MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw2lem Structured version   Visualization version   GIF version

Theorem pmatcollpw2lem 21834
Description: Lemma for pmatcollpw2 21835. (Contributed by AV, 3-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw1.p 𝑃 = (Poly1𝑅)
pmatcollpw1.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw1.b 𝐵 = (Base‘𝐶)
pmatcollpw1.m × = ( ·𝑠𝑃)
pmatcollpw1.e = (.g‘(mulGrp‘𝑃))
pmatcollpw1.x 𝑋 = (var1𝑅)
Assertion
Ref Expression
pmatcollpw2lem ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑋   × ,𝑛   ,𝑛   𝑃,𝑛   𝐵,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗   𝑖,𝑋,𝑗   × ,𝑖,𝑗   ,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑖,𝑗,𝑛)

Proof of Theorem pmatcollpw2lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
2 mpoexga 7891 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V)
31, 1, 2syl2anc 583 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V)
43ralrimivw 3108 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∀𝑛 ∈ ℕ0 (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V)
5 eqid 2738 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) = (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))
65fnmpt 6557 . . . . 5 (∀𝑛 ∈ ℕ0 (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) Fn ℕ0)
74, 6syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) Fn ℕ0)
8 nn0ex 12169 . . . . 5 0 ∈ V
98a1i 11 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ℕ0 ∈ V)
10 fvexd 6771 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (0g𝐶) ∈ V)
11 suppvalfn 7956 . . . 4 (((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) Fn ℕ0 ∧ ℕ0 ∈ V ∧ (0g𝐶) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) = {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)})
127, 9, 10, 11syl3anc 1369 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) = {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)})
13 pmatcollpw1.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
14 pmatcollpw1.c . . . . . . . . . . 11 𝐶 = (𝑁 Mat 𝑃)
15 pmatcollpw1.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
16 eqid 2738 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1713, 14, 15, 16pmatcoe1fsupp 21758 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
18 oveq1 7262 . . . . . . . . . . . . . . . . 17 (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = ((0g𝑅) × (𝑥 𝑋)))
19 pmatcollpw1.m . . . . . . . . . . . . . . . . . . . . 21 × = ( ·𝑠𝑃)
2019a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → × = ( ·𝑠𝑃))
2113ply1sca 21334 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
22213ad2ant2 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 = (Scalar‘𝑃))
2322fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
24 eqidd 2739 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑥 𝑋) = (𝑥 𝑋))
2520, 23, 24oveq123d 7276 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((0g𝑅) × (𝑥 𝑋)) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑥 𝑋)))
2625ad3antrrr 726 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅) × (𝑥 𝑋)) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑥 𝑋)))
2722eqcomd 2744 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (Scalar‘𝑃) = 𝑅)
2827ad3antrrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (Scalar‘𝑃) = 𝑅)
2928fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (0g‘(Scalar‘𝑃)) = (0g𝑅))
3029oveq1d 7270 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑥 𝑋)) = ((0g𝑅)( ·𝑠𝑃)(𝑥 𝑋)))
31 simpl2 1190 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring)
32 pmatcollpw1.x . . . . . . . . . . . . . . . . . . . . . . . 24 𝑋 = (var1𝑅)
33 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (mulGrp‘𝑃) = (mulGrp‘𝑃)
34 pmatcollpw1.e . . . . . . . . . . . . . . . . . . . . . . . 24 = (.g‘(mulGrp‘𝑃))
35 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (Base‘𝑃) = (Base‘𝑃)
3613, 32, 33, 34, 35ply1moncl 21352 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0) → (𝑥 𝑋) ∈ (Base‘𝑃))
37363ad2antl2 1184 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑥 𝑋) ∈ (Base‘𝑃))
3831, 37jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)))
3938adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) → (𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)))
4039adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)))
41 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 ( ·𝑠𝑃) = ( ·𝑠𝑃)
4213, 35, 41, 16ply10s0 21337 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)) → ((0g𝑅)( ·𝑠𝑃)(𝑥 𝑋)) = (0g𝑃))
4340, 42syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅)( ·𝑠𝑃)(𝑥 𝑋)) = (0g𝑃))
4426, 30, 433eqtrd 2782 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅) × (𝑥 𝑋)) = (0g𝑃))
4518, 44sylan9eqr 2801 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))
4645ex 412 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
4746anasss 466 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
4847ralimdvva 3104 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
4948imim2d 57 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
5049ralimdva 3102 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
5150reximdv 3201 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
5217, 51mpd 15 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
53 simpl3 1191 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑀𝐵)
54 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
5531, 53, 543jca 1126 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0))
5613, 14, 15decpmate 21823 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
5755, 56sylan 579 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
5857oveq1d 7270 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)))
5958eqeq1d 2740 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃) ↔ (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
60592ralbidva 3121 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃) ↔ ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
6160imbi2d 340 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
6261ralbidva 3119 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
