| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dflidl2rng | Structured version Visualization version GIF version | ||
| Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
| Ref | Expression |
|---|---|
| dflidl2rng.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| dflidl2rng.b | ⊢ 𝐵 = (Base‘𝑅) |
| dflidl2rng.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dflidl2rng | ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → 𝑅 ∈ Rng) | |
| 2 | simpr 484 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 3 | subg0cl 19066 | . . . . . 6 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → (0g‘𝑅) ∈ 𝐼) |
| 5 | 4 | ad2antlr 727 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → (0g‘𝑅) ∈ 𝐼) |
| 6 | 1, 2, 5 | 3jca 1128 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → (𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ (0g‘𝑅) ∈ 𝐼)) |
| 7 | dflidl2rng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | dflidl2rng.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 9 | dflidl2rng.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 10 | 3, 7, 8, 9 | rnglidlmcl 21126 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ (0g‘𝑅) ∈ 𝐼) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → (𝑥 · 𝑦) ∈ 𝐼) |
| 11 | 6, 10 | sylan 580 | . . 3 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → (𝑥 · 𝑦) ∈ 𝐼) |
| 12 | 11 | ralrimivva 3180 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) |
| 13 | 7 | subgss 19059 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → 𝐼 ⊆ 𝐵) |
| 14 | 13 | ad2antlr 727 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ⊆ 𝐵) |
| 15 | 4 | ne0d 4305 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → 𝐼 ≠ ∅) |
| 16 | 15 | ad2antlr 727 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ≠ ∅) |
| 17 | eqid 2729 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 18 | 17 | subgcl 19068 | . . . . . . . 8 ⊢ ((𝐼 ∈ (SubGrp‘𝑅) ∧ (𝑥 · 𝑦) ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
| 19 | 18 | ad5ant245 1363 | . . . . . . 7 ⊢ (((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) → ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
| 20 | 19 | ralrimiva 3125 | . . . . . 6 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
| 21 | 20 | ex 412 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → ((𝑥 · 𝑦) ∈ 𝐼 → ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
| 22 | 21 | ralimdvva 3184 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
| 23 | 22 | imp 406 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
| 24 | 9, 7, 17, 8 | islidl 21125 | . . 3 ⊢ (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
| 25 | 14, 16, 23, 24 | syl3anbrc 1344 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ∈ 𝑈) |
| 26 | 12, 25 | impbida 800 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3914 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 0gc0g 17402 SubGrpcsubg 19052 Rngcrng 20061 LIdealclidl 21116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-sca 17236 df-vsca 17237 df-ip 17238 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-subg 19055 df-abl 19713 df-mgp 20050 df-rng 20062 df-lss 20838 df-sra 21080 df-rgmod 21081 df-lidl 21118 |
| This theorem is referenced by: isridlrng 21129 dflidl2 21137 df2idl2rng 21166 |
| Copyright terms: Public domain | W3C validator |