MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthfrgrrn2 Structured version   Visualization version   GIF version

Theorem 2pthfrgrrn2 28548
Description: Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 1-Apr-2021.)
Hypotheses
Ref Expression
2pthfrgrrn.v 𝑉 = (Vtx‘𝐺)
2pthfrgrrn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
2pthfrgrrn2 (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐)))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐   𝐺,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐

Proof of Theorem 2pthfrgrrn2
StepHypRef Expression
1 2pthfrgrrn.v . . 3 𝑉 = (Vtx‘𝐺)
2 2pthfrgrrn.e . . 3 𝐸 = (Edg‘𝐺)
31, 22pthfrgrrn 28547 . 2 (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
4 frgrusgr 28526 . . . . . . 7 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
52usgredgne 27476 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎𝑏)
65ex 412 . . . . . . . 8 (𝐺 ∈ USGraph → ({𝑎, 𝑏} ∈ 𝐸𝑎𝑏))
72usgredgne 27476 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ {𝑏, 𝑐} ∈ 𝐸) → 𝑏𝑐)
87ex 412 . . . . . . . 8 (𝐺 ∈ USGraph → ({𝑏, 𝑐} ∈ 𝐸𝑏𝑐))
96, 8anim12d 608 . . . . . . 7 (𝐺 ∈ USGraph → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → (𝑎𝑏𝑏𝑐)))
104, 9syl 17 . . . . . 6 (𝐺 ∈ FriendGraph → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → (𝑎𝑏𝑏𝑐)))
1110ad2antrr 722 . . . . 5 (((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎}))) ∧ 𝑏𝑉) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → (𝑎𝑏𝑏𝑐)))
1211ancld 550 . . . 4 (((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎}))) ∧ 𝑏𝑉) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐))))
1312reximdva 3202 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎}))) → (∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∃𝑏𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐))))
1413ralimdvva 3104 . 2 (𝐺 ∈ FriendGraph → (∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐))))
153, 14mpd 15 1 (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cdif 3880  {csn 4558  {cpr 4560  cfv 6418  Vtxcvtx 27269  Edgcedg 27320  USGraphcusgr 27422   FriendGraph cfrgr 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-umgr 27356  df-usgr 27424  df-frgr 28524
This theorem is referenced by:  2pthfrgr  28549  3cyclfrgrrn1  28550
  Copyright terms: Public domain W3C validator