Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > c1lip3 | Structured version Visualization version GIF version |
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
c1lip3.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
c1lip3.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
c1lip3.f | ⊢ (𝜑 → (𝐹 ↾ ℝ) ∈ ((𝓑C𝑛‘ℝ)‘1)) |
c1lip3.rn | ⊢ (𝜑 → (𝐹 “ ℝ) ⊆ ℝ) |
c1lip3.dm | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) |
Ref | Expression |
---|---|
c1lip3 | ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1lip3.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | c1lip3.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | c1lip3.f | . . 3 ⊢ (𝜑 → (𝐹 ↾ ℝ) ∈ ((𝓑C𝑛‘ℝ)‘1)) | |
4 | df-ima 5602 | . . . 4 ⊢ (𝐹 “ ℝ) = ran (𝐹 ↾ ℝ) | |
5 | c1lip3.rn | . . . 4 ⊢ (𝜑 → (𝐹 “ ℝ) ⊆ ℝ) | |
6 | 4, 5 | eqsstrrid 3970 | . . 3 ⊢ (𝜑 → ran (𝐹 ↾ ℝ) ⊆ ℝ) |
7 | iccssre 13161 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
8 | 1, 2, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
9 | c1lip3.dm | . . . . 5 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) | |
10 | 8, 9 | ssind 4166 | . . . 4 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (ℝ ∩ dom 𝐹)) |
11 | dmres 5913 | . . . 4 ⊢ dom (𝐹 ↾ ℝ) = (ℝ ∩ dom 𝐹) | |
12 | 10, 11 | sseqtrrdi 3972 | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom (𝐹 ↾ ℝ)) |
13 | 1, 2, 3, 6, 12 | c1lip2 25162 | . 2 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((𝐹 ↾ ℝ)‘𝑦) − ((𝐹 ↾ ℝ)‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
14 | 8 | sseld 3920 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ)) |
15 | 8 | sseld 3920 | . . . . . . 7 ⊢ (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ ℝ)) |
16 | 14, 15 | anim12d 609 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))) |
17 | 16 | imp 407 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) |
18 | fvres 6793 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → ((𝐹 ↾ ℝ)‘𝑦) = (𝐹‘𝑦)) | |
19 | fvres 6793 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → ((𝐹 ↾ ℝ)‘𝑥) = (𝐹‘𝑥)) | |
20 | 18, 19 | oveqan12rd 7295 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝐹 ↾ ℝ)‘𝑦) − ((𝐹 ↾ ℝ)‘𝑥)) = ((𝐹‘𝑦) − (𝐹‘𝑥))) |
21 | 20 | fveq2d 6778 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (abs‘(((𝐹 ↾ ℝ)‘𝑦) − ((𝐹 ↾ ℝ)‘𝑥))) = (abs‘((𝐹‘𝑦) − (𝐹‘𝑥)))) |
22 | 21 | breq1d 5084 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((abs‘(((𝐹 ↾ ℝ)‘𝑦) − ((𝐹 ↾ ℝ)‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))) ↔ (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
23 | 22 | biimpd 228 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((abs‘(((𝐹 ↾ ℝ)‘𝑦) − ((𝐹 ↾ ℝ)‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
24 | 17, 23 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → ((abs‘(((𝐹 ↾ ℝ)‘𝑦) − ((𝐹 ↾ ℝ)‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))) → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
25 | 24 | ralimdvva 3126 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((𝐹 ↾ ℝ)‘𝑦) − ((𝐹 ↾ ℝ)‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
26 | 25 | reximdv 3202 | . 2 ⊢ (𝜑 → (∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((𝐹 ↾ ℝ)‘𝑦) − ((𝐹 ↾ ℝ)‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))) → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥))))) |
27 | 13, 26 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 class class class wbr 5074 dom cdm 5589 ran crn 5590 ↾ cres 5591 “ cima 5592 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 · cmul 10876 ≤ cle 11010 − cmin 11205 [,]cicc 13082 abscabs 14945 𝓑C𝑛ccpn 25029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-cmp 22538 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-limc 25030 df-dv 25031 df-dvn 25032 df-cpn 25033 |
This theorem is referenced by: aalioulem3 25494 |
Copyright terms: Public domain | W3C validator |