Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β π β Fin) |
2 | | mpoexga 8060 |
. . . . . . 7
β’ ((π β Fin β§ π β Fin) β (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))) β V) |
3 | 1, 1, 2 | syl2anc 584 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))) β V) |
4 | 3 | ralrimivw 3150 |
. . . . 5
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β βπ β β0 (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))) β V) |
5 | | eqid 2732 |
. . . . . 6
β’ (π β β0
β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) = (π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) |
6 | 5 | fnmpt 6687 |
. . . . 5
β’
(βπ β
β0 (π
β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))) β V β (π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) Fn
β0) |
7 | 4, 6 | syl 17 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) Fn
β0) |
8 | | nn0ex 12474 |
. . . . 5
β’
β0 β V |
9 | 8 | a1i 11 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β β0 β
V) |
10 | | fvexd 6903 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (0gβπΆ) β V) |
11 | | suppvalfn 8150 |
. . . 4
β’ (((π β β0
β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) Fn β0 β§
β0 β V β§ (0gβπΆ) β V) β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) supp (0gβπΆ)) = {π₯ β β0 β£ ((π β β0
β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) β (0gβπΆ)}) |
12 | 7, 9, 10, 11 | syl3anc 1371 |
. . 3
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) supp (0gβπΆ)) = {π₯ β β0 β£ ((π β β0
β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) β (0gβπΆ)}) |
13 | | pmatcollpw1.p |
. . . . . . . . . . 11
β’ π = (Poly1βπ
) |
14 | | pmatcollpw1.c |
. . . . . . . . . . 11
β’ πΆ = (π Mat π) |
15 | | pmatcollpw1.b |
. . . . . . . . . . 11
β’ π΅ = (BaseβπΆ) |
16 | | eqid 2732 |
. . . . . . . . . . 11
β’
(0gβπ
) = (0gβπ
) |
17 | 13, 14, 15, 16 | pmatcoe1fsupp 22194 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β βπ β π βπ β π ((coe1β(πππ))βπ₯) = (0gβπ
))) |
18 | | oveq1 7412 |
. . . . . . . . . . . . . . . . 17
β’
(((coe1β(πππ))βπ₯) = (0gβπ
) β (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = ((0gβπ
) Γ (π₯ β π))) |
19 | | pmatcollpw1.m |
. . . . . . . . . . . . . . . . . . . . 21
β’ Γ = (
Β·π βπ) |
20 | 19 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β Γ = (
Β·π βπ)) |
21 | 13 | ply1sca 21766 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π
β Ring β π
= (Scalarβπ)) |
22 | 21 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β π
= (Scalarβπ)) |
23 | 22 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (0gβπ
) =
(0gβ(Scalarβπ))) |
24 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (π₯ β π) = (π₯ β π)) |
25 | 20, 23, 24 | oveq123d 7426 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β ((0gβπ
) Γ (π₯ β π)) =
((0gβ(Scalarβπ))( Β·π
βπ)(π₯ β π))) |
26 | 25 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β Fin
β§ π
β Ring β§
π β π΅) β§ π₯ β β0) β§ π β π) β§ π β π) β ((0gβπ
) Γ (π₯ β π)) =
((0gβ(Scalarβπ))( Β·π
βπ)(π₯ β π))) |
27 | 22 | eqcomd 2738 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (Scalarβπ) = π
) |
28 | 27 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β Fin
β§ π
β Ring β§
π β π΅) β§ π₯ β β0) β§ π β π) β§ π β π) β (Scalarβπ) = π
) |
29 | 28 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β Fin
β§ π
β Ring β§
π β π΅) β§ π₯ β β0) β§ π β π) β§ π β π) β
(0gβ(Scalarβπ)) = (0gβπ
)) |
30 | 29 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β Fin
β§ π
β Ring β§
π β π΅) β§ π₯ β β0) β§ π β π) β§ π β π) β
((0gβ(Scalarβπ))( Β·π
βπ)(π₯ β π)) = ((0gβπ
)( Β·π
βπ)(π₯ β π))) |
31 | | simpl2 1192 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β π
β Ring) |
32 | | pmatcollpw1.x |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ π = (var1βπ
) |
33 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
(mulGrpβπ) =
(mulGrpβπ) |
34 | | pmatcollpw1.e |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ β =
(.gβ(mulGrpβπ)) |
35 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
(Baseβπ) =
(Baseβπ) |
36 | 13, 32, 33, 34, 35 | ply1moncl 21784 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π
β Ring β§ π₯ β β0)
β (π₯ β π) β (Baseβπ)) |
37 | 36 | 3ad2antl2 1186 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β (π₯ β π) β (Baseβπ)) |
38 | 31, 37 | jca 512 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β (π
β Ring β§ (π₯ β π) β (Baseβπ))) |
39 | 38 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β§ π β π) β (π
β Ring β§ (π₯ β π) β (Baseβπ))) |
40 | 39 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β Fin
β§ π
β Ring β§
π β π΅) β§ π₯ β β0) β§ π β π) β§ π β π) β (π
