Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresf1 Structured version   Visualization version   GIF version

Theorem fcoresf1 47179
Description: If a composition is injective, then the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 18-Sep-2024.) (Revised by AV, 7-Oct-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
fcoresf1.i (𝜑 → (𝐺𝐹):𝑃1-1𝐷)
Assertion
Ref Expression
fcoresf1 (𝜑 → (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷))

Proof of Theorem fcoresf1
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
2 fcores.e . . . . 5 𝐸 = (ran 𝐹𝐶)
3 fcores.p . . . . 5 𝑃 = (𝐹𝐶)
4 fcores.x . . . . 5 𝑋 = (𝐹𝑃)
51, 2, 3, 4fcoreslem3 47175 . . . 4 (𝜑𝑋:𝑃onto𝐸)
6 fof 6735 . . . 4 (𝑋:𝑃onto𝐸𝑋:𝑃𝐸)
75, 6syl 17 . . 3 (𝜑𝑋:𝑃𝐸)
8 fcoresf1.i . . . 4 (𝜑 → (𝐺𝐹):𝑃1-1𝐷)
9 dff13 7188 . . . . 5 ((𝐺𝐹):𝑃1-1𝐷 ↔ ((𝐺𝐹):𝑃𝐷 ∧ ∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦)))
10 fcores.g . . . . . . . . . . . 12 (𝜑𝐺:𝐶𝐷)
11 fcores.y . . . . . . . . . . . 12 𝑌 = (𝐺𝐸)
121, 2, 3, 4, 10, 11fcoresf1lem 47178 . . . . . . . . . . 11 ((𝜑𝑥𝑃) → ((𝐺𝐹)‘𝑥) = (𝑌‘(𝑋𝑥)))
1312adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((𝐺𝐹)‘𝑥) = (𝑌‘(𝑋𝑥)))
141, 2, 3, 4, 10, 11fcoresf1lem 47178 . . . . . . . . . . 11 ((𝜑𝑦𝑃) → ((𝐺𝐹)‘𝑦) = (𝑌‘(𝑋𝑦)))
1514adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((𝐺𝐹)‘𝑦) = (𝑌‘(𝑋𝑦)))
1613, 15eqeq12d 2747 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) ↔ (𝑌‘(𝑋𝑥)) = (𝑌‘(𝑋𝑦))))
1716imbi1d 341 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) ↔ ((𝑌‘(𝑋𝑥)) = (𝑌‘(𝑋𝑦)) → 𝑥 = 𝑦)))
18 fveq2 6822 . . . . . . . . . 10 ((𝑋𝑥) = (𝑋𝑦) → (𝑌‘(𝑋𝑥)) = (𝑌‘(𝑋𝑦)))
1918a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((𝑋𝑥) = (𝑋𝑦) → (𝑌‘(𝑋𝑥)) = (𝑌‘(𝑋𝑦))))
2019imim1d 82 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (((𝑌‘(𝑋𝑥)) = (𝑌‘(𝑋𝑦)) → 𝑥 = 𝑦) → ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦)))
2117, 20sylbid 240 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦)))
2221ralimdvva 3179 . . . . . 6 (𝜑 → (∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → ∀𝑥𝑃𝑦𝑃 ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦)))
2322adantld 490 . . . . 5 (𝜑 → (((𝐺𝐹):𝑃𝐷 ∧ ∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦)) → ∀𝑥𝑃𝑦𝑃 ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦)))
249, 23biimtrid 242 . . . 4 (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 → ∀𝑥𝑃𝑦𝑃 ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦)))
258, 24mpd 15 . . 3 (𝜑 → ∀𝑥𝑃𝑦𝑃 ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦))
26 dff13 7188 . . 3 (𝑋:𝑃1-1𝐸 ↔ (𝑋:𝑃𝐸 ∧ ∀𝑥𝑃𝑦𝑃 ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦)))
277, 25, 26sylanbrc 583 . 2 (𝜑𝑋:𝑃1-1𝐸)
282a1i 11 . . . . . 6 (𝜑𝐸 = (ran 𝐹𝐶))
29 inss2 4185 . . . . . 6 (ran 𝐹𝐶) ⊆ 𝐶
3028, 29eqsstrdi 3974 . . . . 5 (𝜑𝐸𝐶)
3110, 30fssresd 6690 . . . 4 (𝜑 → (𝐺𝐸):𝐸𝐷)
3211feq1i 6642 . . . 4 (𝑌:𝐸𝐷 ↔ (𝐺𝐸):𝐸𝐷)
3331, 32sylibr 234 . . 3 (𝜑𝑌:𝐸𝐷)
341, 2, 3, 4fcoreslem2 47174 . . . . . . . . 9 (𝜑 → ran 𝑋 = 𝐸)
3534eqcomd 2737 . . . . . . . 8 (𝜑𝐸 = ran 𝑋)
3635eleq2d 2817 . . . . . . 7 (𝜑 → (𝑥𝐸𝑥 ∈ ran 𝑋))
37 fofn 6737 . . . . . . . . 9 (𝑋:𝑃onto𝐸𝑋 Fn 𝑃)
385, 37syl 17 . . . . . . . 8 (𝜑𝑋 Fn 𝑃)
39 fvelrnb 6882 . . . . . . . 8 (𝑋 Fn 𝑃 → (𝑥 ∈ ran 𝑋 ↔ ∃𝑎𝑃 (𝑋𝑎) = 𝑥))
4038, 39syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ ran 𝑋 ↔ ∃𝑎𝑃 (𝑋𝑎) = 𝑥))
4136, 40bitrd 279 . . . . . 6 (𝜑 → (𝑥𝐸 ↔ ∃𝑎𝑃 (𝑋𝑎) = 𝑥))
4235eleq2d 2817 . . . . . . 7 (𝜑 → (𝑦𝐸𝑦 ∈ ran 𝑋))
43 fvelrnb 6882 . . . . . . . 8 (𝑋 Fn 𝑃 → (𝑦 ∈ ran 𝑋 ↔ ∃𝑏𝑃 (𝑋𝑏) = 𝑦))
4438, 43syl 17 . . . . . . 7 (𝜑 → (𝑦 ∈ ran 𝑋 ↔ ∃𝑏𝑃 (𝑋𝑏) = 𝑦))
4542, 44bitrd 279 . . . . . 6 (𝜑 → (𝑦𝐸 ↔ ∃𝑏𝑃 (𝑋𝑏) = 𝑦))
4641, 45anbi12d 632 . . . . 5 (𝜑 → ((𝑥𝐸𝑦𝐸) ↔ (∃𝑎𝑃 (𝑋𝑎) = 𝑥 ∧ ∃𝑏𝑃 (𝑋𝑏) = 𝑦)))
47 fveqeq2 6831 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) ↔ ((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑦)))
48 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑥 = 𝑦𝑎 = 𝑦))
4947, 48imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → ((((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑦) → 𝑎 = 𝑦)))
50 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑏 → ((𝐺𝐹)‘𝑦) = ((𝐺𝐹)‘𝑏))
5150eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑦) ↔ ((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏)))
52 equequ2 2027 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑎 = 𝑦𝑎 = 𝑏))
5351, 52imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → ((((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑦) → 𝑎 = 𝑦) ↔ (((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏) → 𝑎 = 𝑏)))
5449, 53rspc2v 3583 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑃𝑏𝑃) → (∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → (((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏) → 𝑎 = 𝑏)))
5554adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → (((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏) → 𝑎 = 𝑏)))
561, 2, 3, 4, 10, 11fcoresf1lem 47178 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑎𝑃) → ((𝐺𝐹)‘𝑎) = (𝑌‘(𝑋𝑎)))
5756adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐺𝐹)‘𝑎) = (𝑌‘(𝑋𝑎)))
581, 2, 3, 4, 10, 11fcoresf1lem 47178 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑏𝑃) → ((𝐺𝐹)‘𝑏) = (𝑌‘(𝑋𝑏)))
5958adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐺𝐹)‘𝑏) = (𝑌‘(𝑋𝑏)))
6057, 59eqeq12d 2747 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏) ↔ (𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏))))
6160imbi1d 341 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏) → 𝑎 = 𝑏) ↔ ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → 𝑎 = 𝑏)))
62 fveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
6362a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏)))
6463imim2d 57 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → 𝑎 = 𝑏) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏))))
6561, 64sylbid 240 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏) → 𝑎 = 𝑏) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏))))
6655, 65syld 47 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏))))
