| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dflidl2rng | Structured version Visualization version GIF version | ||
| Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
| Ref | Expression |
|---|---|
| dflidl2rng.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| dflidl2rng.b | ⊢ 𝐵 = (Base‘𝑅) |
| dflidl2rng.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dflidl2rng | ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 767 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → 𝑅 ∈ Rng) | |
| 2 | simpr 484 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
| 3 | eqid 2737 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 3 | subg0cl 19152 | . . . . . 6 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → (0g‘𝑅) ∈ 𝐼) |
| 5 | 4 | ad2antlr 727 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → (0g‘𝑅) ∈ 𝐼) |
| 6 | 1, 2, 5 | 3jca 1129 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → (𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ (0g‘𝑅) ∈ 𝐼)) |
| 7 | dflidl2rng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | dflidl2rng.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 9 | dflidl2rng.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 10 | 3, 7, 8, 9 | rnglidlmcl 21226 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ (0g‘𝑅) ∈ 𝐼) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → (𝑥 · 𝑦) ∈ 𝐼) |
| 11 | 6, 10 | sylan 580 | . . 3 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → (𝑥 · 𝑦) ∈ 𝐼) |
| 12 | 11 | ralrimivva 3202 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) |
| 13 | 7 | subgss 19145 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → 𝐼 ⊆ 𝐵) |
| 14 | 13 | ad2antlr 727 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ⊆ 𝐵) |
| 15 | 4 | ne0d 4342 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → 𝐼 ≠ ∅) |
| 16 | 15 | ad2antlr 727 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ≠ ∅) |
| 17 | eqid 2737 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 18 | 17 | subgcl 19154 | . . . . . . . 8 ⊢ ((𝐼 ∈ (SubGrp‘𝑅) ∧ (𝑥 · 𝑦) ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
| 19 | 18 | ad5ant245 1363 | . . . . . . 7 ⊢ (((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) → ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
| 20 | 19 | ralrimiva 3146 | . . . . . 6 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
| 21 | 20 | ex 412 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → ((𝑥 · 𝑦) ∈ 𝐼 → ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
| 22 | 21 | ralimdvva 3206 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
| 23 | 22 | imp 406 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
| 24 | 9, 7, 17, 8 | islidl 21225 | . . 3 ⊢ (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
| 25 | 14, 16, 23, 24 | syl3anbrc 1344 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ∈ 𝑈) |
| 26 | 12, 25 | impbida 801 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ⊆ wss 3951 ∅c0 4333 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 0gc0g 17484 SubGrpcsubg 19138 Rngcrng 20149 LIdealclidl 21216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-sca 17313 df-vsca 17314 df-ip 17315 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-subg 19141 df-abl 19801 df-mgp 20138 df-rng 20150 df-lss 20930 df-sra 21172 df-rgmod 21173 df-lidl 21218 |
| This theorem is referenced by: isridlrng 21229 dflidl2 21237 df2idl2rng 21266 |
| Copyright terms: Public domain | W3C validator |