 460 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (𝑚 = ((𝐴 ·o 𝑥) +o 𝑦) → ((𝑥𝐵𝑦𝐴) ↔ (𝑥 ∈ On ∧ 𝑦𝐴))))
8584pm5.32rd 581 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))))
86 eqcom 2765 . . . . . . . . . . . . . 14 (𝑚 = ((𝐴 ·o 𝑥) +o 𝑦) ↔ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)
8786anbi2i 625 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ 𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚))
8885, 87bitrdi 290 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)))
8988anbi2d 631 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → ((𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))) ↔ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚))))
90 an12 644 . . . . . . . . . . 11 ((𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)))
9189, 90bitrdi 290 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → ((𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚))))
92912exbidv 1925 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚))))
93 df-mpo 7155 . . . . . . . . . . . 12 (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑚⟩ ∣ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))}
94 dfoprab2 7206 . . . . . . . . . . . 12 {⟨⟨𝑥, 𝑦⟩, 𝑚⟩ ∣ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))} = {⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))}
9528, 93, 943eqtri 2785 . . . . . . . . . . 11 𝐹 = {⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))}
9695breqi 5038 . . . . . . . . . 10 (𝑛𝐹𝑚𝑛{⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))}𝑚)
97 df-br 5033 . . . . . . . . . 10 (𝑛{⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))}𝑚 ↔ ⟨𝑛, 𝑚⟩ ∈ {⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))})
98 opabidw 5382 . . . . . . . . . 10 (⟨𝑛, 𝑚⟩ ∈ {⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))} ↔ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))))
9996, 97, 983bitri 300 . . . . . . . . 9 (𝑛𝐹𝑚 ↔ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))))
100 r2ex 3227 . . . . . . . . 9 (∃𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)))
10192, 99, 1003bitr4g 317 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (𝑛𝐹𝑚 ↔ ∃𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)))
10250, 101syl5bb 286 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (𝑚𝐹𝑛 ↔ ∃𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)))
103102eubidv 2606 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (∃!𝑛 𝑚𝐹𝑛 ↔ ∃!𝑛𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)))
10447, 103mpbird 260 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → ∃!𝑛 𝑚𝐹𝑛)
105104ralrimiva 3113 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑚 ∈ (𝐴 ·o 𝐵)∃!𝑛 𝑚𝐹𝑛)
106 fnres 6457 . . . 4 ((𝐹 ↾ (𝐴 ·o 𝐵)) Fn (𝐴 ·o 𝐵) ↔ ∀𝑚 ∈ (𝐴 ·o 𝐵)∃!𝑛 𝑚𝐹𝑛)
107105, 106sylibr 237 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹 ↾ (𝐴 ·o 𝐵)) Fn (𝐴 ·o 𝐵))
108 relcnv 5939 . . . . 5 Rel 𝐹
109 df-rn 5535 . . . . . 6 ran 𝐹 = dom 𝐹
11030frnd 6505 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ (𝐴 ·o 𝐵))
111109, 110eqsstrrid 3941 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → dom 𝐹 ⊆ (𝐴 ·o 𝐵))
112 relssres 5864 . . . . 5 ((Rel 𝐹 ∧ dom 𝐹 ⊆ (𝐴 ·o 𝐵)) → (𝐹 ↾ (𝐴 ·o 𝐵)) = 𝐹)
113108, 111, 112sylancr 590 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹 ↾ (𝐴 ·o 𝐵)) = 𝐹)
114113fneq1d 6427 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐹 ↾ (𝐴 ·o 𝐵)) Fn (𝐴 ·o 𝐵) ↔ 𝐹 Fn (𝐴 ·o 𝐵)))
115107, 114mpbid 235 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹 Fn (𝐴 ·o 𝐵))
116 dff1o4 6610 . 2 (𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵) ↔ (𝐹 Fn (𝐵 × 𝐴) ∧ 𝐹 Fn (𝐴 ·o 𝐵)))
11731, 115, 116sylanbrc 586 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  ∃!weu 2587   ≠ wne 2951  ∀wral 3070  ∃wrex 3071   ⊆ wss 3858  ∅c0 4225  ⟨cop 4528   class class class wbr 5032  {copab 5094   × cxp 5522  ◡ccnv 5523  dom cdm 5524  ran crn 5525   ↾ cres 5526  Rel wrel 5529  Ord word 6168  Oncon0 6169  suc csuc 6171   Fn wfn 6330  ⟶wf 6331  –1-1-onto→wf1o 6334  (class class class)co 7150  {coprab 7151   ∈ cmpo 7152   +o coa 8109   ·o comu 8110 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-oadd 8116  df-omul 8117 This theorem is referenced by:  omxpen  8640  omf1o  8641  infxpenc  9478
 Copyright terms: Public domain W3C validator