6766ex 412 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑎𝑃𝑏𝑃) → (∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏)))))
6867com23 86 . . . . . . . . . . . . . . 15 (𝜑 → (∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → ((𝑎𝑃𝑏𝑃) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏)))))
6968adantld 490 . . . . . . . . . . . . . 14 (𝜑 → (((𝐺𝐹):𝑃𝐷 ∧ ∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦)) → ((𝑎𝑃𝑏𝑃) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏)))))
709, 69biimtrid 242 . . . . . . . . . . . . 13 (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 → ((𝑎𝑃𝑏𝑃) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏)))))
718, 70mpd 15 . . . . . . . . . . . 12 (𝜑 → ((𝑎𝑃𝑏𝑃) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏))))
7271impl 455 . . . . . . . . . . 11 (((𝜑𝑎𝑃) ∧ 𝑏𝑃) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏)))
73 fveq2 6822 . . . . . . . . . . . . 13 ((𝑋𝑎) = 𝑥 → (𝑌‘(𝑋𝑎)) = (𝑌𝑥))
74 fveq2 6822 . . . . . . . . . . . . 13 ((𝑋𝑏) = 𝑦 → (𝑌‘(𝑋𝑏)) = (𝑌𝑦))
7573, 74eqeqan12rd 2746 . . . . . . . . . . . 12 (((𝑋𝑏) = 𝑦 ∧ (𝑋𝑎) = 𝑥) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) ↔ (𝑌𝑥) = (𝑌𝑦)))
76 eqeq12 2748 . . . . . . . . . . . . 13 (((𝑋𝑎) = 𝑥 ∧ (𝑋𝑏) = 𝑦) → ((𝑋𝑎) = (𝑋𝑏) ↔ 𝑥 = 𝑦))
7776ancoms 458 . . . . . . . . . . . 12 (((𝑋𝑏) = 𝑦 ∧ (𝑋𝑎) = 𝑥) → ((𝑋𝑎) = (𝑋𝑏) ↔ 𝑥 = 𝑦))
7875, 77imbi12d 344 . . . . . . . . . . 11 (((𝑋𝑏) = 𝑦 ∧ (𝑋𝑎) = 𝑥) → (((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏)) ↔ ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦)))
7972, 78syl5ibcom 245 . . . . . . . . . 10 (((𝜑𝑎𝑃) ∧ 𝑏𝑃) → (((𝑋𝑏) = 𝑦 ∧ (𝑋𝑎) = 𝑥) → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦)))
8079expd 415 . . . . . . . . 9 (((𝜑𝑎𝑃) ∧ 𝑏𝑃) → ((𝑋𝑏) = 𝑦 → ((𝑋𝑎) = 𝑥 → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦))))
8180rexlimdva 3133 . . . . . . . 8 ((𝜑𝑎𝑃) → (∃𝑏𝑃 (𝑋𝑏) = 𝑦 → ((𝑋𝑎) = 𝑥 → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦))))
8281com23 86 . . . . . . 7 ((𝜑𝑎𝑃) → ((𝑋𝑎) = 𝑥 → (∃𝑏𝑃 (𝑋𝑏) = 𝑦 → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦))))
8382rexlimdva 3133 . . . . . 6 (𝜑 → (∃𝑎𝑃 (𝑋𝑎) = 𝑥 → (∃𝑏𝑃 (𝑋𝑏) = 𝑦 → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦))))
8483impd 410 . . . . 5 (𝜑 → ((∃𝑎𝑃 (𝑋𝑎) = 𝑥 ∧ ∃𝑏𝑃 (𝑋𝑏) = 𝑦) → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦)))
8546, 84sylbid 240 . . . 4 (𝜑 → ((𝑥𝐸𝑦𝐸) → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦)))
8685ralrimivv 3173 . . 3 (𝜑 → ∀𝑥𝐸𝑦𝐸 ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦))
87 dff13 7188 . . 3 (𝑌:𝐸1-1𝐷 ↔ (𝑌:𝐸𝐷 ∧ ∀𝑥𝐸𝑦𝐸 ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦)))
8833, 86, 87sylanbrc 583 . 2 (𝜑𝑌:𝐸1-1𝐷)
8927, 88jca 511 1 (𝜑 → (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cin 3896  ccnv 5613  ran crn 5615  cres 5616  cima 5617  ccom 5618   Fn wfn 6476  wf 6477  1-1wf1 6478  ontowfo 6479  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-fv 6489
This theorem is referenced by:  fcoresf1b  47180  f1cof1b  47187
  Copyright terms: Public domain W3C validator