Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresf1 Structured version   Visualization version   GIF version

Theorem fcoresf1 47074
Description: If a composition is injective, then the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 18-Sep-2024.) (Revised by AV, 7-Oct-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
fcoresf1.i (𝜑 → (𝐺𝐹):𝑃1-1𝐷)
Assertion
Ref Expression
fcoresf1 (𝜑 → (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷))

Proof of Theorem fcoresf1
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
2 fcores.e . . . . 5 𝐸 = (ran 𝐹𝐶)
3 fcores.p . . . . 5 𝑃 = (𝐹𝐶)
4 fcores.x . . . . 5 𝑋 = (𝐹𝑃)
51, 2, 3, 4fcoreslem3 47070 . . . 4 (𝜑𝑋:𝑃onto𝐸)
6 fof 6775 . . . 4 (𝑋:𝑃onto𝐸𝑋:𝑃𝐸)
75, 6syl 17 . . 3 (𝜑𝑋:𝑃𝐸)
8 fcoresf1.i . . . 4 (𝜑 → (𝐺𝐹):𝑃1-1𝐷)
9 dff13 7232 . . . . 5 ((𝐺𝐹):𝑃1-1𝐷 ↔ ((𝐺𝐹):𝑃𝐷 ∧ ∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦)))
10 fcores.g . . . . . . . . . . . 12 (𝜑𝐺:𝐶𝐷)
11 fcores.y . . . . . . . . . . . 12 𝑌 = (𝐺𝐸)
121, 2, 3, 4, 10, 11fcoresf1lem 47073 . . . . . . . . . . 11 ((𝜑𝑥𝑃) → ((𝐺𝐹)‘𝑥) = (𝑌‘(𝑋𝑥)))
1312adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((𝐺𝐹)‘𝑥) = (𝑌‘(𝑋𝑥)))
141, 2, 3, 4, 10, 11fcoresf1lem 47073 . . . . . . . . . . 11 ((𝜑𝑦𝑃) → ((𝐺𝐹)‘𝑦) = (𝑌‘(𝑋𝑦)))
1514adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((𝐺𝐹)‘𝑦) = (𝑌‘(𝑋𝑦)))
1613, 15eqeq12d 2746 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) ↔ (𝑌‘(𝑋𝑥)) = (𝑌‘(𝑋𝑦))))
1716imbi1d 341 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) ↔ ((𝑌‘(𝑋𝑥)) = (𝑌‘(𝑋𝑦)) → 𝑥 = 𝑦)))
18 fveq2 6861 . . . . . . . . . 10 ((𝑋𝑥) = (𝑋𝑦) → (𝑌‘(𝑋𝑥)) = (𝑌‘(𝑋𝑦)))
1918a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((𝑋𝑥) = (𝑋𝑦) → (𝑌‘(𝑋𝑥)) = (𝑌‘(𝑋𝑦))))
2019imim1d 82 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (((𝑌‘(𝑋𝑥)) = (𝑌‘(𝑋𝑦)) → 𝑥 = 𝑦) → ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦)))
2117, 20sylbid 240 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → ((((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦)))
2221ralimdvva 3185 . . . . . 6 (𝜑 → (∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → ∀𝑥𝑃𝑦𝑃 ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦)))
2322adantld 490 . . . . 5 (𝜑 → (((𝐺𝐹):𝑃𝐷 ∧ ∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦)) → ∀𝑥𝑃𝑦𝑃 ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦)))
249, 23biimtrid 242 . . . 4 (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 → ∀𝑥𝑃𝑦𝑃 ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦)))
258, 24mpd 15 . . 3 (𝜑 → ∀𝑥𝑃𝑦𝑃 ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦))
26 dff13 7232 . . 3 (𝑋:𝑃1-1𝐸 ↔ (𝑋:𝑃𝐸 ∧ ∀𝑥𝑃𝑦𝑃 ((𝑋𝑥) = (𝑋𝑦) → 𝑥 = 𝑦)))
277, 25, 26sylanbrc 583 . 2 (𝜑𝑋:𝑃1-1𝐸)
282a1i 11 . . . . . 6 (𝜑𝐸 = (ran 𝐹𝐶))
29 inss2 4204 . . . . . 6 (ran 𝐹𝐶) ⊆ 𝐶
3028, 29eqsstrdi 3994 . . . . 5 (𝜑𝐸𝐶)
3110, 30fssresd 6730 . . . 4 (𝜑 → (𝐺𝐸):𝐸𝐷)
3211feq1i 6682 . . . 4 (𝑌:𝐸𝐷 ↔ (𝐺𝐸):𝐸𝐷)
3331, 32sylibr 234 . . 3 (𝜑𝑌:𝐸𝐷)
341, 2, 3, 4fcoreslem2 47069 . . . . . . . . 9 (𝜑 → ran 𝑋 = 𝐸)
3534eqcomd 2736 . . . . . . . 8 (𝜑𝐸 = ran 𝑋)
3635eleq2d 2815 . . . . . . 7 (𝜑 → (𝑥𝐸𝑥 ∈ ran 𝑋))
37 fofn 6777 . . . . . . . . 9 (𝑋:𝑃onto𝐸𝑋 Fn 𝑃)
385, 37syl 17 . . . . . . . 8 (𝜑𝑋 Fn 𝑃)
39 fvelrnb 6924 . . . . . . . 8 (𝑋 Fn 𝑃 → (𝑥 ∈ ran 𝑋 ↔ ∃𝑎𝑃 (𝑋𝑎) = 𝑥))
4038, 39syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ ran 𝑋 ↔ ∃𝑎𝑃 (𝑋𝑎) = 𝑥))
4136, 40bitrd 279 . . . . . 6 (𝜑 → (𝑥𝐸 ↔ ∃𝑎𝑃 (𝑋𝑎) = 𝑥))
4235eleq2d 2815 . . . . . . 7 (𝜑 → (𝑦𝐸𝑦 ∈ ran 𝑋))
43 fvelrnb 6924 . . . . . . . 8 (𝑋 Fn 𝑃 → (𝑦 ∈ ran 𝑋 ↔ ∃𝑏𝑃 (𝑋𝑏) = 𝑦))
4438, 43syl 17 . . . . . . 7 (𝜑 → (𝑦 ∈ ran 𝑋 ↔ ∃𝑏𝑃 (𝑋𝑏) = 𝑦))
4542, 44bitrd 279 . . . . . 6 (𝜑 → (𝑦𝐸 ↔ ∃𝑏𝑃 (𝑋𝑏) = 𝑦))
4641, 45anbi12d 632 . . . . 5 (𝜑 → ((𝑥𝐸𝑦𝐸) ↔ (∃𝑎𝑃 (𝑋𝑎) = 𝑥 ∧ ∃𝑏𝑃 (𝑋𝑏) = 𝑦)))
47 fveqeq2 6870 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) ↔ ((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑦)))
48 eqeq1 2734 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑥 = 𝑦𝑎 = 𝑦))
4947, 48imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → ((((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑦) → 𝑎 = 𝑦)))
50 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑏 → ((𝐺𝐹)‘𝑦) = ((𝐺𝐹)‘𝑏))
5150eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑦) ↔ ((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏)))
52 equequ2 2026 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑎 = 𝑦𝑎 = 𝑏))
5351, 52imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → ((((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑦) → 𝑎 = 𝑦) ↔ (((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏) → 𝑎 = 𝑏)))
5449, 53rspc2v 3602 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑃𝑏𝑃) → (∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → (((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏) → 𝑎 = 𝑏)))
5554adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → (((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏) → 𝑎 = 𝑏)))
561, 2, 3, 4, 10, 11fcoresf1lem 47073 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑎𝑃) → ((𝐺𝐹)‘𝑎) = (𝑌‘(𝑋𝑎)))
5756adantrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐺𝐹)‘𝑎) = (𝑌‘(𝑋𝑎)))
581, 2, 3, 4, 10, 11fcoresf1lem 47073 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑏𝑃) → ((𝐺𝐹)‘𝑏) = (𝑌‘(𝑋𝑏)))
5958adantrl 716 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐺𝐹)‘𝑏) = (𝑌‘(𝑋𝑏)))
6057, 59eqeq12d 2746 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏) ↔ (𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏))))
6160imbi1d 341 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏) → 𝑎 = 𝑏) ↔ ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → 𝑎 = 𝑏)))
62 fveq2 6861 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
6362a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏)))
6463imim2d 57 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → 𝑎 = 𝑏) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏))))
6561, 64sylbid 240 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((((𝐺𝐹)‘𝑎) = ((𝐺𝐹)‘𝑏) → 𝑎 = 𝑏) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏))))
