MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw2lem Structured version   Visualization version   GIF version

Theorem pmatcollpw2lem 22690
Description: Lemma for pmatcollpw2 22691. (Contributed by AV, 3-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw1.p 𝑃 = (Poly1𝑅)
pmatcollpw1.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw1.b 𝐵 = (Base‘𝐶)
pmatcollpw1.m × = ( ·𝑠𝑃)
pmatcollpw1.e = (.g‘(mulGrp‘𝑃))
pmatcollpw1.x 𝑋 = (var1𝑅)
Assertion
Ref Expression
pmatcollpw2lem ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑋   × ,𝑛   ,𝑛   𝑃,𝑛   𝐵,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗   𝑖,𝑋,𝑗   × ,𝑖,𝑗   ,𝑖,𝑗
Allowed substitution hints:   𝐶(𝑖,𝑗,𝑛)

Proof of Theorem pmatcollpw2lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
2 mpoexga 8009 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V)
31, 1, 2syl2anc 584 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V)
43ralrimivw 3128 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∀𝑛 ∈ ℕ0 (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V)
5 eqid 2731 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) = (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))
65fnmpt 6621 . . . . 5 (∀𝑛 ∈ ℕ0 (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) ∈ V → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) Fn ℕ0)
74, 6syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) Fn ℕ0)
8 nn0ex 12384 . . . . 5 0 ∈ V
98a1i 11 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ℕ0 ∈ V)
10 fvexd 6837 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (0g𝐶) ∈ V)
11 suppvalfn 8098 . . . 4 (((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) Fn ℕ0 ∧ ℕ0 ∈ V ∧ (0g𝐶) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) = {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)})
127, 9, 10, 11syl3anc 1373 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) = {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)})
13 pmatcollpw1.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
14 pmatcollpw1.c . . . . . . . . . . 11 𝐶 = (𝑁 Mat 𝑃)
15 pmatcollpw1.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
16 eqid 2731 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1713, 14, 15, 16pmatcoe1fsupp 22614 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
18 oveq1 7353 . . . . . . . . . . . . . . . . 17 (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = ((0g𝑅) × (𝑥 𝑋)))
19 pmatcollpw1.m . . . . . . . . . . . . . . . . . . . . 21 × = ( ·𝑠𝑃)
2019a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → × = ( ·𝑠𝑃))
2113ply1sca 22163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
22213ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 = (Scalar‘𝑃))
2322fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
24 eqidd 2732 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑥 𝑋) = (𝑥 𝑋))
2520, 23, 24oveq123d 7367 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((0g𝑅) × (𝑥 𝑋)) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑥 𝑋)))
2625ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅) × (𝑥 𝑋)) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑥 𝑋)))
2722eqcomd 2737 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (Scalar‘𝑃) = 𝑅)
2827ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (Scalar‘𝑃) = 𝑅)
2928fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (0g‘(Scalar‘𝑃)) = (0g𝑅))
3029oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑥 𝑋)) = ((0g𝑅)( ·𝑠𝑃)(𝑥 𝑋)))
31 simpl2 1193 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring)
32 pmatcollpw1.x . . . . . . . . . . . . . . . . . . . . . . . 24 𝑋 = (var1𝑅)
33 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (mulGrp‘𝑃) = (mulGrp‘𝑃)
34 pmatcollpw1.e . . . . . . . . . . . . . . . . . . . . . . . 24 = (.g‘(mulGrp‘𝑃))
35 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (Base‘𝑃) = (Base‘𝑃)
3613, 32, 33, 34, 35ply1moncl 22183 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0) → (𝑥 𝑋) ∈ (Base‘𝑃))
37363ad2antl2 1187 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑥 𝑋) ∈ (Base‘𝑃))
3831, 37jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)))
3938adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) → (𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)))
4039adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)))
41 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 ( ·𝑠𝑃) = ( ·𝑠𝑃)
4213, 35, 41, 16ply10s0 22168 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)) → ((0g𝑅)( ·𝑠𝑃)(𝑥 𝑋)) = (0g𝑃))
4340, 42syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅)( ·𝑠𝑃)(𝑥 𝑋)) = (0g𝑃))
4426, 30, 433eqtrd 2770 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅) × (𝑥 𝑋)) = (0g𝑃))
4518, 44sylan9eqr 2788 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))
4645ex 412 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
4746anasss 466 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
4847ralimdvva 3179 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
4948imim2d 57 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
5049ralimdva 3144 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
5150reximdv 3147 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
5217, 51mpd 15 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
53 simpl3 1194 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑀𝐵)
54 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
5531, 53, 543jca 1128 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0))
5613, 14, 15decpmate 22679 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
5755, 56sylan 580 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
5857oveq1d 7361 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)))
5958eqeq1d 2733 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃) ↔ (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
60592ralbidva 3194 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃) ↔ ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃)))
6160imbi2d 340 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
6261ralbidva 3153 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
6362rexbidv 3156 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 𝑋)) = (0g𝑃))))
6452, 63mpbird 257 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))
65 eqid 2731 . . . . . . . . . . . . 13 𝑁 = 𝑁
6665biantrur 530 . . . . . . . . . . . 12 (∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))))
