Step | Hyp | Ref
| Expression |
1 | | fcores.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
2 | | fcores.e |
. . . . 5
⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
3 | | fcores.p |
. . . . 5
⊢ 𝑃 = (◡𝐹 “ 𝐶) |
4 | | fcores.x |
. . . . 5
⊢ 𝑋 = (𝐹 ↾ 𝑃) |
5 | 1, 2, 3, 4 | fcoreslem3 44510 |
. . . 4
⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
6 | | fof 6684 |
. . . 4
⊢ (𝑋:𝑃–onto→𝐸 → 𝑋:𝑃⟶𝐸) |
7 | 5, 6 | syl 17 |
. . 3
⊢ (𝜑 → 𝑋:𝑃⟶𝐸) |
8 | | fcoresf1.i |
. . . 4
⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) |
9 | | dff13 7122 |
. . . . 5
⊢ ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ ((𝐺 ∘ 𝐹):𝑃⟶𝐷 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑥 = 𝑦))) |
10 | | fcores.g |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
11 | | fcores.y |
. . . . . . . . . . . 12
⊢ 𝑌 = (𝐺 ↾ 𝐸) |
12 | 1, 2, 3, 4, 10, 11 | fcoresf1lem 44513 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝑌‘(𝑋‘𝑥))) |
13 | 12 | adantrr 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝑌‘(𝑋‘𝑥))) |
14 | 1, 2, 3, 4, 10, 11 | fcoresf1lem 44513 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑦) = (𝑌‘(𝑋‘𝑦))) |
15 | 14 | adantrl 712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → ((𝐺 ∘ 𝐹)‘𝑦) = (𝑌‘(𝑋‘𝑦))) |
16 | 13, 15 | eqeq12d 2755 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) ↔ (𝑌‘(𝑋‘𝑥)) = (𝑌‘(𝑋‘𝑦)))) |
17 | 16 | imbi1d 341 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → ((((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑥 = 𝑦) ↔ ((𝑌‘(𝑋‘𝑥)) = (𝑌‘(𝑋‘𝑦)) → 𝑥 = 𝑦))) |
18 | | fveq2 6768 |
. . . . . . . . . 10
⊢ ((𝑋‘𝑥) = (𝑋‘𝑦) → (𝑌‘(𝑋‘𝑥)) = (𝑌‘(𝑋‘𝑦))) |
19 | 18 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → ((𝑋‘𝑥) = (𝑋‘𝑦) → (𝑌‘(𝑋‘𝑥)) = (𝑌‘(𝑋‘𝑦)))) |
20 | 19 | imim1d 82 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (((𝑌‘(𝑋‘𝑥)) = (𝑌‘(𝑋‘𝑦)) → 𝑥 = 𝑦) → ((𝑋‘𝑥) = (𝑋‘𝑦) → 𝑥 = 𝑦))) |
21 | 17, 20 | sylbid 239 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → ((((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑥 = 𝑦) → ((𝑋‘𝑥) = (𝑋‘𝑦) → 𝑥 = 𝑦))) |
22 | 21 | ralimdvva 3106 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑥 = 𝑦) → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝑋‘𝑥) = (𝑋‘𝑦) → 𝑥 = 𝑦))) |
23 | 22 | adantld 490 |
. . . . 5
⊢ (𝜑 → (((𝐺 ∘ 𝐹):𝑃⟶𝐷 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑥 = 𝑦)) → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝑋‘𝑥) = (𝑋‘𝑦) → 𝑥 = 𝑦))) |
24 | 9, 23 | syl5bi 241 |
. . . 4
⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝑋‘𝑥) = (𝑋‘𝑦) → 𝑥 = 𝑦))) |