6655, 65syld 47 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏))))
6766ex 412 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑎𝑃𝑏𝑃) → (∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏)))))
6867com23 86 . . . . . . . . . . . . . . 15 (𝜑 → (∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦) → ((𝑎𝑃𝑏𝑃) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏)))))
6968adantld 490 . . . . . . . . . . . . . 14 (𝜑 → (((𝐺𝐹):𝑃𝐷 ∧ ∀𝑥𝑃𝑦𝑃 (((𝐺𝐹)‘𝑥) = ((𝐺𝐹)‘𝑦) → 𝑥 = 𝑦)) → ((𝑎𝑃𝑏𝑃) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏)))))
709, 69biimtrid 242 . . . . . . . . . . . . 13 (𝜑 → ((𝐺𝐹):𝑃1-1𝐷 → ((𝑎𝑃𝑏𝑃) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏)))))
718, 70mpd 15 . . . . . . . . . . . 12 (𝜑 → ((𝑎𝑃𝑏𝑃) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏))))
7271impl 455 . . . . . . . . . . 11 (((𝜑𝑎𝑃) ∧ 𝑏𝑃) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏)))
73 fveq2 6861 . . . . . . . . . . . . 13 ((𝑋𝑎) = 𝑥 → (𝑌‘(𝑋𝑎)) = (𝑌𝑥))
74 fveq2 6861 . . . . . . . . . . . . 13 ((𝑋𝑏) = 𝑦 → (𝑌‘(𝑋𝑏)) = (𝑌𝑦))
7573, 74eqeqan12rd 2745 . . . . . . . . . . . 12 (((𝑋𝑏) = 𝑦 ∧ (𝑋𝑎) = 𝑥) → ((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) ↔ (𝑌𝑥) = (𝑌𝑦)))
76 eqeq12 2747 . . . . . . . . . . . . 13 (((𝑋𝑎) = 𝑥 ∧ (𝑋𝑏) = 𝑦) → ((𝑋𝑎) = (𝑋𝑏) ↔ 𝑥 = 𝑦))
7776ancoms 458 . . . . . . . . . . . 12 (((𝑋𝑏) = 𝑦 ∧ (𝑋𝑎) = 𝑥) → ((𝑋𝑎) = (𝑋𝑏) ↔ 𝑥 = 𝑦))
7875, 77imbi12d 344 . . . . . . . . . . 11 (((𝑋𝑏) = 𝑦 ∧ (𝑋𝑎) = 𝑥) → (((𝑌‘(𝑋𝑎)) = (𝑌‘(𝑋𝑏)) → (𝑋𝑎) = (𝑋𝑏)) ↔ ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦)))
7972, 78syl5ibcom 245 . . . . . . . . . 10 (((𝜑𝑎𝑃) ∧ 𝑏𝑃) → (((𝑋𝑏) = 𝑦 ∧ (𝑋𝑎) = 𝑥) → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦)))
8079expd 415 . . . . . . . . 9 (((𝜑𝑎𝑃) ∧ 𝑏𝑃) → ((𝑋𝑏) = 𝑦 → ((𝑋𝑎) = 𝑥 → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦))))
8180rexlimdva 3135 . . . . . . . 8 ((𝜑𝑎𝑃) → (∃𝑏𝑃 (𝑋𝑏) = 𝑦 → ((𝑋𝑎) = 𝑥 → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦))))
8281com23 86 . . . . . . 7 ((𝜑𝑎𝑃) → ((𝑋𝑎) = 𝑥 → (∃𝑏𝑃 (𝑋𝑏) = 𝑦 → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦))))
8382rexlimdva 3135 . . . . . 6 (𝜑 → (∃𝑎𝑃 (𝑋𝑎) = 𝑥 → (∃𝑏𝑃 (𝑋𝑏) = 𝑦 → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦))))
8483impd 410 . . . . 5 (𝜑 → ((∃𝑎𝑃 (𝑋𝑎) = 𝑥 ∧ ∃𝑏𝑃 (𝑋𝑏) = 𝑦) → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦)))
8546, 84sylbid 240 . . . 4 (𝜑 → ((𝑥𝐸𝑦𝐸) → ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦)))
8685ralrimivv 3179 . . 3 (𝜑 → ∀𝑥𝐸𝑦𝐸 ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦))
87 dff13 7232 . . 3 (𝑌:𝐸1-1𝐷 ↔ (𝑌:𝐸𝐷 ∧ ∀𝑥𝐸𝑦𝐸 ((𝑌𝑥) = (𝑌𝑦) → 𝑥 = 𝑦)))
8833, 86, 87sylanbrc 583 . 2 (𝜑𝑌:𝐸1-1𝐷)
8927, 88jca 511 1 (𝜑 → (𝑋:𝑃1-1𝐸𝑌:𝐸1-1𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916  ccnv 5640  ran crn 5642  cres 5643  cima 5644  ccom 5645   Fn wfn 6509  wf 6510  1-1wf1 6511  ontowfo 6512  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-fv 6522
This theorem is referenced by:  fcoresf1b  47075  f1cof1b  47082
  Copyright terms: Public domain W3C validator