MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp4 Structured version   Visualization version   GIF version

Theorem isngp4 24498
Description: Express the property of being a normed group purely in terms of right-translation invariance of the metric instead of using the definition of norm (which itself uses the metric). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
ngprcan.x 𝑋 = (Base‘𝐺)
ngprcan.p + = (+g𝐺)
ngprcan.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
isngp4 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝐺,𝑦,𝑧   𝑧, +   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isngp4
StepHypRef Expression
1 ngpgrp 24485 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
2 ngpms 24486 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
3 ngprcan.x . . . . 5 𝑋 = (Base‘𝐺)
4 ngprcan.p . . . . 5 + = (+g𝐺)
5 ngprcan.d . . . . 5 𝐷 = (dist‘𝐺)
63, 4, 5ngprcan 24496 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦))
76ralrimivvva 3175 . . 3 (𝐺 ∈ NrmGrp → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦))
81, 2, 73jca 1128 . 2 (𝐺 ∈ NrmGrp → (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
9 simp1 1136 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ Grp)
10 simp2 1137 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ MetSp)
11 eqid 2729 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
123, 11grpinvcl 18866 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
1312ad2ant2rl 749 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((invg𝐺)‘𝑦) ∈ 𝑋)
14 eqcom 2736 . . . . . . . . 9 (((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) ↔ (𝑥𝐷𝑦) = ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)))
15 oveq2 7357 . . . . . . . . . . 11 (𝑧 = ((invg𝐺)‘𝑦) → (𝑥 + 𝑧) = (𝑥 + ((invg𝐺)‘𝑦)))
16 oveq2 7357 . . . . . . . . . . 11 (𝑧 = ((invg𝐺)‘𝑦) → (𝑦 + 𝑧) = (𝑦 + ((invg𝐺)‘𝑦)))
1715, 16oveq12d 7367 . . . . . . . . . 10 (𝑧 = ((invg𝐺)‘𝑦) → ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))))
1817eqeq2d 2740 . . . . . . . . 9 (𝑧 = ((invg𝐺)‘𝑦) → ((𝑥𝐷𝑦) = ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) ↔ (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
1914, 18bitrid 283 . . . . . . . 8 (𝑧 = ((invg𝐺)‘𝑦) → (((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) ↔ (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
2019rspcv 3573 . . . . . . 7 (((invg𝐺)‘𝑦) ∈ 𝑋 → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
2113, 20syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
22 eqid 2729 . . . . . . . . . . . 12 (-g𝐺) = (-g𝐺)
233, 4, 11, 22grpsubval 18864 . . . . . . . . . . 11 ((𝑥𝑋𝑦𝑋) → (𝑥(-g𝐺)𝑦) = (𝑥 + ((invg𝐺)‘𝑦)))
2423adantl 481 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) = (𝑥 + ((invg𝐺)‘𝑦)))
2524eqcomd 2735 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 + ((invg𝐺)‘𝑦)) = (𝑥(-g𝐺)𝑦))
26 eqid 2729 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
273, 4, 26, 11grprinv 18869 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦 + ((invg𝐺)‘𝑦)) = (0g𝐺))
2827ad2ant2rl 749 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 + ((invg𝐺)‘𝑦)) = (0g𝐺))
2925, 28oveq12d 7367 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
303, 22grpsubcl 18899 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
31303expb 1120 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
3231adantlr 715 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
33 eqid 2729 . . . . . . . . . 10 (norm‘𝐺) = (norm‘𝐺)
3433, 3, 26, 5nmval 24475 . . . . . . . . 9 ((𝑥(-g𝐺)𝑦) ∈ 𝑋 → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
3532, 34syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
3629, 35eqtr4d 2767 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3736eqeq2d 2740 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) ↔ (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
3821, 37sylibd 239 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
3938ralimdvva 3176 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
40393impia 1117 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
4133, 22, 5, 3isngp3 24484 . . 3 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
429, 10, 40, 41syl3anbrc 1344 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ NrmGrp)
438, 42impbii 209 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  distcds 17170  0gc0g 17343  Grpcgrp 18812  invgcminusg 18813  -gcsg 18814  MetSpcms 24204  normcnm 24462  NrmGrpcngp 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-0g 17345  df-topgen 17347  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-xms 24206  df-ms 24207  df-nm 24468  df-ngp 24469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator