Step | Hyp | Ref
| Expression |
1 | | eloni 6276 |
. . . . . . . . 9
⊢ (𝐵 ∈ On → Ord 𝐵) |
2 | 1 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → Ord 𝐵) |
3 | | simprl 768 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ 𝐵) |
4 | | ordsucss 7665 |
. . . . . . . 8
⊢ (Ord
𝐵 → (𝑥 ∈ 𝐵 → suc 𝑥 ⊆ 𝐵)) |
5 | 2, 3, 4 | sylc 65 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → suc 𝑥 ⊆ 𝐵) |
6 | | onelon 6291 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
7 | 6 | ad2ant2lr 745 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ On) |
8 | | suceloni 7659 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) |
9 | 7, 8 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → suc 𝑥 ∈ On) |
10 | | simplr 766 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → 𝐵 ∈ On) |
11 | | simpll 764 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → 𝐴 ∈ On) |
12 | | omwordi 8402 |
. . . . . . . 8
⊢ ((suc
𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (suc 𝑥 ⊆ 𝐵 → (𝐴 ·o suc 𝑥) ⊆ (𝐴 ·o 𝐵))) |
13 | 9, 10, 11, 12 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → (suc 𝑥 ⊆ 𝐵 → (𝐴 ·o suc 𝑥) ⊆ (𝐴 ·o 𝐵))) |
14 | 5, 13 | mpd 15 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → (𝐴 ·o suc 𝑥) ⊆ (𝐴 ·o 𝐵)) |
15 | | simprr 770 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
16 | | onelon 6291 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
17 | 16 | ad2ant2rl 746 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ On) |
18 | | omcl 8366 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On) |
19 | 11, 7, 18 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → (𝐴 ·o 𝑥) ∈ On) |
20 | | oaord 8378 |
. . . . . . . . 9
⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝑥) ∈ On) → (𝑦 ∈ 𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴))) |
21 | 17, 11, 19, 20 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → (𝑦 ∈ 𝐴 ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴))) |
22 | 15, 21 | mpbid 231 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ ((𝐴 ·o 𝑥) +o 𝐴)) |
23 | | omsuc 8356 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴)) |
24 | 11, 7, 23 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴)) |
25 | 22, 24 | eleqtrrd 2842 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o suc 𝑥)) |
26 | 14, 25 | sseldd 3922 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)) |
27 | 26 | ralrimivva 3123 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)) |
28 | | omxpenlem.1 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) |
29 | 28 | fmpo 7908 |
. . . 4
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ↔ 𝐹:(𝐵 × 𝐴)⟶(𝐴 ·o 𝐵)) |
30 | 27, 29 | sylib 217 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)⟶(𝐴 ·o 𝐵)) |
31 | 30 | ffnd 6601 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹 Fn (𝐵 × 𝐴)) |
32 | | simpll 764 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → 𝐴 ∈ On) |
33 | | omcl 8366 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
34 | | onelon 6291 |
. . . . . . . 8
⊢ (((𝐴 ·o 𝐵) ∈ On ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → 𝑚 ∈ On) |
35 | 33, 34 | sylan 580 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → 𝑚 ∈ On) |
36 | | noel 4264 |
. . . . . . . . . . . 12
⊢ ¬
𝑚 ∈
∅ |
37 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅
·o 𝐵)) |
38 | | om0r 8369 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ On → (∅
·o 𝐵) =
∅) |
39 | 37, 38 | sylan9eqr 2800 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅) |
40 | 39 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝑚 ∈ (𝐴 ·o 𝐵) ↔ 𝑚 ∈ ∅)) |
41 | 36, 40 | mtbiri 327 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝐴 = ∅) → ¬ 𝑚 ∈ (𝐴 ·o 𝐵)) |
42 | 41 | ex 413 |
. . . . . . . . . 10
⊢ (𝐵 ∈ On → (𝐴 = ∅ → ¬ 𝑚 ∈ (𝐴 ·o 𝐵))) |
43 | 42 | necon2ad 2958 |
. . . . . . . . 9
⊢ (𝐵 ∈ On → (𝑚 ∈ (𝐴 ·o 𝐵) → 𝐴 ≠ ∅)) |
44 | 43 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑚 ∈ (𝐴 ·o 𝐵) → 𝐴 ≠ ∅)) |
45 | 44 | imp 407 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → 𝐴 ≠ ∅) |
46 | | omeu 8416 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝑚 ∈ On ∧ 𝐴 ≠ ∅) →
∃!𝑛∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 (𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)) |
