| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2pthfrgrrn2 | Structured version Visualization version GIF version | ||
| Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 1-Apr-2021.) |
| Ref | Expression |
|---|---|
| 2pthfrgrrn.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| 2pthfrgrrn.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| 2pthfrgrrn2 | ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2pthfrgrrn.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 2pthfrgrrn.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | 1, 2 | 2pthfrgrrn 30254 | . 2 ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) |
| 4 | frgrusgr 30233 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
| 5 | 2 | usgredgne 29179 | . . . . . . . . 9 ⊢ ((𝐺 ∈ USGraph ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎 ≠ 𝑏) |
| 6 | 5 | ex 412 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ({𝑎, 𝑏} ∈ 𝐸 → 𝑎 ≠ 𝑏)) |
| 7 | 2 | usgredgne 29179 | . . . . . . . . 9 ⊢ ((𝐺 ∈ USGraph ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏 ≠ 𝑐) |
| 8 | 7 | ex 412 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ({𝑏, 𝑐} ∈ 𝐸 → 𝑏 ≠ 𝑐)) |
| 9 | 6, 8 | anim12d 609 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐))) |
| 10 | 4, 9 | syl 17 | . . . . . 6 ⊢ (𝐺 ∈ FriendGraph → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐))) |
| 11 | 10 | ad2antrr 726 | . . . . 5 ⊢ (((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ (𝑉 ∖ {𝑎}))) ∧ 𝑏 ∈ 𝑉) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐))) |
| 12 | 11 | ancld 550 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ (𝑉 ∖ {𝑎}))) ∧ 𝑏 ∈ 𝑉) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐)))) |
| 13 | 12 | reximdva 3145 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ (𝑉 ∖ {𝑎}))) → (∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑏 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐)))) |
| 14 | 13 | ralimdvva 3179 | . 2 ⊢ (𝐺 ∈ FriendGraph → (∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐)))) |
| 15 | 3, 14 | mpd 15 | 1 ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∖ cdif 3894 {csn 4571 {cpr 4573 ‘cfv 6476 Vtxcvtx 28969 Edgcedg 29020 USGraphcusgr 29122 FriendGraph cfrgr 30230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-hash 14233 df-edg 29021 df-umgr 29056 df-usgr 29124 df-frgr 30231 |
| This theorem is referenced by: 2pthfrgr 30256 3cyclfrgrrn1 30257 |
| Copyright terms: Public domain | W3C validator |