MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp4 Structured version   Visualization version   GIF version

Theorem isngp4 24527
Description: Express the property of being a normed group purely in terms of right-translation invariance of the metric instead of using the definition of norm (which itself uses the metric). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
ngprcan.x 𝑋 = (Base‘𝐺)
ngprcan.p + = (+g𝐺)
ngprcan.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
isngp4 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝐺,𝑦,𝑧   𝑧, +   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isngp4
StepHypRef Expression
1 ngpgrp 24514 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
2 ngpms 24515 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
3 ngprcan.x . . . . 5 𝑋 = (Base‘𝐺)
4 ngprcan.p . . . . 5 + = (+g𝐺)
5 ngprcan.d . . . . 5 𝐷 = (dist‘𝐺)
63, 4, 5ngprcan 24525 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦))
76ralrimivvva 3178 . . 3 (𝐺 ∈ NrmGrp → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦))
81, 2, 73jca 1128 . 2 (𝐺 ∈ NrmGrp → (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
9 simp1 1136 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ Grp)
10 simp2 1137 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ MetSp)
11 eqid 2731 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
123, 11grpinvcl 18900 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
1312ad2ant2rl 749 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((invg𝐺)‘𝑦) ∈ 𝑋)
14 eqcom 2738 . . . . . . . . 9 (((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) ↔ (𝑥𝐷𝑦) = ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)))
15 oveq2 7354 . . . . . . . . . . 11 (𝑧 = ((invg𝐺)‘𝑦) → (𝑥 + 𝑧) = (𝑥 + ((invg𝐺)‘𝑦)))
16 oveq2 7354 . . . . . . . . . . 11 (𝑧 = ((invg𝐺)‘𝑦) → (𝑦 + 𝑧) = (𝑦 + ((invg𝐺)‘𝑦)))
1715, 16oveq12d 7364 . . . . . . . . . 10 (𝑧 = ((invg𝐺)‘𝑦) → ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))))
1817eqeq2d 2742 . . . . . . . . 9 (𝑧 = ((invg𝐺)‘𝑦) → ((𝑥𝐷𝑦) = ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) ↔ (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
1914, 18bitrid 283 . . . . . . . 8 (𝑧 = ((invg𝐺)‘𝑦) → (((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) ↔ (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
2019rspcv 3568 . . . . . . 7 (((invg𝐺)‘𝑦) ∈ 𝑋 → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
2113, 20syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
22 eqid 2731 . . . . . . . . . . . 12 (-g𝐺) = (-g𝐺)
233, 4, 11, 22grpsubval 18898 . . . . . . . . . . 11 ((𝑥𝑋𝑦𝑋) → (𝑥(-g𝐺)𝑦) = (𝑥 + ((invg𝐺)‘𝑦)))
2423adantl 481 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) = (𝑥 + ((invg𝐺)‘𝑦)))
2524eqcomd 2737 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 + ((invg𝐺)‘𝑦)) = (𝑥(-g𝐺)𝑦))
26 eqid 2731 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
273, 4, 26, 11grprinv 18903 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦 + ((invg𝐺)‘𝑦)) = (0g𝐺))
2827ad2ant2rl 749 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 + ((invg𝐺)‘𝑦)) = (0g𝐺))
2925, 28oveq12d 7364 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
303, 22grpsubcl 18933 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
31303expb 1120 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
3231adantlr 715 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
33 eqid 2731 . . . . . . . . . 10 (norm‘𝐺) = (norm‘𝐺)
3433, 3, 26, 5nmval 24504 . . . . . . . . 9 ((𝑥(-g𝐺)𝑦) ∈ 𝑋 → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
3532, 34syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
3629, 35eqtr4d 2769 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3736eqeq2d 2742 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) ↔ (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
3821, 37sylibd 239 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
3938ralimdvva 3179 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
40393impia 1117 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
4133, 22, 5, 3isngp3 24513 . . 3 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
429, 10, 40, 41syl3anbrc 1344 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ NrmGrp)
438, 42impbii 209 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  distcds 17170  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847  -gcsg 18848  MetSpcms 24233  normcnm 24491  NrmGrpcngp 24492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-0g 17345  df-topgen 17347  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-xms 24235  df-ms 24236  df-nm 24497  df-ngp 24498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator