Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
2 | | mpoexga 7891 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) ∈ V) |
3 | 1, 1, 2 | syl2anc 583 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) ∈ V) |
4 | 3 | ralrimivw 3108 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ ℕ0 (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) ∈ V) |
5 | | eqid 2738 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) = (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) |
6 | 5 | fnmpt 6557 |
. . . . 5
⊢
(∀𝑛 ∈
ℕ0 (𝑖
∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) ∈ V → (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) Fn
ℕ0) |
7 | 4, 6 | syl 17 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) Fn
ℕ0) |
8 | | nn0ex 12169 |
. . . . 5
⊢
ℕ0 ∈ V |
9 | 8 | a1i 11 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ℕ0 ∈
V) |
10 | | fvexd 6771 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (0g‘𝐶) ∈ V) |
11 | | suppvalfn 7956 |
. . . 4
⊢ (((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) Fn ℕ0 ∧
ℕ0 ∈ V ∧ (0g‘𝐶) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) supp (0g‘𝐶)) = {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)}) |
12 | 7, 9, 10, 11 | syl3anc 1369 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) supp (0g‘𝐶)) = {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)}) |
13 | | pmatcollpw1.p |
. . . . . . . . . . 11
⊢ 𝑃 = (Poly1‘𝑅) |
14 | | pmatcollpw1.c |
. . . . . . . . . . 11
⊢ 𝐶 = (𝑁 Mat 𝑃) |
15 | | pmatcollpw1.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐶) |
16 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
17 | 13, 14, 15, 16 | pmatcoe1fsupp 21758 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅))) |
18 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢
(((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = ((0g‘𝑅) × (𝑥 ↑ 𝑋))) |
19 | | pmatcollpw1.m |
. . . . . . . . . . . . . . . . . . . . 21
⊢ × = (
·𝑠 ‘𝑃) |
20 | 19 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → × = (
·𝑠 ‘𝑃)) |
21 | 13 | ply1sca 21334 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
22 | 21 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑅 = (Scalar‘𝑃)) |
23 | 22 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (0g‘𝑅) =
(0g‘(Scalar‘𝑃))) |
24 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑥 ↑ 𝑋) = (𝑥 ↑ 𝑋)) |
25 | 20, 23, 24 | oveq123d 7276 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((0g‘𝑅) × (𝑥 ↑ 𝑋)) =
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑥 ↑ 𝑋))) |
26 | 25 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((0g‘𝑅) × (𝑥 ↑ 𝑋)) =
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑥 ↑ 𝑋))) |
27 | 22 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑃) = 𝑅) |
28 | 27 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (Scalar‘𝑃) = 𝑅) |
29 | 28 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) →
(0g‘(Scalar‘𝑃)) = (0g‘𝑅)) |
30 | 29 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) →
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑥 ↑ 𝑋)) = ((0g‘𝑅)( ·𝑠
‘𝑃)(𝑥 ↑ 𝑋))) |
31 | | simpl2 1190 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring) |
32 | | pmatcollpw1.x |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑋 = (var1‘𝑅) |
33 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
34 | | pmatcollpw1.e |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
35 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(Base‘𝑃) =
(Base‘𝑃) |
36 | 13, 32, 33, 34, 35 | ply1moncl 21352 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0)
→ (𝑥 ↑ 𝑋) ∈ (Base‘𝑃)) |
37 | 36 | 3ad2antl2 1184 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑥 ↑ 𝑋) ∈ (Base‘𝑃)) |
38 | 31, 37 | jca 511 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑅 ∈ Ring ∧ (𝑥 ↑ 𝑋) ∈ (Base‘𝑃))) |
39 | 38 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) → (𝑅 ∈ Ring ∧ (𝑥 ↑ 𝑋) ∈ (Base‘𝑃))) |
40 | 39 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑅 ∈ Ring ∧ (𝑥 ↑ 𝑋) ∈ (Base‘𝑃))) |
41 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
42 | 13, 35, 41, 16 | ply10s0 21337 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ↑ 𝑋) ∈ (Base‘𝑃)) → ((0g‘𝑅)(
·𝑠 ‘𝑃)(𝑥 ↑ 𝑋)) = (0g‘𝑃)) |
43 | 40, 42 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((0g‘𝑅)(
·𝑠 ‘𝑃)(𝑥 ↑ 𝑋)) = (0g‘𝑃)) |
44 | 26, 30, 43 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((0g‘𝑅) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) |
45 | 18, 44 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅)) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) |
46 | 45 | ex 412 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) |
47 | 46 | anasss 466 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) |
48 | 47 | ralimdvva 3104 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) →
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) |
49 | 48 | imim2d 57 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅)) → (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) |
50 | 49 | ralimdva 3102 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅)) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) |
51 | 50 | reximdv 3201 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅)) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) |
52 | 17, 51 | mpd 15 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) |
53 | | simpl3 1191 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑀 ∈ 𝐵) |
54 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈
ℕ0) |
55 | 31, 53, 54 | 3jca 1126 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑥 ∈
ℕ0)) |
56 | 13, 14, 15 | decpmate 21823 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥)) |
57 | 55, 56 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥)) |
58 | 57 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋))) |
59 | 58 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃) ↔ (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) |
60 | 59 | 2ralbidva 3121 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) →
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) |
61 | 60 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) ↔ (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) |
62 | 61 | ralbidva 3119 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) |
63 | 62 | rexbidv 3225 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) ↔ ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) |
