MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhm2 Structured version   Visualization version   GIF version

Theorem islmhm2 21060
Description: A one-equation proof of linearity of a left module homomorphism, similar to df-lss 20953. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
islmhm2.b 𝐵 = (Base‘𝑆)
islmhm2.c 𝐶 = (Base‘𝑇)
islmhm2.k 𝐾 = (Scalar‘𝑆)
islmhm2.l 𝐿 = (Scalar‘𝑇)
islmhm2.e 𝐸 = (Base‘𝐾)
islmhm2.p + = (+g𝑆)
islmhm2.q = (+g𝑇)
islmhm2.m · = ( ·𝑠𝑆)
islmhm2.n × = ( ·𝑠𝑇)
Assertion
Ref Expression
islmhm2 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))))
Distinct variable groups:   𝑥,𝑦,𝑧,   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥, · ,𝑧   𝑥, × ,𝑧
Allowed substitution hints:   · (𝑦)   × (𝑦)

Proof of Theorem islmhm2
StepHypRef Expression
1 islmhm2.b . . . . 5 𝐵 = (Base‘𝑆)
2 islmhm2.c . . . . 5 𝐶 = (Base‘𝑇)
31, 2lmhmf 21056 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵𝐶)
4 islmhm2.k . . . . 5 𝐾 = (Scalar‘𝑆)
5 islmhm2.l . . . . 5 𝐿 = (Scalar‘𝑇)
64, 5lmhmsca 21052 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾)
7 lmghm 21053 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
87adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
9 lmhmlmod1 21055 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
109adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → 𝑆 ∈ LMod)
11 simpr1 1194 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → 𝑥𝐸)
12 simpr2 1195 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
13 islmhm2.m . . . . . . . . 9 · = ( ·𝑠𝑆)
14 islmhm2.e . . . . . . . . 9 𝐸 = (Base‘𝐾)
151, 4, 13, 14lmodvscl 20898 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑥𝐸𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
1610, 11, 12, 15syl3anc 1371 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
17 simpr3 1196 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
18 islmhm2.p . . . . . . . 8 + = (+g𝑆)
19 islmhm2.q . . . . . . . 8 = (+g𝑇)
201, 18, 19ghmlin 19261 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 · 𝑦) ∈ 𝐵𝑧𝐵) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝐹‘(𝑥 · 𝑦)) (𝐹𝑧)))
218, 16, 17, 20syl3anc 1371 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝐹‘(𝑥 · 𝑦)) (𝐹𝑧)))
22 islmhm2.n . . . . . . . . 9 × = ( ·𝑠𝑇)
234, 14, 1, 13, 22lmhmlin 21057 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥𝐸𝑦𝐵) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
24233adant3r3 1184 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
2524oveq1d 7463 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → ((𝐹‘(𝑥 · 𝑦)) (𝐹𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))
2621, 25eqtrd 2780 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))
2726ralrimivvva 3211 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))
283, 6, 273jca 1128 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧))))
2928adantl 481 . 2 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧))))
30 lmodgrp 20887 . . . . . 6 (𝑆 ∈ LMod → 𝑆 ∈ Grp)
31 lmodgrp 20887 . . . . . 6 (𝑇 ∈ LMod → 𝑇 ∈ Grp)
3230, 31anim12i 612 . . . . 5 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
3332adantr 480 . . . 4 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
34 simpr1 1194 . . . . 5 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → 𝐹:𝐵𝐶)
354lmodring 20888 . . . . . . . . . 10 (𝑆 ∈ LMod → 𝐾 ∈ Ring)
3635ad2antrr 725 . . . . . . . . 9 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) → 𝐾 ∈ Ring)
37 eqid 2740 . . . . . . . . . 10 (1r𝐾) = (1r𝐾)
3814, 37ringidcl 20289 . . . . . . . . 9 (𝐾 ∈ Ring → (1r𝐾) ∈ 𝐸)
39 oveq1 7455 . . . . . . . . . . . . 13 (𝑥 = (1r𝐾) → (𝑥 · 𝑦) = ((1r𝐾) · 𝑦))
4039fvoveq1d 7470 . . . . . . . . . . . 12 (𝑥 = (1r𝐾) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)))
41 oveq1 7455 . . . . . . . . . . . . 13 (𝑥 = (1r𝐾) → (𝑥 × (𝐹𝑦)) = ((1r𝐾) × (𝐹𝑦)))
4241oveq1d 7463 . . . . . . . . . . . 12 (𝑥 = (1r𝐾) → ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧)))
4340, 42eqeq12d 2756 . . . . . . . . . . 11 (𝑥 = (1r𝐾) → ((𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) ↔ (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧))))
44432ralbidv 3227 . . . . . . . . . 10 (𝑥 = (1r𝐾) → (∀𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧))))
4544rspcv 3631 . . . . . . . . 9 ((1r𝐾) ∈ 𝐸 → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ∀𝑦𝐵𝑧𝐵 (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧))))