β Ring β§ (π₯ β π) β (Baseβπ))) |
41 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . 20
β’ (
Β·π βπ) = ( Β·π
βπ) |
42 | 13, 35, 41, 16 | ply10s0 21769 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π
β Ring β§ (π₯ β π) β (Baseβπ)) β ((0gβπ
)(
Β·π βπ)(π₯ β π)) = (0gβπ)) |
43 | 40, 42 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β Fin
β§ π
β Ring β§
π β π΅) β§ π₯ β β0) β§ π β π) β§ π β π) β ((0gβπ
)(
Β·π βπ)(π₯ β π)) = (0gβπ)) |
44 | 26, 30, 43 | 3eqtrd 2776 |
. . . . . . . . . . . . . . . . 17
β’
(((((π β Fin
β§ π
β Ring β§
π β π΅) β§ π₯ β β0) β§ π β π) β§ π β π) β ((0gβπ
) Γ (π₯ β π)) = (0gβπ)) |
45 | 18, 44 | sylan9eqr 2794 |
. . . . . . . . . . . . . . . 16
β’
((((((π β Fin
β§ π
β Ring β§
π β π΅) β§ π₯ β β0) β§ π β π) β§ π β π) β§ ((coe1β(πππ))βπ₯) = (0gβπ
)) β (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ)) |
46 | 45 | ex 413 |
. . . . . . . . . . . . . . 15
β’
(((((π β Fin
β§ π
β Ring β§
π β π΅) β§ π₯ β β0) β§ π β π) β§ π β π) β (((coe1β(πππ))βπ₯) = (0gβπ
) β (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ))) |
47 | 46 | anasss 467 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β§ (π β π β§ π β π)) β (((coe1β(πππ))βπ₯) = (0gβπ
) β (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ))) |
48 | 47 | ralimdvva 3204 |
. . . . . . . . . . . . 13
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β
(βπ β π βπ β π ((coe1β(πππ))βπ₯) = (0gβπ
) β βπ β π βπ β π (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ))) |
49 | 48 | imim2d 57 |
. . . . . . . . . . . 12
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β ((π¦ < π₯ β βπ β π βπ β π ((coe1β(πππ))βπ₯) = (0gβπ
)) β (π¦ < π₯ β βπ β π βπ β π (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ)))) |
50 | 49 | ralimdva 3167 |
. . . . . . . . . . 11
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (βπ₯ β β0 (π¦ < π₯ β βπ β π βπ β π ((coe1β(πππ))βπ₯) = (0gβπ
)) β βπ₯ β β0 (π¦ < π₯ β βπ β π βπ β π (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ)))) |
51 | 50 | reximdv 3170 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β βπ β π βπ β π ((coe1β(πππ))βπ₯) = (0gβπ
)) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β βπ β π βπ β π (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ)))) |
52 | 17, 51 | mpd 15 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β βπ β π βπ β π (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ))) |
53 | | simpl3 1193 |
. . . . . . . . . . . . . . . . 17
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β π β π΅) |
54 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β π₯ β
β0) |
55 | 31, 53, 54 | 3jca 1128 |
. . . . . . . . . . . . . . . 16
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β (π
β Ring β§ π β π΅ β§ π₯ β
β0)) |
56 | 13, 14, 15 | decpmate 22259 |
. . . . . . . . . . . . . . . 16
β’ (((π
β Ring β§ π β π΅ β§ π₯ β β0) β§ (π β π β§ π β π)) β (π(π decompPMat π₯)π) = ((coe1β(πππ))βπ₯)) |
57 | 55, 56 | sylan 580 |
. . . . . . . . . . . . . . 15
β’ ((((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β§ (π β π β§ π β π)) β (π(π decompPMat π₯)π) = ((coe1β(πππ))βπ₯)) |
58 | 57 | oveq1d 7420 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β§ (π β π β§ π β π)) β ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (((coe1β(πππ))βπ₯) Γ (π₯ β π))) |
59 | 58 | eqeq1d 2734 |
. . . . . . . . . . . . 13
β’ ((((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β§ (π β π β§ π β π)) β (((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ) β (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ))) |
60 | 59 | 2ralbidva 3216 |
. . . . . . . . . . . 12
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β
(βπ β π βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ) β βπ β π βπ β π (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ))) |
61 | 60 | imbi2d 340 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β ((π¦ < π₯ β βπ β π βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)) β (π¦ < π₯ β βπ β π βπ β π (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ)))) |
62 | 61 | ralbidva 3175 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (βπ₯ β β0 (π¦ < π₯ β βπ β π βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)) β βπ₯ β β0 (π¦ < π₯ β βπ β π βπ β π (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ)))) |
63 | 62 | rexbidv 3178 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β βπ β π βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β βπ β π βπ β π (((coe1β(πππ))βπ₯) Γ (π₯ β π)) = (0gβπ)))) |
64 | 52, 63 | mpbird 256 |
. . . . . . . 8
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β βπ β π βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ))) |