25 | 8, 24 | mpd 15 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝑋‘𝑥) = (𝑋‘𝑦) → 𝑥 = 𝑦)) |
26 | | dff13 7122 |
. . 3
⊢ (𝑋:𝑃–1-1→𝐸 ↔ (𝑋:𝑃⟶𝐸 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ((𝑋‘𝑥) = (𝑋‘𝑦) → 𝑥 = 𝑦))) |
27 | 7, 25, 26 | sylanbrc 582 |
. 2
⊢ (𝜑 → 𝑋:𝑃–1-1→𝐸) |
28 | 2 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐶)) |
29 | | inss2 4168 |
. . . . . 6
⊢ (ran
𝐹 ∩ 𝐶) ⊆ 𝐶 |
30 | 28, 29 | eqsstrdi 3979 |
. . . . 5
⊢ (𝜑 → 𝐸 ⊆ 𝐶) |
31 | 10, 30 | fssresd 6637 |
. . . 4
⊢ (𝜑 → (𝐺 ↾ 𝐸):𝐸⟶𝐷) |
32 | 11 | feq1i 6587 |
. . . 4
⊢ (𝑌:𝐸⟶𝐷 ↔ (𝐺 ↾ 𝐸):𝐸⟶𝐷) |
33 | 31, 32 | sylibr 233 |
. . 3
⊢ (𝜑 → 𝑌:𝐸⟶𝐷) |
34 | 1, 2, 3, 4 | fcoreslem2 44509 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝑋 = 𝐸) |
35 | 34 | eqcomd 2745 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 = ran 𝑋) |
36 | 35 | eleq2d 2825 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐸 ↔ 𝑥 ∈ ran 𝑋)) |
37 | | fofn 6686 |
. . . . . . . . 9
⊢ (𝑋:𝑃–onto→𝐸 → 𝑋 Fn 𝑃) |
38 | 5, 37 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 Fn 𝑃) |
39 | | fvelrnb 6824 |
. . . . . . . 8
⊢ (𝑋 Fn 𝑃 → (𝑥 ∈ ran 𝑋 ↔ ∃𝑎 ∈ 𝑃 (𝑋‘𝑎) = 𝑥)) |
40 | 38, 39 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ran 𝑋 ↔ ∃𝑎 ∈ 𝑃 (𝑋‘𝑎) = 𝑥)) |
41 | 36, 40 | bitrd 278 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐸 ↔ ∃𝑎 ∈ 𝑃 (𝑋‘𝑎) = 𝑥)) |
42 | 35 | eleq2d 2825 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐸 ↔ 𝑦 ∈ ran 𝑋)) |
43 | | fvelrnb 6824 |
. . . . . . . 8
⊢ (𝑋 Fn 𝑃 → (𝑦 ∈ ran 𝑋 ↔ ∃𝑏 ∈ 𝑃 (𝑋‘𝑏) = 𝑦)) |
44 | 38, 43 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ran 𝑋 ↔ ∃𝑏 ∈ 𝑃 (𝑋‘𝑏) = 𝑦)) |
45 | 42, 44 | bitrd 278 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐸 ↔ ∃𝑏 ∈ 𝑃 (𝑋‘𝑏) = 𝑦)) |
46 | 41, 45 | anbi12d 630 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) ↔ (∃𝑎 ∈ 𝑃 (𝑋‘𝑎) = 𝑥 ∧ ∃𝑏 ∈ 𝑃 (𝑋‘𝑏) = 𝑦))) |
47 | | fveqeq2 6777 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) ↔ ((𝐺 ∘ 𝐹)‘𝑎) = ((𝐺 ∘ 𝐹)‘𝑦))) |
48 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (𝑥 = 𝑦 ↔ 𝑎 = 𝑦)) |
49 | 47, 48 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → ((((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐺 ∘ 𝐹)‘𝑎) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑎 = 𝑦))) |
50 | | fveq2 6768 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑏 → ((𝐺 ∘ 𝐹)‘𝑦) = ((𝐺 ∘ 𝐹)‘𝑏)) |
51 | 50 | eqeq2d 2750 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑏 → (((𝐺 ∘ 𝐹)‘𝑎) = ((𝐺 ∘ 𝐹)‘𝑦) ↔ ((𝐺 ∘ 𝐹)‘𝑎) = ((𝐺 ∘ 𝐹)‘𝑏))) |
52 | | equequ2 2032 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑏 → (𝑎 = 𝑦 ↔ 𝑎 = 𝑏)) |