47 | 32, 35, 45, 46 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → ∃!𝑛∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 (𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)) |
48 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑚 ∈ V |
49 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑛 ∈ V |
50 | 48, 49 | brcnv 5791 |
. . . . . . . 8
⊢ (𝑚◡𝐹𝑛 ↔ 𝑛𝐹𝑚) |
51 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = ((𝐴 ·o 𝑥) +o 𝑦) → (𝑚 ∈ (𝐴 ·o 𝐵) ↔ ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵))) |
52 | 51 | biimpac 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ (𝐴 ·o 𝐵) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)) |
53 | 6 | ex 413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈ On → (𝑥 ∈ 𝐵 → 𝑥 ∈ On)) |
54 | 53 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝐵 → 𝑥 ∈ On)) |
55 | | simplll 772 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → 𝐴 ∈ On) |
56 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → 𝑥 ∈ On) |
57 | 55, 56, 18 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On) |
58 | | simplrr 775 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → 𝑦 ∈ 𝐴) |
59 | 55, 58, 16 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → 𝑦 ∈ On) |
60 | | oaword1 8383 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ·o 𝑥) ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑥) ⊆ ((𝐴 ·o 𝑥) +o 𝑦)) |
61 | 57, 59, 60 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ⊆ ((𝐴 ·o 𝑥) +o 𝑦)) |
62 | | simplrl 774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)) |
63 | 33 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
64 | | ontr2 6313 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ·o 𝑥) ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → (((𝐴 ·o 𝑥) ⊆ ((𝐴 ·o 𝑥) +o 𝑦) ∧ ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)) → (𝐴 ·o 𝑥) ∈ (𝐴 ·o 𝐵))) |
65 | 57, 63, 64 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → (((𝐴 ·o 𝑥) ⊆ ((𝐴 ·o 𝑥) +o 𝑦) ∧ ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)) → (𝐴 ·o 𝑥) ∈ (𝐴 ·o 𝐵))) |
66 | 61, 62, 65 | mp2and 696 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ (𝐴 ·o 𝐵)) |
67 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → 𝐵 ∈ On) |
68 | 62 | ne0d 4269 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·o 𝐵) ≠ ∅) |
69 | | on0eln0 6321 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ·o 𝐵) ∈ On → (∅
∈ (𝐴
·o 𝐵)
↔ (𝐴
·o 𝐵)
≠ ∅)) |
70 | 63, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (𝐴 ·o 𝐵) ≠ ∅)) |
71 | 68, 70 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → ∅ ∈ (𝐴 ·o 𝐵)) |
72 | | om00el 8407 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅
∈ (𝐴
·o 𝐵)
↔ (∅ ∈ 𝐴
∧ ∅ ∈ 𝐵))) |
73 | 72 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))) |
74 | 71, 73 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)) |
75 | 74 | simpld 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → ∅ ∈ 𝐴) |
76 | | omord2 8398 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈
𝐴) → (𝑥 ∈ 𝐵 ↔ (𝐴 ·o 𝑥) ∈ (𝐴 ·o 𝐵))) |
77 | 56, 67, 55, 75, 76 | syl31anc 1372 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → (𝑥 ∈ 𝐵 ↔ (𝐴 ·o 𝑥) ∈ (𝐴 ·o 𝐵))) |
78 | 66, 77 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ∈ On) → 𝑥 ∈ 𝐵) |
79 | 78 | ex 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐵)) |
80 | 54, 79 | impbid 211 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵) ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ On)) |
81 | 80 | expr 457 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)) → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ On))) |
82 | 81 | pm5.32rd 578 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ((𝐴 ·o 𝑥) +o 𝑦) ∈ (𝐴 ·o 𝐵)) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ On ∧ 𝑦 ∈ 𝐴))) |
83 | 52, 82 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑚 ∈ (𝐴 ·o 𝐵) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ On ∧ 𝑦 ∈ 𝐴))) |
84 | 83 | expr 457 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (𝑚 = ((𝐴 ·o 𝑥) +o 𝑦) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ On ∧ 𝑦 ∈ 𝐴)))) |
85 | 84 | pm5.32rd 578 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))) |
86 | | eqcom 2745 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = ((𝐴 ·o 𝑥) +o 𝑦) ↔ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚) |
87 | 86 | anbi2i 623 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)) |
