MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omxpenlem Structured version   Visualization version   GIF version

Theorem omxpenlem 8297
Description: Lemma for omxpen 8298. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 25-May-2015.)
Hypothesis
Ref Expression
omxpenlem.1 𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))
Assertion
Ref Expression
omxpenlem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·𝑜 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem omxpenlem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 5943 . . . . . . . . 9 (𝐵 ∈ On → Ord 𝐵)
21ad2antlr 709 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → Ord 𝐵)
3 simprl 778 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝑥𝐵)
4 ordsucss 7245 . . . . . . . 8 (Ord 𝐵 → (𝑥𝐵 → suc 𝑥𝐵))
52, 3, 4sylc 65 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → suc 𝑥𝐵)
6 onelon 5958 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
76ad2ant2lr 745 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝑥 ∈ On)
8 suceloni 7240 . . . . . . . . 9 (𝑥 ∈ On → suc 𝑥 ∈ On)
97, 8syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → suc 𝑥 ∈ On)
10 simplr 776 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝐵 ∈ On)
11 simpll 774 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝐴 ∈ On)
12 omwordi 7885 . . . . . . . 8 ((suc 𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (suc 𝑥𝐵 → (𝐴 ·𝑜 suc 𝑥) ⊆ (𝐴 ·𝑜 𝐵)))
139, 10, 11, 12syl3anc 1483 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (suc 𝑥𝐵 → (𝐴 ·𝑜 suc 𝑥) ⊆ (𝐴 ·𝑜 𝐵)))
145, 13mpd 15 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (𝐴 ·𝑜 suc 𝑥) ⊆ (𝐴 ·𝑜 𝐵))
15 simprr 780 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝑦𝐴)
16 onelon 5958 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
1716ad2ant2rl 746 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝑦 ∈ On)
18 omcl 7850 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝑥) ∈ On)
1911, 7, 18syl2anc 575 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (𝐴 ·𝑜 𝑥) ∈ On)
20 oaord 7861 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·𝑜 𝑥) ∈ On) → (𝑦𝐴 ↔ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴)))
2117, 11, 19, 20syl3anc 1483 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (𝑦𝐴 ↔ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴)))
2215, 21mpbid 223 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
23 omsuc 7840 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 suc 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
2411, 7, 23syl2anc 575 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (𝐴 ·𝑜 suc 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
2522, 24eleqtrrd 2887 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 suc 𝑥))
2614, 25sseldd 3796 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵))
2726ralrimivva 3158 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑥𝐵𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵))
28 omxpenlem.1 . . . . 5 𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))
2928fmpt2 7467 . . . 4 (∀𝑥𝐵𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ↔ 𝐹:(𝐵 × 𝐴)⟶(𝐴 ·𝑜 𝐵))
3027, 29sylib 209 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)⟶(𝐴 ·𝑜 𝐵))
3130ffnd 6254 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹 Fn (𝐵 × 𝐴))
32 simpll 774 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → 𝐴 ∈ On)
33 omcl 7850 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
34 onelon 5958 . . . . . . . 8 (((𝐴 ·𝑜 𝐵) ∈ On ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → 𝑚 ∈ On)
3533, 34sylan 571 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → 𝑚 ∈ On)
36 noel 4117 . . . . . . . . . . . 12 ¬ 𝑚 ∈ ∅
37 oveq1 6878 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝐴 ·𝑜 𝐵) = (∅ ·𝑜 𝐵))
38 om0r 7853 . . . . . . . . . . . . . 14 (𝐵 ∈ On → (∅ ·𝑜 𝐵) = ∅)
3937, 38sylan9eqr 2861 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴 ·𝑜 𝐵) = ∅)
4039eleq2d 2870 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝑚 ∈ (𝐴 ·𝑜 𝐵) ↔ 𝑚 ∈ ∅))
4136, 40mtbiri 318 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ¬ 𝑚 ∈ (𝐴 ·𝑜 𝐵))
4241ex 399 . . . . . . . . . 10 (𝐵 ∈ On → (𝐴 = ∅ → ¬ 𝑚 ∈ (𝐴 ·𝑜 𝐵)))
4342necon2ad 2992 . . . . . . . . 9 (𝐵 ∈ On → (𝑚 ∈ (𝐴 ·𝑜 𝐵) → 𝐴 ≠ ∅))