4636, 38, 453syl 18 . . . . . . . 8 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ∀𝑦𝐵𝑧𝐵 (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧))))
47 simplll 774 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → 𝑆 ∈ LMod)
48 simprl 770 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
491, 4, 13, 37lmodvs1 20910 . . . . . . . . . . . 12 ((𝑆 ∈ LMod ∧ 𝑦𝐵) → ((1r𝐾) · 𝑦) = 𝑦)
5047, 48, 49syl2anc 583 . . . . . . . . . . 11 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → ((1r𝐾) · 𝑦) = 𝑦)
5150fvoveq1d 7470 . . . . . . . . . 10 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (𝐹‘(𝑦 + 𝑧)))
52 simplrr 777 . . . . . . . . . . . . . 14 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → 𝐿 = 𝐾)
5352fveq2d 6924 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → (1r𝐿) = (1r𝐾))
5453oveq1d 7463 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → ((1r𝐿) × (𝐹𝑦)) = ((1r𝐾) × (𝐹𝑦)))
55 simpllr 775 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → 𝑇 ∈ LMod)
56 simplrl 776 . . . . . . . . . . . . . 14 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → 𝐹:𝐵𝐶)
5756, 48ffvelcdmd 7119 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → (𝐹𝑦) ∈ 𝐶)
58 eqid 2740 . . . . . . . . . . . . . 14 (1r𝐿) = (1r𝐿)
592, 5, 22, 58lmodvs1 20910 . . . . . . . . . . . . 13 ((𝑇 ∈ LMod ∧ (𝐹𝑦) ∈ 𝐶) → ((1r𝐿) × (𝐹𝑦)) = (𝐹𝑦))
6055, 57, 59syl2anc 583 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → ((1r𝐿) × (𝐹𝑦)) = (𝐹𝑦))
6154, 60eqtr3d 2782 . . . . . . . . . . 11 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → ((1r𝐾) × (𝐹𝑦)) = (𝐹𝑦))
6261oveq1d 7463 . . . . . . . . . 10 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧)) = ((𝐹𝑦) (𝐹𝑧)))
6351, 62eqeq12d 2756 . . . . . . . . 9 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → ((𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧)) ↔ (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧))))
64632ralbidva 3225 . . . . . . . 8 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) → (∀𝑦𝐵𝑧𝐵 (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧))))
6546, 64sylibd 239 . . . . . . 7 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ∀𝑦𝐵𝑧𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧))))
6665exp32 420 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵𝐶 → (𝐿 = 𝐾 → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ∀𝑦𝐵𝑧𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧))))))
67663imp2 1349 . . . . 5 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → ∀𝑦𝐵𝑧𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧)))
6834, 67jca 511 . . . 4 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → (𝐹:𝐵𝐶 ∧ ∀𝑦𝐵𝑧𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧))))
691, 2, 18, 19isghm 19255 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑦𝐵𝑧𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧)))))
7033, 68, 69sylanbrc 582 . . 3 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
71 simpr2 1195 . . 3 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → 𝐿 = 𝐾)
72 eqid 2740 . . . . . 6 (0g𝑆) = (0g𝑆)
73 eqid 2740 . . . . . 6 (0g𝑇) = (0g𝑇)
7472, 73ghmid 19262 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
7570, 74syl 17 . . . 4 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → (𝐹‘(0g𝑆)) = (0g𝑇))
7630ad3antrrr 729 . . . . . . . . . 10 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑆 ∈ Grp)
771, 72grpidcl 19005 . . . . . . . . . 10 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝐵)
78 oveq2 7456 . . . . . . . . . . . . 13 (𝑧 = (0g𝑆) → ((𝑥 · 𝑦) + 𝑧) = ((𝑥 · 𝑦) + (0g𝑆)))
7978fveq2d 6924 . . . . . . . . . . . 12 (𝑧 = (0g𝑆) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = (𝐹‘((𝑥 · 𝑦) + (0g𝑆))))
80 fveq2 6920 . . . . . . . . . . . . 13 (𝑧 = (0g𝑆) → (𝐹𝑧) = (𝐹‘(0g𝑆)))
8180oveq2d 7464 . . . . . . . . . . . 12 (𝑧 = (0g𝑆) → ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆))))
8279, 81eqeq12d 2756 . . . . . . . . . . 11 (𝑧 = (0g𝑆) → ((𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) ↔ (𝐹‘((𝑥 · 𝑦) + (0g𝑆))) = ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆)))))
8382rspcv 3631 . . . . . . . . . 10 ((0g𝑆) ∈ 𝐵 → (∀𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → (𝐹‘((𝑥 · 𝑦) + (0g𝑆))) = ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆)))))
8476, 77, 833syl 18 . . . . . . . . 9 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (∀𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → (𝐹‘((𝑥 · 𝑦) + (0g𝑆))) = ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆)))))
85 simplll 774 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑆 ∈ LMod)
86 simprl 770 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑥𝐸)
87 simprr 772 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑦𝐵)
8885, 86, 87, 15syl3anc 1371 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
891, 18, 72grprid 19008 . . . . . . . . . . . 12 ((𝑆 ∈ Grp ∧ (𝑥 · 𝑦) ∈ 𝐵) → ((𝑥 · 𝑦) + (0g𝑆)) = (𝑥 · 𝑦))
9076, 88, 89syl2anc 583 . . . . . . . . . . 11 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → ((𝑥 · 𝑦) + (0g𝑆)) = (𝑥 · 𝑦))
9190fveq2d 6924 . . . . . . . . . 10 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (𝐹‘((𝑥 · 𝑦) + (0g𝑆))) = (𝐹‘(𝑥 · 𝑦)))
92 simplr3 1217 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (𝐹‘(0g𝑆)) = (0g𝑇))
9392oveq2d 7464 . . . . . . . . . . 11 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆))) = ((𝑥 × (𝐹𝑦)) (0g𝑇)))
94 simpllr 775 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑇 ∈ LMod)
9594, 31syl 17 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑇 ∈ Grp)
96 simplr2 1216 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝐿 = 𝐾)
9796fveq2d 6924 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (Base‘𝐿) = (Base‘𝐾))
9897, 14eqtr4di 2798 . . . . . . . . . . . . . 14 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (Base‘𝐿) = 𝐸)
9986, 98eleqtrrd 2847 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑥 ∈ (Base‘𝐿))
100 simplr1 1215 . . . . . . . . . . . . . 14 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝐹:𝐵𝐶)
101100, 87ffvelcdmd 7119 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (𝐹𝑦) ∈ 𝐶)
102 eqid 2740 . . . . . . . . . . . . . 14 (Base‘𝐿) = (Base‘𝐿)
1032, 5, 22, 102lmodvscl 20898 . . . . . . . . . . . . 13 ((𝑇 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐿) ∧ (𝐹𝑦) ∈ 𝐶) → (𝑥 × (𝐹𝑦)) ∈ 𝐶)
10494, 99, 101, 103syl3anc 1371 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (𝑥 × (𝐹𝑦)) ∈ 𝐶)
1052, 19, 73grprid 19008 . . . . . . . . . . . 12 ((𝑇 ∈ Grp ∧ (𝑥 × (𝐹𝑦)) ∈ 𝐶) → ((𝑥 × (𝐹𝑦)) (0g𝑇)) = (𝑥 × (𝐹𝑦)))
10695, 104, 105syl2anc 583 . . . . . . . . . . 11 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → ((𝑥 × (𝐹𝑦)) (0g𝑇)) = (𝑥 × (𝐹𝑦)))
10793, 106eqtrd 2780 . . . . . . . . . 10 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆))) = (𝑥 × (𝐹𝑦)))
10891, 107eqeq12d 2756 . . . . . . . . 9 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → ((𝐹‘((𝑥 · 𝑦) + (0g𝑆))) = ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆))) ↔ (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
10984, 108sylibd 239 . . . . . . . 8 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (∀𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
110109ralimdvva 3212 . . . . . . 7 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
1111103exp2 1354 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵𝐶 → (𝐿 = 𝐾 → ((𝐹‘(0g𝑆)) = (0g𝑇) → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))))
112111com45 97 . . . . 5 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵𝐶 → (𝐿 = 𝐾 → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ((𝐹‘(0g𝑆)) = (0g𝑇) → ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))))
1131123imp2 1349 . . . 4 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → ((𝐹‘(0g𝑆)) = (0g𝑇) → ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
11475, 113mpd 15 . . 3 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
1154, 5, 14, 1, 13, 22islmhm3 21050 . . . 4 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
116115adantr 480 . . 3 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
11770, 71, 114, 116mpbir3and 1342 . 2 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
11829, 117impbida 800 1 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  Grpcgrp 18973   GrpHom cghm 19252  1rcur 20208  Ringcrg 20260  LModclmod 20880   LMHom clmhm 21041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ghm 19253  df-mgp 20162  df-ur 20209  df-ring 20262  df-lmod 20882  df-lmhm 21044
This theorem is referenced by:  isphld  21695
  Copyright terms: Public domain W3C validator