![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dflidl2lem | Structured version Visualization version GIF version |
Description: Lemma for dflidl2 20843: a sufficient condition for a set to be a left ideal. (Contributed by AV, 13-Feb-2025.) |
Ref | Expression |
---|---|
dflidl2.u | β’ π = (LIdealβπ ) |
dflidl2.b | β’ π΅ = (Baseβπ ) |
dflidl2.t | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
dflidl2lem | β’ ((πΌ β (SubGrpβπ ) β§ βπ₯ β π΅ βπ¦ β πΌ (π₯ Β· π¦) β πΌ) β πΌ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflidl2.b | . . . 4 β’ π΅ = (Baseβπ ) | |
2 | 1 | subgss 19007 | . . 3 β’ (πΌ β (SubGrpβπ ) β πΌ β π΅) |
3 | 2 | adantr 482 | . 2 β’ ((πΌ β (SubGrpβπ ) β§ βπ₯ β π΅ βπ¦ β πΌ (π₯ Β· π¦) β πΌ) β πΌ β π΅) |
4 | eqid 2733 | . . . . 5 β’ (0gβπ ) = (0gβπ ) | |
5 | 4 | subg0cl 19014 | . . . 4 β’ (πΌ β (SubGrpβπ ) β (0gβπ ) β πΌ) |
6 | 5 | ne0d 4336 | . . 3 β’ (πΌ β (SubGrpβπ ) β πΌ β β ) |
7 | 6 | adantr 482 | . 2 β’ ((πΌ β (SubGrpβπ ) β§ βπ₯ β π΅ βπ¦ β πΌ (π₯ Β· π¦) β πΌ) β πΌ β β ) |
8 | eqid 2733 | . . . . . . . 8 β’ (+gβπ ) = (+gβπ ) | |
9 | 8 | subgcl 19016 | . . . . . . 7 β’ ((πΌ β (SubGrpβπ ) β§ (π₯ Β· π¦) β πΌ β§ π§ β πΌ) β ((π₯ Β· π¦)(+gβπ )π§) β πΌ) |
10 | 9 | ad4ant134 1175 | . . . . . 6 β’ ((((πΌ β (SubGrpβπ ) β§ (π₯ β π΅ β§ π¦ β πΌ)) β§ (π₯ Β· π¦) β πΌ) β§ π§ β πΌ) β ((π₯ Β· π¦)(+gβπ )π§) β πΌ) |
11 | 10 | ralrimiva 3147 | . . . . 5 β’ (((πΌ β (SubGrpβπ ) β§ (π₯ β π΅ β§ π¦ β πΌ)) β§ (π₯ Β· π¦) β πΌ) β βπ§ β πΌ ((π₯ Β· π¦)(+gβπ )π§) β πΌ) |
12 | 11 | ex 414 | . . . 4 β’ ((πΌ β (SubGrpβπ ) β§ (π₯ β π΅ β§ π¦ β πΌ)) β ((π₯ Β· π¦) β πΌ β βπ§ β πΌ ((π₯ Β· π¦)(+gβπ )π§) β πΌ)) |
13 | 12 | ralimdvva 3205 | . . 3 β’ (πΌ β (SubGrpβπ ) β (βπ₯ β π΅ βπ¦ β πΌ (π₯ Β· π¦) β πΌ β βπ₯ β π΅ βπ¦ β πΌ βπ§ β πΌ ((π₯ Β· π¦)(+gβπ )π§) β πΌ)) |
14 | 13 | imp 408 | . 2 β’ ((πΌ β (SubGrpβπ ) β§ βπ₯ β π΅ βπ¦ β πΌ (π₯ Β· π¦) β πΌ) β βπ₯ β π΅ βπ¦ β πΌ βπ§ β πΌ ((π₯ Β· π¦)(+gβπ )π§) β πΌ) |
15 | dflidl2.u | . . 3 β’ π = (LIdealβπ ) | |
16 | dflidl2.t | . . 3 β’ Β· = (.rβπ ) | |
17 | 15, 1, 8, 16 | islidl 20834 | . 2 β’ (πΌ β π β (πΌ β π΅ β§ πΌ β β β§ βπ₯ β π΅ βπ¦ β πΌ βπ§ β πΌ ((π₯ Β· π¦)(+gβπ )π§) β πΌ)) |
18 | 3, 7, 14, 17 | syl3anbrc 1344 | 1 β’ ((πΌ β (SubGrpβπ ) β§ βπ₯ β π΅ βπ¦ β πΌ (π₯ Β· π¦) β πΌ) β πΌ β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 βwral 3062 β wss 3949 β c0 4323 βcfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 .rcmulr 17198 0gc0g 17385 SubGrpcsubg 19000 LIdealclidl 20783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-sca 17213 df-vsca 17214 df-ip 17215 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-subg 19003 df-lss 20543 df-sra 20785 df-rgmod 20786 df-lidl 20787 |
This theorem is referenced by: dflidl2 20843 |
Copyright terms: Public domain | W3C validator |