53 | 51, 52 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑏 → ((((𝐺 ∘ 𝐹)‘𝑎) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑎 = 𝑦) ↔ (((𝐺 ∘ 𝐹)‘𝑎) = ((𝐺 ∘ 𝐹)‘𝑏) → 𝑎 = 𝑏))) |
54 | 49, 53 | rspc2v 3570 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑥 = 𝑦) → (((𝐺 ∘ 𝐹)‘𝑎) = ((𝐺 ∘ 𝐹)‘𝑏) → 𝑎 = 𝑏))) |
55 | 54 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑥 = 𝑦) → (((𝐺 ∘ 𝐹)‘𝑎) = ((𝐺 ∘ 𝐹)‘𝑏) → 𝑎 = 𝑏))) |
56 | 1, 2, 3, 4, 10, 11 | fcoresf1lem 44513 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑎) = (𝑌‘(𝑋‘𝑎))) |
57 | 56 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐺 ∘ 𝐹)‘𝑎) = (𝑌‘(𝑋‘𝑎))) |
58 | 1, 2, 3, 4, 10, 11 | fcoresf1lem 44513 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑏 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑏) = (𝑌‘(𝑋‘𝑏))) |
59 | 58 | adantrl 712 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐺 ∘ 𝐹)‘𝑏) = (𝑌‘(𝑋‘𝑏))) |
60 | 57, 59 | eqeq12d 2755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (((𝐺 ∘ 𝐹)‘𝑎) = ((𝐺 ∘ 𝐹)‘𝑏) ↔ (𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)))) |
61 | 60 | imbi1d 341 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((((𝐺 ∘ 𝐹)‘𝑎) = ((𝐺 ∘ 𝐹)‘𝑏) → 𝑎 = 𝑏) ↔ ((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) → 𝑎 = 𝑏))) |
62 | | fveq2 6768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑏 → (𝑋‘𝑎) = (𝑋‘𝑏)) |
63 | 62 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝑎 = 𝑏 → (𝑋‘𝑎) = (𝑋‘𝑏))) |
64 | 63 | imim2d 57 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) → 𝑎 = 𝑏) → ((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) → (𝑋‘𝑎) = (𝑋‘𝑏)))) |
65 | 61, 64 | sylbid 239 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((((𝐺 ∘ 𝐹)‘𝑎) = ((𝐺 ∘ 𝐹)‘𝑏) → 𝑎 = 𝑏) → ((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) → (𝑋‘𝑎) = (𝑋‘𝑏)))) |
66 | 55, 65 | syld 47 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑥 = 𝑦) → ((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) → (𝑋‘𝑎) = (𝑋‘𝑏)))) |
67 | 66 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑥 = 𝑦) → ((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) → (𝑋‘𝑎) = (𝑋‘𝑏))))) |
68 | 67 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑥 = 𝑦) → ((𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) → ((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) → (𝑋‘𝑎) = (𝑋‘𝑏))))) |
69 | 68 | adantld 490 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝐺 ∘ 𝐹):𝑃⟶𝐷 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (((𝐺 ∘ 𝐹)‘𝑥) = ((𝐺 ∘ 𝐹)‘𝑦) → 𝑥 = 𝑦)) → ((𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) → ((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) → (𝑋‘𝑎) = (𝑋‘𝑏))))) |