6765biantrur 530 . . . . . . . . . . . . . 14 (∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃) ↔ (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))
6867bicomi 224 . . . . . . . . . . . . 13 ((𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))
6968ralbii 3078 . . . . . . . . . . . 12 (∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)) ↔ ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))
7066, 69bitr3i 277 . . . . . . . . . . 11 ((𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))) ↔ ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))
7170a1i 11 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))) ↔ ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))
7271imbi2d 340 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) ↔ (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))))
7372rexralbidv 3198 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))))
7464, 73mpbird 257 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))))
75 mpoeq123 7418 . . . . . . . . . 10 ((𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃))) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))
7675imim2i 16 . . . . . . . . 9 ((𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) → (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
7776ralimi 3069 . . . . . . . 8 (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
7877reximi 3070 . . . . . . 7 (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖𝑁 (𝑁 = 𝑁 ∧ ∀𝑗𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)) = (0g𝑃)))) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
7974, 78syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
80 eqidd 2732 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) = (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))))
81 oveq2 7354 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝑀 decompPMat 𝑛) = (𝑀 decompPMat 𝑥))
8281oveqd 7363 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑖(𝑀 decompPMat 𝑥)𝑗))
83 oveq1 7353 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → (𝑛 𝑋) = (𝑥 𝑋))
8482, 83oveq12d 7364 . . . . . . . . . . . . 13 (𝑛 = 𝑥 → ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)) = ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋)))
8584mpoeq3dv 7425 . . . . . . . . . . . 12 (𝑛 = 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))))
8685adantl 481 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑛 = 𝑥) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))))
87 id 22 . . . . . . . . . . . . . . 15 (𝑁 ∈ Fin → 𝑁 ∈ Fin)
8887ancri 549 . . . . . . . . . . . . . 14 (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
89883ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9089adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
91 mpoexga 8009 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) ∈ V)
9290, 91syl 17 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) ∈ V)
9380, 86, 54, 92fvmptd 6936 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))))
9413ply1ring 22158 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9594anim2i 617 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
96953adant3 1132 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
9796adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
98 eqid 2731 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
9914, 98mat0op 22332 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (0g𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))
10097, 99syl 17 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (0g𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))
10193, 100eqeq12d 2747 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶) ↔ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃))))
102101imbi2d 340 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)) ↔ (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))))
103102ralbidva 3153 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))))
104103rexbidv 3156 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 𝑋))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑃)))))
10579, 104mpbird 257 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
106 nne 2932 . . . . . . . 8 (¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶))
107106imbi2i 336 . . . . . . 7 ((𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)) ↔ (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
108107ralbii 3078 . . . . . 6 (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
109108rexbii 3079 . . . . 5 (∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)) ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) = (0g𝐶)))
110105, 109sylibr 234 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)))
111 rabssnn0fi 13890 . . . 4 ({𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)} ∈ Fin ↔ ∃𝑦 ∈ ℕ0𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)))
112110, 111sylibr 234 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))‘𝑥) ≠ (0g𝐶)} ∈ Fin)
11312, 112eqeltrd 2831 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) ∈ Fin)
114 funmpt 6519 . . 3 Fun (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋))))
1158mptex 7157 . . 3 (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) ∈ V
116 funisfsupp 9251 . . 3 ((Fun (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) ∧ (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) ∈ V ∧ (0g𝐶) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) ∈ Fin))
117114, 115, 10, 116mp3an12i 1467 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) supp (0g𝐶)) ∈ Fin))
118113, 117mpbird 257 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 𝑋)))) finSupp (0g𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436   class class class wbr 5091  cmpt 5172  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348   supp csupp 8090  Fincfn 8869   finSupp cfsupp 9245   < clt 11143  0cn0 12378  Basecbs 17117  Scalarcsca 17161   ·𝑠 cvsca 17162  0gc0g 17340  .gcmg 18977  mulGrpcmgp 20056  Ringcrg 20149  var1cv1 22086  Poly1cpl1 22087  coe1cco1 22088   Mat cmat 22320   decompPMat cdecpmat 22675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrng 20459  df-subrg 20483  df-lmod 20793  df-lss 20863  df-sra 21105  df-rgmod 21106  df-dsmm 21667  df-frlm 21682  df-psr 21844  df-mvr 21845  df-mpl 21846  df-opsr 21848  df-psr1 22090  df-vr1 22091  df-ply1 22092  df-coe1 22093  df-mat 22321  df-decpmat 22676
This theorem is referenced by:  pmatcollpw2  22691
  Copyright terms: Public domain W3C validator