MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp4 Structured version   Visualization version   GIF version

Theorem isngp4 22633
Description: Express the property of being a normed group purely in terms of right-translation invariance of the metric instead of using the definition of norm (which itself uses the metric). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
ngprcan.x 𝑋 = (Base‘𝐺)
ngprcan.p + = (+g𝐺)
ngprcan.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
isngp4 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝐺,𝑦,𝑧   𝑧, +   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isngp4
StepHypRef Expression
1 ngpgrp 22620 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
2 ngpms 22621 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
3 ngprcan.x . . . . 5 𝑋 = (Base‘𝐺)
4 ngprcan.p . . . . 5 + = (+g𝐺)
5 ngprcan.d . . . . 5 𝐷 = (dist‘𝐺)
63, 4, 5ngprcan 22631 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦))
76ralrimivvva 3167 . . 3 (𝐺 ∈ NrmGrp → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦))
81, 2, 73jca 1151 . 2 (𝐺 ∈ NrmGrp → (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
9 simp1 1159 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ Grp)
10 simp2 1160 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ MetSp)
11 eqid 2813 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
123, 11grpinvcl 17675 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
1312ad2ant2rl 746 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((invg𝐺)‘𝑦) ∈ 𝑋)
14 eqcom 2820 . . . . . . . . 9 (((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) ↔ (𝑥𝐷𝑦) = ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)))
15 oveq2 6885 . . . . . . . . . . 11 (𝑧 = ((invg𝐺)‘𝑦) → (𝑥 + 𝑧) = (𝑥 + ((invg𝐺)‘𝑦)))
16 oveq2 6885 . . . . . . . . . . 11 (𝑧 = ((invg𝐺)‘𝑦) → (𝑦 + 𝑧) = (𝑦 + ((invg𝐺)‘𝑦)))
1715, 16oveq12d 6895 . . . . . . . . . 10 (𝑧 = ((invg𝐺)‘𝑦) → ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))))
1817eqeq2d 2823 . . . . . . . . 9 (𝑧 = ((invg𝐺)‘𝑦) → ((𝑥𝐷𝑦) = ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) ↔ (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
1914, 18syl5bb 274 . . . . . . . 8 (𝑧 = ((invg𝐺)‘𝑦) → (((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) ↔ (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
2019rspcv 3505 . . . . . . 7 (((invg𝐺)‘𝑦) ∈ 𝑋 → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
2113, 20syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
22 eqid 2813 . . . . . . . . . . . 12 (-g𝐺) = (-g𝐺)
233, 4, 11, 22grpsubval 17673 . . . . . . . . . . 11 ((𝑥𝑋𝑦𝑋) → (𝑥(-g𝐺)𝑦) = (𝑥 + ((invg𝐺)‘𝑦)))
2423adantl 469 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) = (𝑥 + ((invg𝐺)‘𝑦)))
2524eqcomd 2819 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 + ((invg𝐺)‘𝑦)) = (𝑥(-g𝐺)𝑦))
26 eqid 2813 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
273, 4, 26, 11grprinv 17677 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦 + ((invg𝐺)‘𝑦)) = (0g𝐺))
2827ad2ant2rl 746 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 + ((invg𝐺)‘𝑦)) = (0g𝐺))
2925, 28oveq12d 6895 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
303, 22grpsubcl 17703 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
31303expb 1142 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
3231adantlr 697 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
33 eqid 2813 . . . . . . . . . 10 (norm‘𝐺) = (norm‘𝐺)
3433, 3, 26, 5nmval 22611 . . . . . . . . 9 ((𝑥(-g𝐺)𝑦) ∈ 𝑋 → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
3532, 34syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
3629, 35eqtr4d 2850 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3736eqeq2d 2823 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) ↔ (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
3821, 37sylibd 230 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
3938ralimdvva 3159 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
40393impia 1138 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
4133, 22, 5, 3isngp3 22619 . . 3 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
429, 10, 40, 41syl3anbrc 1436 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ NrmGrp)
438, 42impbii 200 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2157  wral 3103  cfv 6104  (class class class)co 6877  Basecbs 16071  +gcplusg 16156  distcds 16165  0gc0g 16308  Grpcgrp 17630  invgcminusg 17631  -gcsg 17632  MetSpcmt 22340  normcnm 22598  NrmGrpcngp 22599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-div 10973  df-nn 11309  df-2 11367  df-n0 11563  df-z 11647  df-uz 11908  df-q 12011  df-rp 12050  df-xneg 12165  df-xadd 12166  df-xmul 12167  df-0g 16310  df-topgen 16312  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-psmet 19949  df-xmet 19950  df-met 19951  df-bl 19952  df-mopn 19953  df-top 20916  df-topon 20933  df-topsp 20955  df-bases 20968  df-xms 22342  df-ms 22343  df-nm 22604  df-ngp 22605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator