| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1136 | . . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) | 
| 2 |  | mpoexga 8103 | . . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) ∈ V) | 
| 3 | 1, 1, 2 | syl2anc 584 | . . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) ∈ V) | 
| 4 | 3 | ralrimivw 3149 | . . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ ℕ0 (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) ∈ V) | 
| 5 |  | eqid 2736 | . . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) = (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) | 
| 6 | 5 | fnmpt 6707 | . . . . 5
⊢
(∀𝑛 ∈
ℕ0 (𝑖
∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) ∈ V → (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) Fn
ℕ0) | 
| 7 | 4, 6 | syl 17 | . . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) Fn
ℕ0) | 
| 8 |  | nn0ex 12534 | . . . . 5
⊢
ℕ0 ∈ V | 
| 9 | 8 | a1i 11 | . . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ℕ0 ∈
V) | 
| 10 |  | fvexd 6920 | . . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (0g‘𝐶) ∈ V) | 
| 11 |  | suppvalfn 8194 | . . . 4
⊢ (((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) Fn ℕ0 ∧
ℕ0 ∈ V ∧ (0g‘𝐶) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) supp (0g‘𝐶)) = {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)}) | 
| 12 | 7, 9, 10, 11 | syl3anc 1372 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) supp (0g‘𝐶)) = {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)}) | 
| 13 |  | pmatcollpw1.p | . . . . . . . . . . 11
⊢ 𝑃 = (Poly1‘𝑅) | 
| 14 |  | pmatcollpw1.c | . . . . . . . . . . 11
⊢ 𝐶 = (𝑁 Mat 𝑃) | 
| 15 |  | pmatcollpw1.b | . . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐶) | 
| 16 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 17 | 13, 14, 15, 16 | pmatcoe1fsupp 22708 | . . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅))) | 
| 18 |  | oveq1 7439 | . . . . . . . . . . . . . . . . 17
⊢
(((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = ((0g‘𝑅) × (𝑥 ↑ 𝑋))) | 
| 19 |  | pmatcollpw1.m | . . . . . . . . . . . . . . . . . . . . 21
⊢  × = (
·𝑠 ‘𝑃) | 
| 20 | 19 | a1i 11 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → × = (
·𝑠 ‘𝑃)) | 
| 21 | 13 | ply1sca 22255 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) | 
| 22 | 21 | 3ad2ant2 1134 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑅 = (Scalar‘𝑃)) | 
| 23 | 22 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (0g‘𝑅) =
(0g‘(Scalar‘𝑃))) | 
| 24 |  | eqidd 2737 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑥 ↑ 𝑋) = (𝑥 ↑ 𝑋)) | 
| 25 | 20, 23, 24 | oveq123d 7453 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((0g‘𝑅) × (𝑥 ↑ 𝑋)) =
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑥 ↑ 𝑋))) | 
| 26 | 25 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((0g‘𝑅) × (𝑥 ↑ 𝑋)) =
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑥 ↑ 𝑋))) | 
| 27 | 22 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑃) = 𝑅) | 
| 28 | 27 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (Scalar‘𝑃) = 𝑅) | 
| 29 | 28 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) →
(0g‘(Scalar‘𝑃)) = (0g‘𝑅)) | 
| 30 | 29 | oveq1d 7447 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) →
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑥 ↑ 𝑋)) = ((0g‘𝑅)( ·𝑠
‘𝑃)(𝑥 ↑ 𝑋))) | 
| 31 |  | simpl2 1192 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring) | 
| 32 |  | pmatcollpw1.x | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑋 = (var1‘𝑅) | 
| 33 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) | 
| 34 |  | pmatcollpw1.e | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢  ↑ =
(.g‘(mulGrp‘𝑃)) | 
| 35 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(Base‘𝑃) =
(Base‘𝑃) | 
| 36 | 13, 32, 33, 34, 35 | ply1moncl 22275 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0)
→ (𝑥 ↑ 𝑋) ∈ (Base‘𝑃)) | 
| 37 | 36 | 3ad2antl2 1186 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑥 ↑ 𝑋) ∈ (Base‘𝑃)) | 
| 38 | 31, 37 | jca 511 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑅 ∈ Ring ∧ (𝑥 ↑ 𝑋) ∈ (Base‘𝑃))) | 
| 39 | 38 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) → (𝑅 ∈ Ring ∧ (𝑥 ↑ 𝑋) ∈ (Base‘𝑃))) | 
| 40 | 39 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑅 ∈ Ring ∧ (𝑥 ↑ 𝑋) ∈ (Base‘𝑃))) | 
| 41 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . 20
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) | 
| 42 | 13, 35, 41, 16 | ply10s0 22260 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ↑ 𝑋) ∈ (Base‘𝑃)) → ((0g‘𝑅)(
·𝑠 ‘𝑃)(𝑥 ↑ 𝑋)) = (0g‘𝑃)) | 
| 43 | 40, 42 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((0g‘𝑅)(
·𝑠 ‘𝑃)(𝑥 ↑ 𝑋)) = (0g‘𝑃)) | 
| 44 | 26, 30, 43 | 3eqtrd 2780 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((0g‘𝑅) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) | 
| 45 | 18, 44 | sylan9eqr 2798 | . . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅)) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) | 
| 46 | 45 | ex 412 | . . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) | 
| 47 | 46 | anasss 466 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅) → (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) | 
| 48 | 47 | ralimdvva 3205 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) →
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) | 
| 49 | 48 | imim2d 57 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅)) → (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) | 
| 50 | 49 | ralimdva 3166 | . . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅)) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) | 
| 51 | 50 | reximdv 3169 | . . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅)) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) | 
| 52 | 17, 51 | mpd 15 | . . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) | 
| 53 |  | simpl3 1193 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑀 ∈ 𝐵) | 
| 54 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈
ℕ0) | 
| 55 | 31, 53, 54 | 3jca 1128 | . . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑥 ∈
ℕ0)) | 
| 56 | 13, 14, 15 | decpmate 22773 | . . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥)) | 
| 57 | 55, 56 | sylan 580 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥)) | 
| 58 | 57 | oveq1d 7447 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋))) | 
| 59 | 58 | eqeq1d 2738 | . . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃) ↔ (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) | 
| 60 | 59 | 2ralbidva 3218 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) →
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) | 
| 61 | 60 | imbi2d 340 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) ↔ (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) | 
| 62 | 61 | ralbidva 3175 | . . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) | 
| 63 | 62 | rexbidv 3178 | . . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) ↔ ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (((coe1‘(𝑖𝑀𝑗))‘𝑥) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) | 
| 64 | 52, 63 | mpbird 257 | . . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) | 
| 65 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ 𝑁 = 𝑁 | 
| 66 | 65 | biantrur 530 | . . . . . . . . . . . 12
⊢
(∀𝑖 ∈
𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) ↔ (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) | 
| 67 | 65 | biantrur 530 | . . . . . . . . . . . . . 14
⊢
(∀𝑗 ∈
𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃) ↔ (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) | 
| 68 | 67 | bicomi 224 | . . . . . . . . . . . . 13
⊢ ((𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) ↔ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) | 
| 69 | 68 | ralbii 3092 | . . . . . . . . . . . 12
⊢
(∀𝑖 ∈
𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) | 
| 70 | 66, 69 | bitr3i 277 | . . . . . . . . . . 11
⊢ ((𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)) | 
| 71 | 70 | a1i 11 | . . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) | 
| 72 | 71 | imbi2d 340 | . . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) ↔ (𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) | 
| 73 | 72 | rexralbidv 3222 | . . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) ↔ ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) | 
| 74 | 64, 73 | mpbird 257 | . . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))))) | 
| 75 |  | mpoeq123 7506 | . . . . . . . . . 10
⊢ ((𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃))) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃))) | 
| 76 | 75 | imim2i 16 | . . . . . . . . 9
⊢ ((𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) → (𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃)))) | 
| 77 | 76 | ralimi 3082 | . . . . . . . 8
⊢
(∀𝑥 ∈
ℕ0 (𝑦 <
𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) → ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃)))) | 
| 78 | 77 | reximi 3083 | . . . . . . 7
⊢
(∃𝑦 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑁 = 𝑁 ∧ ∀𝑖 ∈ 𝑁 (𝑁 = 𝑁 ∧ ∀𝑗 ∈ 𝑁 ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)) = (0g‘𝑃)))) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃)))) | 
| 79 | 74, 78 | syl 17 | . . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃)))) | 
| 80 |  | eqidd 2737 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) = (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))) | 
| 81 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑥 → (𝑀 decompPMat 𝑛) = (𝑀 decompPMat 𝑥)) | 