6362rexbidv 3225 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
6452, 63mpbird 256 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))
65 eqid 2738 . . . . . . . . . . . . 13 𝑁 = 𝑁
6665biantrur 530 . . . . . . . . . . . 12 (∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))))
6765biantrur 530 . . . . . . . . . . . . . 14 (∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃) ↔ (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))
6867bicomi 223 . . . . . . . . . . . . 13 ((𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))
6968ralbii 3090 . . . . . . . . . . . 12 (∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))
7066, 69bitr3i 276 . . . . . . . . . . 11 ((𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))) ↔ ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))
7170a1i 11 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))) ↔ ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))
7271imbi2d 340 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) ↔ (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))))
7372rexralbidv 3229 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))))
7464, 73mpbird 256 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))))
75 mpoeq123 7325 . . . . . . . . . 10 ((𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))
7675imim2i 16 . . . . . . . . 9 ((𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) → (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
7776ralimi 3086 . . . . . . . 8 (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
7877reximi 3174 . . . . . . 7 (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
7974, 78syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
80 eqidd 2739 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) = (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))))
81 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝑀 decompPMat 𝑛) = (𝑀 decompPMat 𝑥))
8281oveqd 7272 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑖(𝑀 decompPMat 𝑥)𝑗))
83 oveq1 7262 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → (𝑛 𝑋) = (𝑥 𝑋))
8482, 83oveq12d 7273 . . . . . . . . . . . . 13 (𝑛 = 𝑥 → ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)) = ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)))
8584mpoeq3dv 7332 . . . . . . . . . . . 12 (𝑛 = 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))))
8685adantl 481 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑛 = 𝑥) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))))
87 id 22 . . . . . . . . . . . . . . 15 (𝑁 ∈ Fin → 𝑁 ∈ Fin)
8887ancri 549 . . . . . . . . . . . . . 14 (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
89883ad2ant1 1131 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9089adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
91 mpoexga 7891 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) ∈ V)
9290, 91syl 17 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) ∈ V)
9380, 86, 54, 92fvmptd 6864 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))))
9413ply1ring 21329 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9594anim2i 616 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
96953adant3 1130 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
9796adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
98 eqid 2738 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
9914, 98mat0op 21476 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (0g𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))
10097, 99syl 17 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (0g𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))
10193, 100eqeq12d 2754 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶) ↔ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
102101imbi2d 340 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)) ↔ (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))))
103102ralbidva 3119 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))))
104103rexbidv 3225 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))))
10579, 104mpbird 256 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
106 nne 2946 . . . . . . . 8 (¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶))
107106imbi2i 335 . . . . . . 7 ((𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)) ↔ (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
108107ralbii 3090 . . . . . 6 (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
109108rexbii 3177 . . . . 5 (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
110105, 109sylibr 233 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)))
111 rabssnn0fi 13634 . . . 4 ({𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)} ∈ Fin ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)))
112110, 111sylibr 233 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)} ∈ Fin)
11312, 112eqeltrd 2839 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) ∈ Fin)
114 funmpt 6456 . . 3 Fun (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))
1158mptex 7081 . . 3 (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) ∈ V
116 funisfsupp 9063 . . 3 ((Fun (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) ∧ (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) ∈ V ∧ (0g𝐶) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) ∈ Fin))
117114, 115, 10, 116mp3an12i 1463 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) ∈ Fin))
118113, 117mpbird 256 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422   class class class wbr 5070  cmpt 5153  Fun wfun 6412   Fn wfn 6413  cfv 6418  (class class class)co 7255  cmpo 7257   supp csupp 7948  Fincfn 8691   finSupp cfsupp 9058   < clt 10940  0cn0 12163  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  .gcmg 18615  mulGrpcmgp 19635  Ringcrg 19698  var1cv1 21257  Poly1cpl1 21258  coe1cco1 21259   Mat cmat 21464   decompPMat cdecpmat 21819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264  df-mat 21465  df-decpmat 21820
This theorem is referenced by:  pmatcollpw2  21835
  Copyright terms: Public domain W3C validator