MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw2lem Structured version   Visualization version   GIF version

Theorem pmatcollpw2lem 22784
Description: Lemma for pmatcollpw2 22785. (Contributed by AV, 3-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw1.p 𝑃 = (Poly1𝑅)
pmatcollpw1.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw1.b 𝐵 = (Base‘𝐶)
pmatcollpw1.m × = ( ·𝑠𝑃)
pmatcollpw1.e = (.g‘(mulGrp‘𝑃))
pmatcollpw1.x 𝑋 = (var1𝑅)
Assertion
Ref Expression
pmatcollpw2lem ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑋   × ,𝑛   ,𝑛   𝑃,𝑛   𝐵,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗   𝑖,𝑋,𝑗   × ,𝑖,𝑗   ,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑖,𝑗,𝑛)

Proof of Theorem pmatcollpw2lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
2 mpoexga 8103 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V)
31, 1, 2syl2anc 584 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V)
43ralrimivw 3149 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∀𝑛 ∈ ℕ0 (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V)
5 eqid 2736 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) = (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))
65fnmpt 6707 . . . . 5 (∀𝑛 ∈ ℕ0 (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) Fn ℕ0)
74, 6syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) Fn ℕ0)
8 nn0ex 12534 . . . . 5 0 ∈ V
98a1i 11 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ℕ0 ∈ V)
10 fvexd 6920 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (0g𝐶) ∈ V)
11 suppvalfn 8194 . . . 4 (((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) Fn ℕ0 ∧ ℕ0 ∈ V ∧ (0g𝐶) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) = {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)})
127, 9, 10, 11syl3anc 1372 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) = {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)})
13 pmatcollpw1.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
14 pmatcollpw1.c . . . . . . . . . . 11 𝐶 = (𝑁 Mat 𝑃)
15 pmatcollpw1.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
16 eqid 2736 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1713, 14, 15, 16pmatcoe1fsupp 22708 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
18 oveq1 7439 . . . . . . . . . . . . . . . . 17 (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = ((0g𝑅) × (𝑥 𝑋)))
19 pmatcollpw1.m . . . . . . . . . . . . . . . . . . . . 21 × = ( ·𝑠𝑃)
2019a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → × = ( ·𝑠𝑃))
2113ply1sca 22255 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
22213ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 = (Scalar‘𝑃))
2322fveq2d 6909 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
24 eqidd 2737 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑥 𝑋) = (𝑥 𝑋))
2520, 23, 24oveq123d 7453 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((0g𝑅) × (𝑥 𝑋)) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑥 𝑋)))
2625ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅) × (𝑥 𝑋)) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑥 𝑋)))
2722eqcomd 2742 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (Scalar‘𝑃) = 𝑅)
2827ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (Scalar‘𝑃) = 𝑅)
2928fveq2d 6909 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (0g‘(Scalar‘𝑃)) = (0g𝑅))
3029oveq1d 7447 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑥 𝑋)) = ((0g𝑅)( ·𝑠𝑃)(𝑥 𝑋)))
31 simpl2 1192 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring)
32 pmatcollpw1.x . . . . . . . . . . . . . . . . . . . . . . . 24 𝑋 = (var1𝑅)
33 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (mulGrp‘𝑃) = (mulGrp‘𝑃)
34 pmatcollpw1.e . . . . . . . . . . . . . . . . . . . . . . . 24 = (.g‘(mulGrp‘𝑃))
35 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (Base‘𝑃) = (Base‘𝑃)
3613, 32, 33, 34, 35ply1moncl 22275 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0) → (𝑥 𝑋) ∈ (Base‘𝑃))
37363ad2antl2 1186 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑥 𝑋) ∈ (Base‘𝑃))
3831, 37jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)))
3938adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) → (𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)))
4039adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)))
41 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 ( ·𝑠𝑃) = ( ·𝑠𝑃)
4213, 35, 41, 16ply10s0 22260 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)) → ((0g𝑅)( ·𝑠𝑃)(𝑥 𝑋)) = (0g𝑃))
4340, 42syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅)( ·𝑠𝑃)(𝑥 𝑋)) = (0g𝑃))
4426, 30, 433eqtrd 2780 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅) × (𝑥 𝑋)) = (0g𝑃))
4518, 44sylan9eqr 2798 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))
4645ex 412 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
4746anasss 466 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
4847ralimdvva 3205 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
4948imim2d 57 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
5049ralimdva 3166 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
5150reximdv 3169 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
5217, 51mpd 15 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
53 simpl3 1193 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑀𝐵)
54 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
5531, 53, 543jca 1128 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0))
5613, 14, 15decpmate 22773 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
5755, 56sylan 580 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
5857oveq1d 7447 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)))
5958eqeq1d 2738 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃) ↔ (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
60592ralbidva 3218 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃) ↔ ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
6160imbi2d 340 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
6261ralbidva 3175 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
6362rexbidv 3178 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
6452, 63mpbird 257 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))
65 eqid 2736 . . . . . . . . . . . . 13 𝑁 = 𝑁
6665biantrur 530 . . . . . . . . . . . 12 (∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))))
6765biantrur 530 . . . . . . . . . . . . . 14 (∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃) ↔ (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))
6867bicomi 224 . . . . . . . . . . . . 13 ((𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))
6968ralbii 3092 . . . . . . . . . . . 12 (∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))
7066, 69bitr3i 277 . . . . . . . . . . 11 ((𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))) ↔ ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))
7170a1i 11 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))) ↔ ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))
7271imbi2d 340 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) ↔ (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))))
7372rexralbidv 3222 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))))
7464, 73mpbird 257 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))))
75 mpoeq123 7506 . . . . . . . . . 10 ((𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))
7675imim2i 16 . . . . . . . . 9 ((𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) → (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
7776ralimi 3082 . . . . . . . 8 (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
7877reximi 3083 . . . . . . 7 (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
7974, 78syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
80 eqidd 2737 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) = (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))))
81 oveq2 7440 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝑀 decompPMat 𝑛) = (𝑀 decompPMat 𝑥))
8281oveqd 7449 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑖(𝑀 decompPMat 𝑥)𝑗))
83 oveq1 7439 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → (𝑛 𝑋) = (𝑥 𝑋))
8482, 83oveq12d 7450 . . . . . . . . . . . . 13 (𝑛 = 𝑥 → ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)) = ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)))
8584mpoeq3dv 7513 . . . . . . . . . . . 12 (𝑛 = 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))))
8685adantl 481 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑛 = 𝑥) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))))
87 id 22 . . . . . . . . . . . . . . 15 (𝑁 ∈ Fin → 𝑁 ∈ Fin)
8887ancri 549 . . . . . . . . . . . . . 14 (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
89883ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9089adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
91 mpoexga 8103 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) ∈ V)
9290, 91syl 17 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) ∈ V)
9380, 86, 54, 92fvmptd 7022 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))))
9413ply1ring 22250 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9594anim2i 617 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
96953adant3 1132 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
9796adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
98 eqid 2736 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
9914, 98mat0op 22426 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (0g𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))
10097, 99syl 17 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (0g𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))
10193, 100eqeq12d 2752 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶) ↔ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
102101imbi2d 340 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)) ↔ (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))))
103102ralbidva 3175 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))))
104103rexbidv 3178 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))))
10579, 104mpbird 257 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
106 nne 2943 . . . . . . . 8 (¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶))
107106imbi2i 336 . . . . . . 7 ((𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)) ↔ (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
108107ralbii 3092 . . . . . 6 (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
109108rexbii 3093 . . . . 5 (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
110105, 109sylibr 234 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)))
111 rabssnn0fi 14028 . . . 4 ({𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)} ∈ Fin ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)))
112110, 111sylibr 234 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)} ∈ Fin)
11312, 112eqeltrd 2840 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) ∈ Fin)
114 funmpt 6603 . . 3 Fun (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))
1158mptex 7244 . . 3 (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) ∈ V
116 funisfsupp 9408 . . 3 ((Fun (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) ∧ (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) ∈ V ∧ (0g𝐶) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) ∈ Fin))
117114, 115, 10, 116mp3an12i 1466 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) ∈ Fin))
118113, 117mpbird 257 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  {crab 3435  Vcvv 3479   class class class wbr 5142  cmpt 5224  Fun wfun 6554   Fn wfn 6555  cfv 6560  (class class class)co 7432  cmpo 7434   supp csupp 8186  Fincfn 8986   finSupp cfsupp 9402   < clt 11296  0cn0 12528  Basecbs 17248  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17485  .gcmg 19086  mulGrpcmgp 20138  Ringcrg 20231  var1cv1 22178  Poly1cpl1 22179  coe1cco1 22180   Mat cmat 22412   decompPMat cdecpmat 22769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-subrng 20547  df-subrg 20571  df-lmod 20861  df-lss 20931  df-sra 21173  df-rgmod 21174  df-dsmm 21753  df-frlm 21768  df-psr 21930  df-mvr 21931  df-mpl 21932  df-opsr 21934  df-psr1 22182  df-vr1 22183  df-ply1 22184  df-coe1 22185  df-mat 22413  df-decpmat 22770
This theorem is referenced by:  pmatcollpw2  22785
  Copyright terms: Public domain W3C validator