| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dflidl2rng | Structured version Visualization version GIF version | ||
| Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
| Ref | Expression |
|---|---|
| dflidl2rng.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| dflidl2rng.b | ⊢ 𝐵 = (Base‘𝑅) |
| dflidl2rng.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dflidl2rng | ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → 𝑅 ∈ Rng) | |
| 2 | simpr 484 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
| 3 | eqid 2733 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 3 | subg0cl 19057 | . . . . . 6 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → (0g‘𝑅) ∈ 𝐼) |
| 5 | 4 | ad2antlr 727 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → (0g‘𝑅) ∈ 𝐼) |
| 6 | 1, 2, 5 | 3jca 1128 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → (𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ (0g‘𝑅) ∈ 𝐼)) |
| 7 | dflidl2rng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | dflidl2rng.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 9 | dflidl2rng.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 10 | 3, 7, 8, 9 | rnglidlmcl 21163 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ (0g‘𝑅) ∈ 𝐼) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → (𝑥 · 𝑦) ∈ 𝐼) |
| 11 | 6, 10 | sylan 580 | . . 3 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → (𝑥 · 𝑦) ∈ 𝐼) |
| 12 | 11 | ralrimivva 3177 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) |
| 13 | 7 | subgss 19050 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → 𝐼 ⊆ 𝐵) |
| 14 | 13 | ad2antlr 727 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ⊆ 𝐵) |
| 15 | 4 | ne0d 4293 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → 𝐼 ≠ ∅) |
| 16 | 15 | ad2antlr 727 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ≠ ∅) |
| 17 | eqid 2733 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 18 | 17 | subgcl 19059 | . . . . . . . 8 ⊢ ((𝐼 ∈ (SubGrp‘𝑅) ∧ (𝑥 · 𝑦) ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
| 19 | 18 | ad5ant245 1363 | . . . . . . 7 ⊢ (((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) → ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
| 20 | 19 | ralrimiva 3126 | . . . . . 6 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
| 21 | 20 | ex 412 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → ((𝑥 · 𝑦) ∈ 𝐼 → ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
| 22 | 21 | ralimdvva 3181 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
| 23 | 22 | imp 406 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
| 24 | 9, 7, 17, 8 | islidl 21162 | . . 3 ⊢ (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
| 25 | 14, 16, 23, 24 | syl3anbrc 1344 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ∈ 𝑈) |
| 26 | 12, 25 | impbida 800 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∀wral 3049 ⊆ wss 3899 ∅c0 4284 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 .rcmulr 17172 0gc0g 17353 SubGrpcsubg 19043 Rngcrng 20080 LIdealclidl 21153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-sca 17187 df-vsca 17188 df-ip 17189 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-subg 19046 df-abl 19705 df-mgp 20069 df-rng 20081 df-lss 20875 df-sra 21117 df-rgmod 21118 df-lidl 21155 |
| This theorem is referenced by: isridlrng 21166 dflidl2 21174 df2idl2rng 21203 |
| Copyright terms: Public domain | W3C validator |