64 | 52, 63 | mpbird 256 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) |
65 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ 𝑁 = 𝑁 |
66 | 65 | biantrur 530 |
. . . . . . . . . . . 12
⊢
(∀𝑖 ∈
𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) ↔ (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) |
67 | 65 | biantrur 530 |
. . . . . . . . . . . . . 14
⊢
(∀𝑗 ∈
𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃) ↔ (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) |
68 | 67 | bicomi 223 |
. . . . . . . . . . . . 13
⊢ ((𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) ↔ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) |
69 | 68 | ralbii 3090 |
. . . . . . . . . . . 12
⊢
(∀𝑖 ∈
𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) |
70 | 66, 69 | bitr3i 276 |
. . . . . . . . . . 11
⊢ ((𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) |
71 | 70 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) |
72 | 71 | imbi2d 340 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) ↔ (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) |
73 | 72 | rexralbidv 3229 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) ↔ ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) |
74 | 64, 73 | mpbird 256 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))))) |
75 | | mpoeq123 7325 |
. . . . . . . . . 10
⊢ ((𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃))) |
76 | 75 | imim2i 16 |
. . . . . . . . 9
⊢ ((𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) → (𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃)))) |
77 | 76 | ralimi 3086 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ℕ0 (𝑦 <
𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃)))) |
78 | 77 | reximi 3174 |
. . . . . . 7
⊢
(∃𝑦 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃)))) |
79 | 74, 78 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃)))) |
80 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) = (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))) |
81 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑥 → (𝑀 decompPMat 𝑛) = (𝑀 decompPMat 𝑥)) |
82 | 81 | oveqd 7272 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑥 → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑖(𝑀 decompPMat 𝑥)𝑗)) |
83 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑥 → (𝑛 ↑ 𝑋) = (𝑥 ↑ 𝑋)) |
84 | 82, 83 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑥 → ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)) = ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) |
85 | 84 | mpoeq3dv 7332 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)))) |
86 | 85 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑛 = 𝑥) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)))) |
87 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ Fin → 𝑁 ∈ Fin) |
88 | 87 | ancri 549 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
89 | 88 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
90 | 89 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
91 | | mpoexga 7891 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) ∈ V) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) ∈ V) |
93 | 80, 86, 54, 92 | fvmptd 6864 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)))) |
94 | 13 | ply1ring 21329 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
95 | 94 | anim2i 616 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
96 | 95 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
97 | 96 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
98 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘𝑃) = (0g‘𝑃) |
99 | 14, 98 | mat0op 21476 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) →
(0g‘𝐶) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃))) |
100 | 97, 99 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) →
(0g‘𝐶) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃))) |
101 | 93, 100 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶) ↔ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃)))) |
102 | 101 | imbi2d 340 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶)) ↔ (𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃))))) |
103 | 102 | ralbidva 3119 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃))))) |
104 | 103 | rexbidv 3225 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶)) ↔ ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃))))) |
105 | 79, 104 | mpbird 256 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶))) |
106 | | nne 2946 |
. . . . . . . 8
⊢ (¬
((𝑛 ∈
ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶)) |
107 | 106 | imbi2i 335 |
. . . . . . 7
⊢ ((𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)) ↔ (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶))) |
108 | 107 | ralbii 3090 |
. . . . . 6
⊢
(∀𝑥 ∈
ℕ0 (𝑦 <
𝑥 → ¬ ((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶))) |
109 | 108 | rexbii 3177 |
. . . . 5
⊢
(∃𝑦 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)) ↔ ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶))) |
110 | 105, 109 | sylibr 233 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶))) |
111 | | rabssnn0fi 13634 |
. . . 4
⊢ ({𝑥 ∈ ℕ0
∣ ((𝑛 ∈
ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)} ∈ Fin ↔ ∃𝑦 ∈ ℕ0
∀𝑥 ∈
ℕ0 (𝑦 <
𝑥 → ¬ ((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶))) |
112 | 110, 111 | sylibr 233 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)} ∈ Fin) |
113 | 12, 112 | eqeltrd 2839 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) supp (0g‘𝐶)) ∈ Fin) |
114 | | funmpt 6456 |
. . 3
⊢ Fun
(𝑛 ∈
ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) |
115 | 8 | mptex 7081 |
. . 3
⊢ (𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) ∈ V |
116 | | funisfsupp 9063 |
. . 3
⊢ ((Fun
(𝑛 ∈
ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) ∧ (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) ∈ V ∧
(0g‘𝐶)
∈ V) → ((𝑛 ∈
ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) finSupp (0g‘𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) supp (0g‘𝐶)) ∈ Fin)) |
117 | 114, 115,
10, 116 | mp3an12i 1463 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) finSupp (0g‘𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) supp (0g‘𝐶)) ∈ Fin)) |
118 | 113, 117 | mpbird 256 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) finSupp (0g‘𝐶)) |