70 | 9, 69 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 → ((𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) → ((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) → (𝑋‘𝑎) = (𝑋‘𝑏))))) |
71 | 8, 70 | mpd 15 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) → ((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) → (𝑋‘𝑎) = (𝑋‘𝑏)))) |
72 | 71 | impl 455 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → ((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) → (𝑋‘𝑎) = (𝑋‘𝑏))) |
73 | | fveq2 6768 |
. . . . . . . . . . . . 13
⊢ ((𝑋‘𝑎) = 𝑥 → (𝑌‘(𝑋‘𝑎)) = (𝑌‘𝑥)) |
74 | | fveq2 6768 |
. . . . . . . . . . . . 13
⊢ ((𝑋‘𝑏) = 𝑦 → (𝑌‘(𝑋‘𝑏)) = (𝑌‘𝑦)) |
75 | 73, 74 | eqeqan12rd 2754 |
. . . . . . . . . . . 12
⊢ (((𝑋‘𝑏) = 𝑦 ∧ (𝑋‘𝑎) = 𝑥) → ((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) ↔ (𝑌‘𝑥) = (𝑌‘𝑦))) |
76 | | eqeq12 2756 |
. . . . . . . . . . . . 13
⊢ (((𝑋‘𝑎) = 𝑥 ∧ (𝑋‘𝑏) = 𝑦) → ((𝑋‘𝑎) = (𝑋‘𝑏) ↔ 𝑥 = 𝑦)) |
77 | 76 | ancoms 458 |
. . . . . . . . . . . 12
⊢ (((𝑋‘𝑏) = 𝑦 ∧ (𝑋‘𝑎) = 𝑥) → ((𝑋‘𝑎) = (𝑋‘𝑏) ↔ 𝑥 = 𝑦)) |
78 | 75, 77 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (((𝑋‘𝑏) = 𝑦 ∧ (𝑋‘𝑎) = 𝑥) → (((𝑌‘(𝑋‘𝑎)) = (𝑌‘(𝑋‘𝑏)) → (𝑋‘𝑎) = (𝑋‘𝑏)) ↔ ((𝑌‘𝑥) = (𝑌‘𝑦) → 𝑥 = 𝑦))) |
79 | 72, 78 | syl5ibcom 244 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → (((𝑋‘𝑏) = 𝑦 ∧ (𝑋‘𝑎) = 𝑥) → ((𝑌‘𝑥) = (𝑌‘𝑦) → 𝑥 = 𝑦))) |
80 | 79 | expd 415 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑃) ∧ 𝑏 ∈ 𝑃) → ((𝑋‘𝑏) = 𝑦 → ((𝑋‘𝑎) = 𝑥 → ((𝑌‘𝑥) = (𝑌‘𝑦) → 𝑥 = 𝑦)))) |
81 | 80 | rexlimdva 3214 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → (∃𝑏 ∈ 𝑃 (𝑋‘𝑏) = 𝑦 → ((𝑋‘𝑎) = 𝑥 → ((𝑌‘𝑥) = (𝑌‘𝑦) → 𝑥 = 𝑦)))) |
82 | 81 | com23 86 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → ((𝑋‘𝑎) = 𝑥 → (∃𝑏 ∈ 𝑃 (𝑋‘𝑏) = 𝑦 → ((𝑌‘𝑥) = (𝑌‘𝑦) → 𝑥 = 𝑦)))) |
83 | 82 | rexlimdva 3214 |
. . . . . 6
⊢ (𝜑 → (∃𝑎 ∈ 𝑃 (𝑋‘𝑎) = 𝑥 → (∃𝑏 ∈ 𝑃 (𝑋‘𝑏) = 𝑦 → ((𝑌‘𝑥) = (𝑌‘𝑦) → 𝑥 = 𝑦)))) |
84 | 83 | impd 410 |
. . . . 5
⊢ (𝜑 → ((∃𝑎 ∈ 𝑃 (𝑋‘𝑎) = 𝑥 ∧ ∃𝑏 ∈ 𝑃 (𝑋‘𝑏) = 𝑦) → ((𝑌‘𝑥) = (𝑌‘𝑦) → 𝑥 = 𝑦))) |
85 | 46, 84 | sylbid 239 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → ((𝑌‘𝑥) = (𝑌‘𝑦) → 𝑥 = 𝑦))) |
86 | 85 | ralrimivv 3115 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑌‘𝑥) = (𝑌‘𝑦) → 𝑥 = 𝑦)) |
87 | | dff13 7122 |
. . 3
⊢ (𝑌:𝐸–1-1→𝐷 ↔ (𝑌:𝐸⟶𝐷 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑌‘𝑥) = (𝑌‘𝑦) → 𝑥 = 𝑦))) |
88 | 33, 86, 87 | sylanbrc 582 |
. 2
⊢ (𝜑 → 𝑌:𝐸–1-1→𝐷) |
89 | 27, 88 | jca 511 |
1
⊢ (𝜑 → (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷)) |