Step | Hyp | Ref
| Expression |
1 | | fco 6624 |
. . . . . . 7
⊢ ((𝑇:ran 𝐻⟶ran 𝐾 ∧ 𝑆:ran 𝐺⟶ran 𝐻) → (𝑇 ∘ 𝑆):ran 𝐺⟶ran 𝐾) |
2 | 1 | ancoms 459 |
. . . . . 6
⊢ ((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) → (𝑇 ∘ 𝑆):ran 𝐺⟶ran 𝐾) |
3 | 2 | ad2ant2r 744 |
. . . . 5
⊢ (((𝑆:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦))) ∧ (𝑇:ran 𝐻⟶ran 𝐾 ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣)))) → (𝑇 ∘ 𝑆):ran 𝐺⟶ran 𝐾) |
4 | 3 | a1i 11 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) → (((𝑆:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦))) ∧ (𝑇:ran 𝐻⟶ran 𝐾 ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣)))) → (𝑇 ∘ 𝑆):ran 𝐺⟶ran 𝐾)) |
5 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑥 ∈ ran 𝐺) → (𝑆‘𝑥) ∈ ran 𝐻) |
6 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑦 ∈ ran 𝐺) → (𝑆‘𝑦) ∈ ran 𝐻) |
7 | 5, 6 | anim12dan 619 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆:ran 𝐺⟶ran 𝐻 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → ((𝑆‘𝑥) ∈ ran 𝐻 ∧ (𝑆‘𝑦) ∈ ran 𝐻)) |
8 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 = (𝑆‘𝑥) → (𝑇‘𝑢) = (𝑇‘(𝑆‘𝑥))) |
9 | 8 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = (𝑆‘𝑥) → ((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘𝑣))) |
10 | | fvoveq1 7298 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = (𝑆‘𝑥) → (𝑇‘(𝑢𝐻𝑣)) = (𝑇‘((𝑆‘𝑥)𝐻𝑣))) |
11 | 9, 10 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = (𝑆‘𝑥) → (((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣)) ↔ ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘𝑣)) = (𝑇‘((𝑆‘𝑥)𝐻𝑣)))) |
12 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = (𝑆‘𝑦) → (𝑇‘𝑣) = (𝑇‘(𝑆‘𝑦))) |
13 | 12 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 = (𝑆‘𝑦) → ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘𝑣)) = ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘(𝑆‘𝑦)))) |
14 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = (𝑆‘𝑦) → ((𝑆‘𝑥)𝐻𝑣) = ((𝑆‘𝑥)𝐻(𝑆‘𝑦))) |
15 | 14 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 = (𝑆‘𝑦) → (𝑇‘((𝑆‘𝑥)𝐻𝑣)) = (𝑇‘((𝑆‘𝑥)𝐻(𝑆‘𝑦)))) |
16 | 13, 15 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = (𝑆‘𝑦) → (((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘𝑣)) = (𝑇‘((𝑆‘𝑥)𝐻𝑣)) ↔ ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘(𝑆‘𝑦))) = (𝑇‘((𝑆‘𝑥)𝐻(𝑆‘𝑦))))) |
17 | 11, 16 | rspc2va 3571 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑆‘𝑥) ∈ ran 𝐻 ∧ (𝑆‘𝑦) ∈ ran 𝐻) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) → ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘(𝑆‘𝑦))) = (𝑇‘((𝑆‘𝑥)𝐻(𝑆‘𝑦)))) |
18 | 7, 17 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑆:ran 𝐺⟶ran 𝐻 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) → ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘(𝑆‘𝑦))) = (𝑇‘((𝑆‘𝑥)𝐻(𝑆‘𝑦)))) |
19 | 18 | an32s 649 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑆:ran 𝐺⟶ran 𝐻 ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘(𝑆‘𝑦))) = (𝑇‘((𝑆‘𝑥)𝐻(𝑆‘𝑦)))) |
20 | 19 | adantllr 716 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘(𝑆‘𝑦))) = (𝑇‘((𝑆‘𝑥)𝐻(𝑆‘𝑦)))) |
21 | 20 | adantllr 716 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ 𝐺 ∈ GrpOp) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘(𝑆‘𝑦))) = (𝑇‘((𝑆‘𝑥)𝐻(𝑆‘𝑦)))) |
22 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦)) → (𝑇‘((𝑆‘𝑥)𝐻(𝑆‘𝑦))) = (𝑇‘(𝑆‘(𝑥𝐺𝑦)))) |
23 | 21, 22 | sylan9eq 2798 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ 𝐺 ∈ GrpOp) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) ∧ ((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦))) → ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘(𝑆‘𝑦))) = (𝑇‘(𝑆‘(𝑥𝐺𝑦)))) |
24 | 23 | anasss 467 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ 𝐺 ∈ GrpOp) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) ∧ ((𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺) ∧ ((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦)))) → ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘(𝑆‘𝑦))) = (𝑇‘(𝑆‘(𝑥𝐺𝑦)))) |
25 | | fvco3 6867 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑥 ∈ ran 𝐺) → ((𝑇 ∘ 𝑆)‘𝑥) = (𝑇‘(𝑆‘𝑥))) |
26 | 25 | ad2ant2r 744 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → ((𝑇 ∘ 𝑆)‘𝑥) = (𝑇‘(𝑆‘𝑥))) |
27 | | fvco3 6867 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑦 ∈ ran 𝐺) → ((𝑇 ∘ 𝑆)‘𝑦) = (𝑇‘(𝑆‘𝑦))) |
28 | 27 | ad2ant2rl 746 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → ((𝑇 ∘ 𝑆)‘𝑦) = (𝑇‘(𝑆‘𝑦))) |
29 | 26, 28 | oveq12d 7293 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → (((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘(𝑆‘𝑦)))) |
30 | 29 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ 𝐺 ∈ GrpOp) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → (((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘(𝑆‘𝑦)))) |
31 | 30 | ad2ant2r 744 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ 𝐺 ∈ GrpOp) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) ∧ ((𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺) ∧ ((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦)))) → (((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇‘(𝑆‘𝑥))𝐾(𝑇‘(𝑆‘𝑦)))) |
32 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ran 𝐺 = ran 𝐺 |
33 | 32 | grpocl 28862 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ GrpOp ∧ 𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺) → (𝑥𝐺𝑦) ∈ ran 𝐺) |
34 | 33 | 3expb 1119 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ GrpOp ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → (𝑥𝐺𝑦) ∈ ran 𝐺) |
35 | | fvco3 6867 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆:ran 𝐺⟶ran 𝐻 ∧ (𝑥𝐺𝑦) ∈ ran 𝐺) → ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦)) = (𝑇‘(𝑆‘(𝑥𝐺𝑦)))) |
36 | 35 | adantlr 712 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ (𝑥𝐺𝑦) ∈ ran 𝐺) → ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦)) = (𝑇‘(𝑆‘(𝑥𝐺𝑦)))) |
37 | 34, 36 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ (𝐺 ∈ GrpOp ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺))) → ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦)) = (𝑇‘(𝑆‘(𝑥𝐺𝑦)))) |
38 | 37 | anassrs 468 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ 𝐺 ∈ GrpOp) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦)) = (𝑇‘(𝑆‘(𝑥𝐺𝑦)))) |
39 | 38 | ad2ant2r 744 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ 𝐺 ∈ GrpOp) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) ∧ ((𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺) ∧ ((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦)))) → ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦)) = (𝑇‘(𝑆‘(𝑥𝐺𝑦)))) |
40 | 24, 31, 39 | 3eqtr4d 2788 |
. . . . . . . . . . . . . 14
⊢
(((((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ 𝐺 ∈ GrpOp) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) ∧ ((𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺) ∧ ((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦)))) → (((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦))) |
41 | 40 | expr 457 |
. . . . . . . . . . . . 13
⊢
(((((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ 𝐺 ∈ GrpOp) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → (((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦)) → (((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦)))) |
42 | 41 | ralimdvva 3126 |
. . . . . . . . . . . 12
⊢ ((((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ 𝐺 ∈ GrpOp) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) → (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦)) → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦)))) |
43 | 42 | an32s 649 |
. . . . . . . . . . 11
⊢ ((((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) ∧ 𝐺 ∈ GrpOp) → (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦)) → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦)))) |
44 | 43 | ex 413 |
. . . . . . . . . 10
⊢ (((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) → (𝐺 ∈ GrpOp → (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦)) → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦))))) |
45 | 44 | com23 86 |
. . . . . . . . 9
⊢ (((𝑆:ran 𝐺⟶ran 𝐻 ∧ 𝑇:ran 𝐻⟶ran 𝐾) ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))) → (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦)) → (𝐺 ∈ GrpOp → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦))))) |
46 | 45 | anasss 467 |
. . . . . . . 8
⊢ ((𝑆:ran 𝐺⟶ran 𝐻 ∧ (𝑇:ran 𝐻⟶ran 𝐾 ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣)))) → (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦)) → (𝐺 ∈ GrpOp → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦))))) |
47 | 46 | imp 407 |
. . . . . . 7
⊢ (((𝑆:ran 𝐺⟶ran 𝐻 ∧ (𝑇:ran 𝐻⟶ran 𝐾 ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣)))) ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦))) → (𝐺 ∈ GrpOp → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦)))) |
48 | 47 | an32s 649 |
. . . . . 6
⊢ (((𝑆:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦))) ∧ (𝑇:ran 𝐻⟶ran 𝐾 ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣)))) → (𝐺 ∈ GrpOp → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦)))) |
49 | 48 | com12 32 |
. . . . 5
⊢ (𝐺 ∈ GrpOp → (((𝑆:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦))) ∧ (𝑇:ran 𝐻⟶ran 𝐾 ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣)))) → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦)))) |
50 | 49 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) → (((𝑆:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦))) ∧ (𝑇:ran 𝐻⟶ran 𝐾 ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣)))) → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦)))) |
51 | 4, 50 | jcad 513 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) → (((𝑆:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦))) ∧ (𝑇:ran 𝐻⟶ran 𝐾 ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣)))) → ((𝑇 ∘ 𝑆):ran 𝐺⟶ran 𝐾 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦))))) |
52 | | eqid 2738 |
. . . . . 6
⊢ ran 𝐻 = ran 𝐻 |
53 | 32, 52 | elghomOLD 36045 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝑆 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝑆:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦))))) |
54 | 53 | 3adant3 1131 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) → (𝑆 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝑆:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦))))) |
55 | | eqid 2738 |
. . . . . 6
⊢ ran 𝐾 = ran 𝐾 |
56 | 52, 55 | elghomOLD 36045 |
. . . . 5
⊢ ((𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) → (𝑇 ∈ (𝐻 GrpOpHom 𝐾) ↔ (𝑇:ran 𝐻⟶ran 𝐾 ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))))) |
57 | 56 | 3adant1 1129 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) → (𝑇 ∈ (𝐻 GrpOpHom 𝐾) ↔ (𝑇:ran 𝐻⟶ran 𝐾 ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣))))) |
58 | 54, 57 | anbi12d 631 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) → ((𝑆 ∈ (𝐺 GrpOpHom 𝐻) ∧ 𝑇 ∈ (𝐻 GrpOpHom 𝐾)) ↔ ((𝑆:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑆‘𝑥)𝐻(𝑆‘𝑦)) = (𝑆‘(𝑥𝐺𝑦))) ∧ (𝑇:ran 𝐻⟶ran 𝐾 ∧ ∀𝑢 ∈ ran 𝐻∀𝑣 ∈ ran 𝐻((𝑇‘𝑢)𝐾(𝑇‘𝑣)) = (𝑇‘(𝑢𝐻𝑣)))))) |
59 | 32, 55 | elghomOLD 36045 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) → ((𝑇 ∘ 𝑆) ∈ (𝐺 GrpOpHom 𝐾) ↔ ((𝑇 ∘ 𝑆):ran 𝐺⟶ran 𝐾 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦))))) |
60 | 59 | 3adant2 1130 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) → ((𝑇 ∘ 𝑆) ∈ (𝐺 GrpOpHom 𝐾) ↔ ((𝑇 ∘ 𝑆):ran 𝐺⟶ran 𝐾 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(((𝑇 ∘ 𝑆)‘𝑥)𝐾((𝑇 ∘ 𝑆)‘𝑦)) = ((𝑇 ∘ 𝑆)‘(𝑥𝐺𝑦))))) |
61 | 51, 58, 60 | 3imtr4d 294 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) → ((𝑆 ∈ (𝐺 GrpOpHom 𝐻) ∧ 𝑇 ∈ (𝐻 GrpOpHom 𝐾)) → (𝑇 ∘ 𝑆) ∈ (𝐺 GrpOpHom 𝐾))) |
62 | 61 | imp 407 |
1
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) ∧ (𝑆 ∈ (𝐺 GrpOpHom 𝐻) ∧ 𝑇 ∈ (𝐻 GrpOpHom 𝐾))) → (𝑇 ∘ 𝑆) ∈ (𝐺 GrpOpHom 𝐾)) |