88 | 85, 87 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚))) |
89 | 88 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → ((𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))) ↔ (𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)))) |
90 | | an12 642 |
. . . . . . . . . . 11
⊢ ((𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ (𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚))) |
91 | 89, 90 | bitrdi 287 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → ((𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))) ↔ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ (𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)))) |
92 | 91 | 2exbidv 1927 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (∃𝑥∃𝑦(𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))) ↔ ∃𝑥∃𝑦((𝑥 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ (𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚)))) |
93 | | df-mpo 7280 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) = {〈〈𝑥, 𝑦〉, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))} |
94 | | dfoprab2 7333 |
. . . . . . . . . . . 12
⊢
{〈〈𝑥,
𝑦〉, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦))} = {〈𝑛, 𝑚〉 ∣ ∃𝑥∃𝑦(𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))} |
95 | 28, 93, 94 | 3eqtri 2770 |
. . . . . . . . . . 11
⊢ 𝐹 = {〈𝑛, 𝑚〉 ∣ ∃𝑥∃𝑦(𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))} |
96 | 95 | breqi 5080 |
. . . . . . . . . 10
⊢ (𝑛𝐹𝑚 ↔ 𝑛{〈𝑛, 𝑚〉 ∣ ∃𝑥∃𝑦(𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))}𝑚) |
97 | | df-br 5075 |
. . . . . . . . . 10
⊢ (𝑛{〈𝑛, 𝑚〉 ∣ ∃𝑥∃𝑦(𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))}𝑚 ↔ 〈𝑛, 𝑚〉 ∈ {〈𝑛, 𝑚〉 ∣ ∃𝑥∃𝑦(𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))}) |
98 | | opabidw 5437 |
. . . . . . . . . 10
⊢
(〈𝑛, 𝑚〉 ∈ {〈𝑛, 𝑚〉 ∣ ∃𝑥∃𝑦(𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))} ↔ ∃𝑥∃𝑦(𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))) |
99 | 96, 97, 98 | 3bitri 297 |
. . . . . . . . 9
⊢ (𝑛𝐹𝑚 ↔ ∃𝑥∃𝑦(𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ 𝑚 = ((𝐴 ·o 𝑥) +o 𝑦)))) |
100 | | r2ex 3232 |
. . . . . . . . 9
⊢
(∃𝑥 ∈ On
∃𝑦 ∈ 𝐴 (𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚) ↔ ∃𝑥∃𝑦((𝑥 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ (𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚))) |
101 | 92, 99, 100 | 3bitr4g 314 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (𝑛𝐹𝑚 ↔ ∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 (𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚))) |
102 | 50, 101 | bitrid 282 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (𝑚◡𝐹𝑛 ↔ ∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 (𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚))) |
103 | 102 | eubidv 2586 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → (∃!𝑛 𝑚◡𝐹𝑛 ↔ ∃!𝑛∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 (𝑛 = 〈𝑥, 𝑦〉 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝑚))) |
104 | 47, 103 | mpbird 256 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·o 𝐵)) → ∃!𝑛 𝑚◡𝐹𝑛) |
105 | 104 | ralrimiva 3103 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑚 ∈ (𝐴 ·o 𝐵)∃!𝑛 𝑚◡𝐹𝑛) |
106 | | fnres 6559 |
. . . 4
⊢ ((◡𝐹 ↾ (𝐴 ·o 𝐵)) Fn (𝐴 ·o 𝐵) ↔ ∀𝑚 ∈ (𝐴 ·o 𝐵)∃!𝑛 𝑚◡𝐹𝑛) |
107 | 105, 106 | sylibr 233 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (◡𝐹 ↾ (𝐴 ·o 𝐵)) Fn (𝐴 ·o 𝐵)) |
108 | | relcnv 6012 |
. . . . 5
⊢ Rel ◡𝐹 |
109 | | df-rn 5600 |
. . . . . 6
⊢ ran 𝐹 = dom ◡𝐹 |
110 | 30 | frnd 6608 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ (𝐴 ·o 𝐵)) |
111 | 109, 110 | eqsstrrid 3970 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → dom ◡𝐹 ⊆ (𝐴 ·o 𝐵)) |
112 | | relssres 5932 |
. . . . 5
⊢ ((Rel
◡𝐹 ∧ dom ◡𝐹 ⊆ (𝐴 ·o 𝐵)) → (◡𝐹 ↾ (𝐴 ·o 𝐵)) = ◡𝐹) |
113 | 108, 111,
112 | sylancr 587 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (◡𝐹 ↾ (𝐴 ·o 𝐵)) = ◡𝐹) |
114 | 113 | fneq1d 6526 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((◡𝐹 ↾ (𝐴 ·o 𝐵)) Fn (𝐴 ·o 𝐵) ↔ ◡𝐹 Fn (𝐴 ·o 𝐵))) |
115 | 107, 114 | mpbid 231 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ◡𝐹 Fn (𝐴 ·o 𝐵)) |
116 | | dff1o4 6724 |
. 2
⊢ (𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵) ↔ (𝐹 Fn (𝐵 × 𝐴) ∧ ◡𝐹 Fn (𝐴 ·o 𝐵))) |
117 | 31, 115, 116 | sylanbrc 583 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵)) |