MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dflidl2rng Structured version   Visualization version   GIF version

Theorem dflidl2rng 21143
Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
dflidl2rng.u 𝑈 = (LIdeal‘𝑅)
dflidl2rng.b 𝐵 = (Base‘𝑅)
dflidl2rng.t · = (.r𝑅)
Assertion
Ref Expression
dflidl2rng ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem dflidl2rng
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → 𝑅 ∈ Rng)
2 simpr 484 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → 𝐼𝑈)
3 eqid 2729 . . . . . . 7 (0g𝑅) = (0g𝑅)
43subg0cl 19031 . . . . . 6 (𝐼 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝐼)
54ad2antlr 727 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
61, 2, 53jca 1128 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → (𝑅 ∈ Rng ∧ 𝐼𝑈 ∧ (0g𝑅) ∈ 𝐼))
7 dflidl2rng.b . . . . 5 𝐵 = (Base‘𝑅)
8 dflidl2rng.t . . . . 5 · = (.r𝑅)
9 dflidl2rng.u . . . . 5 𝑈 = (LIdeal‘𝑅)
103, 7, 8, 9rnglidlmcl 21141 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼𝑈 ∧ (0g𝑅) ∈ 𝐼) ∧ (𝑥𝐵𝑦𝐼)) → (𝑥 · 𝑦) ∈ 𝐼)
116, 10sylan 580 . . 3 ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) ∧ (𝑥𝐵𝑦𝐼)) → (𝑥 · 𝑦) ∈ 𝐼)
1211ralrimivva 3172 . 2 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼)
137subgss 19024 . . . 4 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼𝐵)
1413ad2antlr 727 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼𝐵)
154ne0d 4295 . . . 4 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼 ≠ ∅)
1615ad2antlr 727 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ≠ ∅)
17 eqid 2729 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
1817subgcl 19033 . . . . . . . 8 ((𝐼 ∈ (SubGrp‘𝑅) ∧ (𝑥 · 𝑦) ∈ 𝐼𝑧𝐼) → ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼)
1918ad5ant245 1363 . . . . . . 7 (((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥𝐵𝑦𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) ∧ 𝑧𝐼) → ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼)
2019ralrimiva 3121 . . . . . 6 ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥𝐵𝑦𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼)
2120ex 412 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥𝐵𝑦𝐼)) → ((𝑥 · 𝑦) ∈ 𝐼 → ∀𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼))
2221ralimdvva 3176 . . . 4 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼 → ∀𝑥𝐵𝑦𝐼𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼))
2322imp 406 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑥𝐵𝑦𝐼𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼)
249, 7, 17, 8islidl 21140 . . 3 (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐼𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼))
2514, 16, 23, 24syl3anbrc 1344 . 2 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼𝑈)
2612, 25impbida 800 1 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3905  c0 4286  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  0gc0g 17361  SubGrpcsubg 19017  Rngcrng 20055  LIdealclidl 21131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-subg 19020  df-abl 19680  df-mgp 20044  df-rng 20056  df-lss 20853  df-sra 21095  df-rgmod 21096  df-lidl 21133
This theorem is referenced by:  isridlrng  21144  dflidl2  21152  df2idl2rng  21181
  Copyright terms: Public domain W3C validator