| 82 | 81 | oveqd 7449 | . . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑥 → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑖(𝑀 decompPMat 𝑥)𝑗)) | 
| 83 |  | oveq1 7439 | . . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑥 → (𝑛 ↑ 𝑋) = (𝑥 ↑ 𝑋)) | 
| 84 | 82, 83 | oveq12d 7450 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑥 → ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)) = ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) | 
| 85 | 84 | mpoeq3dv 7513 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)))) | 
| 86 | 85 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ 𝑛 = 𝑥) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)))) | 
| 87 |  | id 22 | . . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ Fin → 𝑁 ∈ Fin) | 
| 88 | 87 | ancri 549 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) | 
| 89 | 88 | 3ad2ant1 1133 | . . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) | 
| 90 | 89 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) | 
| 91 |  | mpoexga 8103 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) ∈ V) | 
| 92 | 90, 91 | syl 17 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) ∈ V) | 
| 93 | 80, 86, 54, 92 | fvmptd 7022 | . . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋)))) | 
| 94 | 13 | ply1ring 22250 | . . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | 
| 95 | 94 | anim2i 617 | . . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) | 
| 96 | 95 | 3adant3 1132 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) | 
| 97 | 96 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) | 
| 98 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(0g‘𝑃) = (0g‘𝑃) | 
| 99 | 14, 98 | mat0op 22426 | . . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) →
(0g‘𝐶) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃))) | 
| 100 | 97, 99 | syl 17 | . . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) →
(0g‘𝐶) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃))) | 
| 101 | 93, 100 | eqeq12d 2752 | . . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶) ↔ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃)))) | 
| 102 | 101 | imbi2d 340 | . . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶)) ↔ (𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃))))) | 
| 103 | 102 | ralbidva 3175 | . . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃))))) | 
| 104 | 103 | rexbidv 3178 | . . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶)) ↔ ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑥)𝑗) × (𝑥 ↑ 𝑋))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑃))))) | 
| 105 | 79, 104 | mpbird 257 | . . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶))) | 
| 106 |  | nne 2943 | . . . . . . . 8
⊢ (¬
((𝑛 ∈
ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶)) | 
| 107 | 106 | imbi2i 336 | . . . . . . 7
⊢ ((𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)) ↔ (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶))) | 
| 108 | 107 | ralbii 3092 | . . . . . 6
⊢
(∀𝑥 ∈
ℕ0 (𝑦 <
𝑥 → ¬ ((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)) ↔ ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶))) | 
| 109 | 108 | rexbii 3093 | . . . . 5
⊢
(∃𝑦 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)) ↔ ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) = (0g‘𝐶))) | 
| 110 | 105, 109 | sylibr 234 | . . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑦 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑦 < 𝑥 → ¬ ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶))) | 
| 111 |  | rabssnn0fi 14028 | . . . 4
⊢ ({𝑥 ∈ ℕ0
∣ ((𝑛 ∈
ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)} ∈ Fin ↔ ∃𝑦 ∈ ℕ0
∀𝑥 ∈
ℕ0 (𝑦 <
𝑥 → ¬ ((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶))) | 
| 112 | 110, 111 | sylibr 234 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → {𝑥 ∈ ℕ0 ∣ ((𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))‘𝑥) ≠ (0g‘𝐶)} ∈ Fin) | 
| 113 | 12, 112 | eqeltrd 2840 | . 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) supp (0g‘𝐶)) ∈ Fin) | 
| 114 |  | funmpt 6603 | . . 3
⊢ Fun
(𝑛 ∈
ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) | 
| 115 | 8 | mptex 7244 | . . 3
⊢ (𝑛 ∈ ℕ0
↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) ∈ V | 
| 116 |  | funisfsupp 9408 | . . 3
⊢ ((Fun
(𝑛 ∈
ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) ∧ (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) ∈ V ∧
(0g‘𝐶)
∈ V) → ((𝑛 ∈
ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) finSupp (0g‘𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) supp (0g‘𝐶)) ∈ Fin)) | 
| 117 | 114, 115,
10, 116 | mp3an12i 1466 | . 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) finSupp (0g‘𝐶) ↔ ((𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) supp (0g‘𝐶)) ∈ Fin)) | 
| 118 | 113, 117 | mpbird 257 | 1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) finSupp (0g‘𝐶)) |