65 | | eqid 2732 |
. . . . . . . . . . . . 13
β’ π = π |
66 | 65 | biantrur 531 |
. . . . . . . . . . . 12
β’
(βπ β
π (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)) β (π = π β§ βπ β π (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)))) |
67 | 65 | biantrur 531 |
. . . . . . . . . . . . . 14
β’
(βπ β
π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ) β (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ))) |
68 | 67 | bicomi 223 |
. . . . . . . . . . . . 13
β’ ((π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)) β βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)) |
69 | 68 | ralbii 3093 |
. . . . . . . . . . . 12
β’
(βπ β
π (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)) β βπ β π βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)) |
70 | 66, 69 | bitr3i 276 |
. . . . . . . . . . 11
β’ ((π = π β§ βπ β π (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ))) β βπ β π βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)) |
71 | 70 | a1i 11 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β ((π = π β§ βπ β π (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ))) β βπ β π βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ))) |
72 | 71 | imbi2d 340 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β ((π¦ < π₯ β (π = π β§ βπ β π (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)))) β (π¦ < π₯ β βπ β π βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)))) |
73 | 72 | rexralbidv 3220 |
. . . . . . . 8
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β (π = π β§ βπ β π (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)))) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β βπ β π βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)))) |
74 | 64, 73 | mpbird 256 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β (π = π β§ βπ β π (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ))))) |
75 | | mpoeq123 7477 |
. . . . . . . . . 10
β’ ((π = π β§ βπ β π (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ))) β (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π))) = (π β π, π β π β¦ (0gβπ))) |
76 | 75 | imim2i 16 |
. . . . . . . . 9
β’ ((π¦ < π₯ β (π = π β§ βπ β π (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)))) β (π¦ < π₯ β (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π))) = (π β π, π β π β¦ (0gβπ)))) |
77 | 76 | ralimi 3083 |
. . . . . . . 8
β’
(βπ₯ β
β0 (π¦ <
π₯ β (π = π β§ βπ β π (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)))) β βπ₯ β β0 (π¦ < π₯ β (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π))) = (π β π, π β π β¦ (0gβπ)))) |
78 | 77 | reximi 3084 |
. . . . . . 7
β’
(βπ¦ β
β0 βπ₯ β β0 (π¦ < π₯ β (π = π β§ βπ β π (π = π β§ βπ β π ((π(π decompPMat π₯)π) Γ (π₯ β π)) = (0gβπ)))) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π))) = (π β π, π β π β¦ (0gβπ)))) |
79 | 74, 78 | syl 17 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π))) = (π β π, π β π β¦ (0gβπ)))) |
80 | | eqidd 2733 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β (π β β0
β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) = (π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))) |
81 | | oveq2 7413 |
. . . . . . . . . . . . . . 15
β’ (π = π₯ β (π decompPMat π) = (π decompPMat π₯)) |
82 | 81 | oveqd 7422 |
. . . . . . . . . . . . . 14
β’ (π = π₯ β (π(π decompPMat π)π) = (π(π decompPMat π₯)π)) |
83 | | oveq1 7412 |
. . . . . . . . . . . . . 14
β’ (π = π₯ β (π β π) = (π₯ β π)) |
84 | 82, 83 | oveq12d 7423 |
. . . . . . . . . . . . 13
β’ (π = π₯ β ((π(π decompPMat π)π) Γ (π β π)) = ((π(π decompPMat π₯)π) Γ (π₯ β π))) |
85 | 84 | mpoeq3dv 7484 |
. . . . . . . . . . . 12
β’ (π = π₯ β (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))) = (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π)))) |
86 | 85 | adantl 482 |
. . . . . . . . . . 11
β’ ((((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β§ π = π₯) β (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))) = (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π)))) |
87 | | id 22 |
. . . . . . . . . . . . . . 15
β’ (π β Fin β π β Fin) |
88 | 87 | ancri 550 |
. . . . . . . . . . . . . 14
β’ (π β Fin β (π β Fin β§ π β Fin)) |
89 | 88 | 3ad2ant1 1133 |
. . . . . . . . . . . . 13
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (π β Fin β§ π β Fin)) |
90 | 89 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β (π β Fin β§ π β Fin)) |
91 | | mpoexga 8060 |
. . . . . . . . . . . 12
β’ ((π β Fin β§ π β Fin) β (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π))) β V) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π))) β V) |