4443adantl 469 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑚 ∈ (𝐴 ·𝑜 𝐵) → 𝐴 ≠ ∅))
4544imp 395 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → 𝐴 ≠ ∅)
46 omeu 7899 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑚 ∈ On ∧ 𝐴 ≠ ∅) → ∃!𝑛𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚))
4732, 35, 45, 46syl3anc 1483 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → ∃!𝑛𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚))
48 vex 3393 . . . . . . . . 9 𝑚 ∈ V
49 vex 3393 . . . . . . . . 9 𝑛 ∈ V
5048, 49brcnv 5503 . . . . . . . 8 (𝑚𝐹𝑛𝑛𝐹𝑚)
51 eleq1 2872 . . . . . . . . . . . . . . . . 17 (𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) → (𝑚 ∈ (𝐴 ·𝑜 𝐵) ↔ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵)))
5251biimpac 466 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵))
536ex 399 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ On → (𝑥𝐵𝑥 ∈ On))
5453ad2antlr 709 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) → (𝑥𝐵𝑥 ∈ On))
55 simplll 782 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
56 simpr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
5755, 56, 18syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝑥) ∈ On)
58 simplrr 787 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝑦𝐴)
5955, 58, 16syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝑦 ∈ On)
60 oaword1 7866 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ·𝑜 𝑥) ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 𝑥) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))
6157, 59, 60syl2anc 575 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝑥) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))
62 simplrl 786 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵))
6333ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
64 ontr2 5982 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ·𝑜 𝑥) ∈ On ∧ (𝐴 ·𝑜 𝐵) ∈ On) → (((𝐴 ·𝑜 𝑥) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵)) → (𝐴 ·𝑜 𝑥) ∈ (𝐴 ·𝑜 𝐵)))
6557, 63, 64syl2anc 575 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (((𝐴 ·𝑜 𝑥) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵)) → (𝐴 ·𝑜 𝑥) ∈ (𝐴 ·𝑜 𝐵)))
6661, 62, 65mp2and 682 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝑥) ∈ (𝐴 ·𝑜 𝐵))
67 simpllr 784 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝐵 ∈ On)
6862ne0d 4120 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝐵) ≠ ∅)
69 on0eln0 5990 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ·𝑜 𝐵) ∈ On → (∅ ∈ (𝐴 ·𝑜 𝐵) ↔ (𝐴 ·𝑜 𝐵) ≠ ∅))
7063, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·𝑜 𝐵) ↔ (𝐴 ·𝑜 𝐵) ≠ ∅))
7168, 70mpbird 248 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → ∅ ∈ (𝐴 ·𝑜 𝐵))
72 om00el 7890 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·𝑜 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)))
7372ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·𝑜 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)))
7471, 73mpbid 223 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))
7574simpld 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → ∅ ∈ 𝐴)
76 omord2 7881 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑥𝐵 ↔ (𝐴 ·𝑜 𝑥) ∈ (𝐴 ·𝑜 𝐵)))
7756, 67, 55, 75, 76syl31anc 1485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝑥𝐵 ↔ (𝐴 ·𝑜 𝑥) ∈ (𝐴 ·𝑜 𝐵)))
7866, 77mpbird 248 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝑥𝐵)
7978ex 399 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) → (𝑥 ∈ On → 𝑥𝐵))
8054, 79impbid 203 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) → (𝑥𝐵𝑥 ∈ On))
8180expr 446 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵)) → (𝑦𝐴 → (𝑥𝐵𝑥 ∈ On)))
8281pm5.32rd 569 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵)) → ((𝑥𝐵𝑦𝐴) ↔ (𝑥 ∈ On ∧ 𝑦𝐴)))
8352, 82sylan2 582 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑚 ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))) → ((𝑥𝐵𝑦𝐴) ↔ (𝑥 ∈ On ∧ 𝑦𝐴)))
8483expr 446 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) → ((𝑥𝐵𝑦𝐴) ↔ (𝑥 ∈ On ∧ 𝑦𝐴))))
8584pm5.32rd 569 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))))
86 eqcom 2812 . . . . . . . . . . . . . 14 (𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ↔ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)
8786anbi2i 611 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ 𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚))
8885, 87syl6bb 278 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)))
8988anbi2d 616 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → ((𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))) ↔ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚))))
90 an12 627 . . . . . . . . . . 11 ((𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)))
9189, 90syl6bb 278 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → ((𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚))))
92912exbidv 2017 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚))))
93 df-mpt2 6876 . . . . . . . . . . . 12 (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑚⟩ ∣ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))}
94 dfoprab2 6928 . . . . . . . . . . . 12 {⟨⟨𝑥, 𝑦⟩, 𝑚⟩ ∣ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))} = {⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)))}
9528, 93, 943eqtri 2831 . . . . . . . . . . 11 𝐹 = {⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)))}
9695breqi 4846 . . . . . . . . . 10 (𝑛𝐹𝑚𝑛{⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)))}𝑚)
97 df-br 4841 . . . . . . . . . 10 (𝑛{⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)))}𝑚 ↔ ⟨𝑛, 𝑚⟩ ∈ {⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)))})
98 opabid 5174 . . . . . . . . . 10 (⟨𝑛, 𝑚⟩ ∈ {⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)))} ↔ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))))
9996, 97, 983bitri 288 . . . . . . . . 9 (𝑛𝐹𝑚 ↔ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))))
100 r2ex 3248 . . . . . . . . 9 (∃𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)))
10192, 99, 1003bitr4g 305 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (𝑛𝐹𝑚 ↔ ∃𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)))
10250, 101syl5bb 274 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (𝑚𝐹𝑛 ↔ ∃𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)))
103102eubidv 2652 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (∃!𝑛 𝑚𝐹𝑛 ↔ ∃!𝑛𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)))
10447, 103mpbird 248 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → ∃!𝑛 𝑚𝐹𝑛)
105104ralrimiva 3153 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑚 ∈ (𝐴 ·𝑜 𝐵)∃!𝑛 𝑚𝐹𝑛)
106 fnres 6215 . . . 4 ((𝐹 ↾ (𝐴 ·𝑜 𝐵)) Fn (𝐴 ·𝑜 𝐵) ↔ ∀𝑚 ∈ (𝐴 ·𝑜 𝐵)∃!𝑛 𝑚𝐹𝑛)
107105, 106sylibr 225 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹 ↾ (𝐴 ·𝑜 𝐵)) Fn (𝐴 ·𝑜 𝐵))
108 relcnv 5710 . . . . 5 Rel 𝐹
109 df-rn 5319 . . . . . 6 ran 𝐹 = dom 𝐹
11030frnd 6260 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ (𝐴 ·𝑜 𝐵))
111109, 110syl5eqssr 3844 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → dom 𝐹 ⊆ (𝐴 ·𝑜 𝐵))
112 relssres 5638 . . . . 5 ((Rel 𝐹 ∧ dom 𝐹 ⊆ (𝐴 ·𝑜 𝐵)) → (𝐹 ↾ (𝐴 ·𝑜 𝐵)) = 𝐹)
113108, 111, 112sylancr 577 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹 ↾ (𝐴 ·𝑜 𝐵)) = 𝐹)
114113fneq1d 6189 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐹 ↾ (𝐴 ·𝑜 𝐵)) Fn (𝐴 ·𝑜 𝐵) ↔ 𝐹 Fn (𝐴 ·𝑜 𝐵)))
115107, 114mpbid 223 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹 Fn (𝐴 ·𝑜 𝐵))
116 dff1o4 6358 . 2 (𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·𝑜 𝐵) ↔ (𝐹 Fn (𝐵 × 𝐴) ∧ 𝐹 Fn (𝐴 ·𝑜 𝐵)))
11731, 115, 116sylanbrc 574 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1637  wex 1859  wcel 2158  ∃!weu 2632  wne 2977  wral 3095  wrex 3096  wss 3766  c0 4113  cop 4373   class class class wbr 4840  {copab 4902   × cxp 5306  ccnv 5307  dom cdm 5308  ran crn 5309  cres 5310  Rel wrel 5313  Ord word 5932  Oncon0 5933  suc csuc 5935   Fn wfn 6093  wf 6094  1-1-ontowf1o 6097  (class class class)co 6871  {coprab 6872  cmpt2 6873   +𝑜 coa 7790   ·𝑜 comu 7791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-ral 3100  df-rex 3101  df-reu 3102  df-rmo 3103  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-int 4666  df-iun 4710  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-om 7293  df-1st 7395  df-2nd 7396  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-1o 7793  df-oadd 7797  df-omul 7798
This theorem is referenced by:  omxpen  8298  omf1o  8299  infxpenc  9121
  Copyright terms: Public domain W3C validator