MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw2lem Structured version   Visualization version   GIF version

Theorem pmatcollpw2lem 22670
Description: Lemma for pmatcollpw2 22671. (Contributed by AV, 3-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw1.p 𝑃 = (Poly1𝑅)
pmatcollpw1.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw1.b 𝐵 = (Base‘𝐶)
pmatcollpw1.m × = ( ·𝑠𝑃)
pmatcollpw1.e = (.g‘(mulGrp‘𝑃))
pmatcollpw1.x 𝑋 = (var1𝑅)
Assertion
Ref Expression
pmatcollpw2lem ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑋   × ,𝑛   ,𝑛   𝑃,𝑛   𝐵,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗   𝑖,𝑋,𝑗   × ,𝑖,𝑗   ,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑖,𝑗,𝑛)

Proof of Theorem pmatcollpw2lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
2 mpoexga 8058 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V)
31, 1, 2syl2anc 584 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V)
43ralrimivw 3130 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∀𝑛 ∈ ℕ0 (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V)
5 eqid 2730 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) = (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))
65fnmpt 6660 . . . . 5 (∀𝑛 ∈ ℕ0 (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) Fn ℕ0)
74, 6syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) Fn ℕ0)
8 nn0ex 12454 . . . . 5 0 ∈ V
98a1i 11 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ℕ0 ∈ V)
10 fvexd 6875 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (0g𝐶) ∈ V)
11 suppvalfn 8149 . . . 4 (((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) Fn ℕ0 ∧ ℕ0 ∈ V ∧ (0g𝐶) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) = {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)})
127, 9, 10, 11syl3anc 1373 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) = {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)})
13 pmatcollpw1.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
14 pmatcollpw1.c . . . . . . . . . . 11 𝐶 = (𝑁 Mat 𝑃)
15 pmatcollpw1.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
16 eqid 2730 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1713, 14, 15, 16pmatcoe1fsupp 22594 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
18 oveq1 7396 . . . . . . . . . . . . . . . . 17 (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = ((0g𝑅) × (𝑥 𝑋)))
19 pmatcollpw1.m . . . . . . . . . . . . . . . . . . . . 21 × = ( ·𝑠𝑃)
2019a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → × = ( ·𝑠𝑃))
2113ply1sca 22143 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
22213ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 = (Scalar‘𝑃))
2322fveq2d 6864 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
24 eqidd 2731 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑥 𝑋) = (𝑥 𝑋))
2520, 23, 24oveq123d 7410 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((0g𝑅) × (𝑥 𝑋)) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑥 𝑋)))
2625ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅) × (𝑥 𝑋)) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑥 𝑋)))
2722eqcomd 2736 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (Scalar‘𝑃) = 𝑅)
2827ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (Scalar‘𝑃) = 𝑅)
2928fveq2d 6864 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (0g‘(Scalar‘𝑃)) = (0g𝑅))
3029oveq1d 7404 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑥 𝑋)) = ((0g𝑅)( ·𝑠𝑃)(𝑥 𝑋)))
31 simpl2 1193 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring)
32 pmatcollpw1.x . . . . . . . . . . . . . . . . . . . . . . . 24 𝑋 = (var1𝑅)
33 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (mulGrp‘𝑃) = (mulGrp‘𝑃)
34 pmatcollpw1.e . . . . . . . . . . . . . . . . . . . . . . . 24 = (.g‘(mulGrp‘𝑃))
35 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (Base‘𝑃) = (Base‘𝑃)
3613, 32, 33, 34, 35ply1moncl 22163 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0) → (𝑥 𝑋) ∈ (Base‘𝑃))
37363ad2antl2 1187 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑥 𝑋) ∈ (Base‘𝑃))
3831, 37jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)))
3938adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) → (𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)))
4039adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)))
41 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 ( ·𝑠𝑃) = ( ·𝑠𝑃)
4213, 35, 41, 16ply10s0 22148 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)) → ((0g𝑅)( ·𝑠𝑃)(𝑥 𝑋)) = (0g𝑃))
4340, 42syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅)( ·𝑠𝑃)(𝑥 𝑋)) = (0g𝑃))
4426, 30, 433eqtrd 2769 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅) × (𝑥 𝑋)) = (0g𝑃))
4518, 44sylan9eqr 2787 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))
4645ex 412 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
4746anasss 466 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
4847ralimdvva 3185 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
4948imim2d 57 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
5049ralimdva 3146 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
5150reximdv 3149 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
5217, 51mpd 15 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
53 simpl3 1194 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑀𝐵)
54 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
5531, 53, 543jca 1128 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0))
5613, 14, 15decpmate 22659 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
5755, 56sylan 580 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
5857oveq1d 7404 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)))
5958eqeq1d 2732 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃) ↔ (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
60592ralbidva 3200 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃) ↔ ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
6160imbi2d 340 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
6261ralbidva 3155 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
6362rexbidv 3158 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
6452, 63mpbird 257 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))
65 eqid 2730 . . . . . . . . . . . . 13 𝑁 = 𝑁
6665biantrur 530 . . . . . . . . . . . 12 (∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))))
6765biantrur 530 . . . . . . . . . . . . . 14 (∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃) ↔ (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))
6867bicomi 224 . . . . . . . . . . . . 13 ((𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))
6968ralbii 3076 . . . . . . . . . . . 12 (∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))
7066, 69bitr3i 277 . . . . . . . . . . 11 ((𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))) ↔ ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))
7170a1i 11 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))) ↔ ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))
7271imbi2d 340 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) ↔ (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))))
7372rexralbidv 3204 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))))
7464, 73mpbird 257 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))))
75 mpoeq123 7463 . . . . . . . . . 10 ((𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))
7675imim2i 16 . . . . . . . . 9 ((𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) → (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
7776ralimi 3067 . . . . . . . 8 (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
7877reximi 3068 . . . . . . 7 (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
7974, 78syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
80 eqidd 2731 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) = (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))))
81 oveq2 7397 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝑀 decompPMat 𝑛) = (𝑀 decompPMat 𝑥))
8281oveqd 7406 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑖(𝑀 decompPMat 𝑥)𝑗))
83 oveq1 7396 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → (𝑛 𝑋) = (𝑥 𝑋))
8482, 83oveq12d 7407 . . . . . . . . . . . . 13 (𝑛 = 𝑥 → ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)) = ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)))
8584mpoeq3dv 7470 . . . . . . . . . . . 12 (𝑛 = 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))))
8685adantl 481 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑛 = 𝑥) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))))
87 id 22 . . . . . . . . . . . . . . 15 (𝑁 ∈ Fin → 𝑁 ∈ Fin)
8887ancri 549 . . . . . . . . . . . . . 14 (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
89883ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9089adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
91 mpoexga 8058 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) ∈ V)
9290, 91syl 17 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) ∈ V)
9380, 86, 54, 92fvmptd 6977 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))))
9413ply1ring 22138 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9594anim2i 617 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
96953adant3 1132 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
9796adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
98 eqid 2730 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
9914, 98mat0op 22312 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (0g𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))
10097, 99syl 17 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (0g𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))
10193, 100eqeq12d 2746 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶) ↔ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
102101imbi2d 340 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)) ↔ (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))))
103102ralbidva 3155 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))))
104103rexbidv 3158 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))))
10579, 104mpbird 257 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
106 nne 2930 . . . . . . . 8 (¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶))
107106imbi2i 336 . . . . . . 7 ((𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)) ↔ (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
108107ralbii 3076 . . . . . 6 (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
109108rexbii 3077 . . . . 5 (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
110105, 109sylibr 234 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)))
111 rabssnn0fi 13957 . . . 4 ({𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)} ∈ Fin ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)))
112110, 111sylibr 234 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)} ∈ Fin)
11312, 112eqeltrd 2829 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) ∈ Fin)
114 funmpt 6556 . . 3 Fun (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))
1158mptex 7199 . . 3 (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) ∈ V
116 funisfsupp 9324 . . 3 ((Fun (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) ∧ (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) ∈ V ∧ (0g𝐶) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) ∈ Fin))
117114, 115, 10, 116mp3an12i 1467 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) ∈ Fin))
118113, 117mpbird 257 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450   class class class wbr 5109  cmpt 5190  Fun wfun 6507   Fn wfn 6508  cfv 6513  (class class class)co 7389  cmpo 7391   supp csupp 8141  Fincfn 8920   finSupp cfsupp 9318   < clt 11214  0cn0 12448  Basecbs 17185  Scalarcsca 17229   ·𝑠 cvsca 17230  0gc0g 17408  .gcmg 19005  mulGrpcmgp 20055  Ringcrg 20148  var1cv1 22066  Poly1cpl1 22067  coe1cco1 22068   Mat cmat 22300   decompPMat cdecpmat 22655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-ofr 7656  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-sup 9399  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-fzo 13622  df-seq 13973  df-hash 14302  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-subrng 20461  df-subrg 20485  df-lmod 20774  df-lss 20844  df-sra 21086  df-rgmod 21087  df-dsmm 21647  df-frlm 21662  df-psr 21824  df-mvr 21825  df-mpl 21826  df-opsr 21828  df-psr1 22070  df-vr1 22071  df-ply1 22072  df-coe1 22073  df-mat 22301  df-decpmat 22656
This theorem is referenced by:  pmatcollpw2  22671
  Copyright terms: Public domain W3C validator