93 | 80, 86, 54, 92 | fvmptd 7002 |
. . . . . . . . . 10
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β ((π β β0
β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) = (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π)))) |
94 | 13 | ply1ring 21761 |
. . . . . . . . . . . . . 14
β’ (π
β Ring β π β Ring) |
95 | 94 | anim2i 617 |
. . . . . . . . . . . . 13
β’ ((π β Fin β§ π
β Ring) β (π β Fin β§ π β Ring)) |
96 | 95 | 3adant3 1132 |
. . . . . . . . . . . 12
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (π β Fin β§ π β Ring)) |
97 | 96 | adantr 481 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β (π β Fin β§ π β Ring)) |
98 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(0gβπ) = (0gβπ) |
99 | 14, 98 | mat0op 21912 |
. . . . . . . . . . 11
β’ ((π β Fin β§ π β Ring) β
(0gβπΆ) =
(π β π, π β π β¦ (0gβπ))) |
100 | 97, 99 | syl 17 |
. . . . . . . . . 10
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β
(0gβπΆ) =
(π β π, π β π β¦ (0gβπ))) |
101 | 93, 100 | eqeq12d 2748 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β (((π β β0
β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) = (0gβπΆ) β (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π))) = (π β π, π β π β¦ (0gβπ)))) |
102 | 101 | imbi2d 340 |
. . . . . . . 8
β’ (((π β Fin β§ π
β Ring β§ π β π΅) β§ π₯ β β0) β ((π¦ < π₯ β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) = (0gβπΆ)) β (π¦ < π₯ β (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π))) = (π β π, π β π β¦ (0gβπ))))) |
103 | 102 | ralbidva 3175 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (βπ₯ β β0 (π¦ < π₯ β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) = (0gβπΆ)) β βπ₯ β β0 (π¦ < π₯ β (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π))) = (π β π, π β π β¦ (0gβπ))))) |
104 | 103 | rexbidv 3178 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) = (0gβπΆ)) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β (π β π, π β π β¦ ((π(π decompPMat π₯)π) Γ (π₯ β π))) = (π β π, π β π β¦ (0gβπ))))) |
105 | 79, 104 | mpbird 256 |
. . . . 5
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) = (0gβπΆ))) |
106 | | nne 2944 |
. . . . . . . 8
β’ (Β¬
((π β
β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) β (0gβπΆ) β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) = (0gβπΆ)) |
107 | 106 | imbi2i 335 |
. . . . . . 7
β’ ((π¦ < π₯ β Β¬ ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) β (0gβπΆ)) β (π¦ < π₯ β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) = (0gβπΆ))) |
108 | 107 | ralbii 3093 |
. . . . . 6
β’
(βπ₯ β
β0 (π¦ <
π₯ β Β¬ ((π β β0
β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) β (0gβπΆ)) β βπ₯ β β0 (π¦ < π₯ β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) = (0gβπΆ))) |
109 | 108 | rexbii 3094 |
. . . . 5
β’
(βπ¦ β
β0 βπ₯ β β0 (π¦ < π₯ β Β¬ ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) β (0gβπΆ)) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) = (0gβπΆ))) |
110 | 105, 109 | sylibr 233 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β βπ¦ β β0 βπ₯ β β0
(π¦ < π₯ β Β¬ ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) β (0gβπΆ))) |
111 | | rabssnn0fi 13947 |
. . . 4
β’ ({π₯ β β0
β£ ((π β
β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) β (0gβπΆ)} β Fin β βπ¦ β β0
βπ₯ β
β0 (π¦ <
π₯ β Β¬ ((π β β0
β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) β (0gβπΆ))) |
112 | 110, 111 | sylibr 233 |
. . 3
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β {π₯ β β0 β£ ((π β β0
β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π))))βπ₯) β (0gβπΆ)} β Fin) |
113 | 12, 112 | eqeltrd 2833 |
. 2
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) supp (0gβπΆ)) β Fin) |
114 | | funmpt 6583 |
. . 3
β’ Fun
(π β
β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) |
115 | 8 | mptex 7221 |
. . 3
β’ (π β β0
β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) β V |
116 | | funisfsupp 9363 |
. . 3
β’ ((Fun
(π β
β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) β§ (π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) β V β§
(0gβπΆ)
β V) β ((π β
β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) finSupp (0gβπΆ) β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) supp (0gβπΆ)) β Fin)) |
117 | 114, 115,
10, 116 | mp3an12i 1465 |
. 2
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) finSupp (0gβπΆ) β ((π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) supp (0gβπΆ)) β Fin)) |
118 | 113, 117 | mpbird 256 |
1
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (π β β0 β¦ (π β π, π β π β¦ ((π(π decompPMat π)π) Γ (π β π)))) finSupp (0gβπΆ)) |