Proof of Theorem islmhm2
Step | Hyp | Ref
| Expression |
1 | | islmhm2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
2 | | islmhm2.c |
. . . . 5
⊢ 𝐶 = (Base‘𝑇) |
3 | 1, 2 | lmhmf 20296 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶𝐶) |
4 | | islmhm2.k |
. . . . 5
⊢ 𝐾 = (Scalar‘𝑆) |
5 | | islmhm2.l |
. . . . 5
⊢ 𝐿 = (Scalar‘𝑇) |
6 | 4, 5 | lmhmsca 20292 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾) |
7 | | lmghm 20293 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
8 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
9 | | lmhmlmod1 20295 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
10 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑆 ∈ LMod) |
11 | | simpr1 1193 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐸) |
12 | | simpr2 1194 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
13 | | islmhm2.m |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑆) |
14 | | islmhm2.e |
. . . . . . . . 9
⊢ 𝐸 = (Base‘𝐾) |
15 | 1, 4, 13, 14 | lmodvscl 20140 |
. . . . . . . 8
⊢ ((𝑆 ∈ LMod ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
16 | 10, 11, 12, 15 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
17 | | simpr3 1195 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
18 | | islmhm2.p |
. . . . . . . 8
⊢ + =
(+g‘𝑆) |
19 | | islmhm2.q |
. . . . . . . 8
⊢ ⨣ =
(+g‘𝑇) |
20 | 1, 18, 19 | ghmlin 18839 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 · 𝑦) ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝐹‘(𝑥 · 𝑦)) ⨣ (𝐹‘𝑧))) |
21 | 8, 16, 17, 20 | syl3anc 1370 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝐹‘(𝑥 · 𝑦)) ⨣ (𝐹‘𝑧))) |
22 | | islmhm2.n |
. . . . . . . . 9
⊢ × = (
·𝑠 ‘𝑇) |
23 | 4, 14, 1, 13, 22 | lmhmlin 20297 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
24 | 23 | 3adant3r3 1183 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
25 | 24 | oveq1d 7290 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝐹‘(𝑥 · 𝑦)) ⨣ (𝐹‘𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))) |
26 | 21, 25 | eqtrd 2778 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))) |
27 | 26 | ralrimivvva 3127 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))) |
28 | 3, 6, 27 | 3jca 1127 |
. . 3
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) |
29 | 28 | adantl 482 |
. 2
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) |
30 | | lmodgrp 20130 |
. . . . . 6
⊢ (𝑆 ∈ LMod → 𝑆 ∈ Grp) |
31 | | lmodgrp 20130 |
. . . . . 6
⊢ (𝑇 ∈ LMod → 𝑇 ∈ Grp) |
32 | 30, 31 | anim12i 613 |
. . . . 5
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) |
33 | 32 | adantr 481 |
. . . 4
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) |
34 | | simpr1 1193 |
. . . . 5
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → 𝐹:𝐵⟶𝐶) |
35 | 4 | lmodring 20131 |
. . . . . . . . . 10
⊢ (𝑆 ∈ LMod → 𝐾 ∈ Ring) |
36 | 35 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) → 𝐾 ∈ Ring) |
37 | | eqid 2738 |
. . . . . . . . . 10
⊢
(1r‘𝐾) = (1r‘𝐾) |
38 | 14, 37 | ringidcl 19807 |
. . . . . . . . 9
⊢ (𝐾 ∈ Ring →
(1r‘𝐾)
∈ 𝐸) |
39 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1r‘𝐾) → (𝑥 · 𝑦) = ((1r‘𝐾) · 𝑦)) |
40 | 39 | fvoveq1d 7297 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1r‘𝐾) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧))) |
41 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1r‘𝐾) → (𝑥 × (𝐹‘𝑦)) = ((1r‘𝐾) × (𝐹‘𝑦))) |
42 | 41 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1r‘𝐾) → ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))) |
43 | 40, 42 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑥 = (1r‘𝐾) → ((𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) |
44 | 43 | 2ralbidv 3129 |
. . . . . . . . . 10
⊢ (𝑥 = (1r‘𝐾) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) |
45 | 44 | rspcv 3557 |
. . . . . . . . 9
⊢
((1r‘𝐾) ∈ 𝐸 → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) |
46 | 36, 38, 45 | 3syl 18 |
. . . . . . . 8
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) |
47 | | simplll 772 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑆 ∈ LMod) |
48 | | simprl 768 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
49 | 1, 4, 13, 37 | lmodvs1 20151 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ LMod ∧ 𝑦 ∈ 𝐵) → ((1r‘𝐾) · 𝑦) = 𝑦) |
50 | 47, 48, 49 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((1r‘𝐾) · 𝑦) = 𝑦) |
51 | 50 | fvoveq1d 7297 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (𝐹‘(𝑦 + 𝑧))) |
52 | | simplrr 775 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐿 = 𝐾) |
53 | 52 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (1r‘𝐿) = (1r‘𝐾)) |
54 | 53 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((1r‘𝐿) × (𝐹‘𝑦)) = ((1r‘𝐾) × (𝐹‘𝑦))) |
55 | | simpllr 773 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑇 ∈ LMod) |
56 | | simplrl 774 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐹:𝐵⟶𝐶) |
57 | 56, 48 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘𝑦) ∈ 𝐶) |
58 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(1r‘𝐿) = (1r‘𝐿) |
59 | 2, 5, 22, 58 | lmodvs1 20151 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ LMod ∧ (𝐹‘𝑦) ∈ 𝐶) → ((1r‘𝐿) × (𝐹‘𝑦)) = (𝐹‘𝑦)) |
60 | 55, 57, 59 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((1r‘𝐿) × (𝐹‘𝑦)) = (𝐹‘𝑦)) |
61 | 54, 60 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((1r‘𝐾) × (𝐹‘𝑦)) = (𝐹‘𝑦)) |
62 | 61 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧))) |
63 | 51, 62 | eqeq12d 2754 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))) |
64 | 63 | 2ralbidva 3128 |
. . . . . . . 8
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))) |
65 | 46, 64 | sylibd 238 |
. . . . . . 7
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))) |
66 | 65 | exp32 421 |
. . . . . 6
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵⟶𝐶 → (𝐿 = 𝐾 → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))))) |
67 | 66 | 3imp2 1348 |
. . . . 5
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧))) |
68 | 34, 67 | jca 512 |
. . . 4
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))) |
69 | 1, 2, 18, 19 | isghm 18834 |
. . . 4
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧))))) |
70 | 33, 68, 69 | sylanbrc 583 |
. . 3
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
71 | | simpr2 1194 |
. . 3
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → 𝐿 = 𝐾) |
72 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑆) = (0g‘𝑆) |
73 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑇) = (0g‘𝑇) |
74 | 72, 73 | ghmid 18840 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
75 | 70, 74 | syl 17 |
. . . 4
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
76 | 30 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Grp) |
77 | 1, 72 | grpidcl 18607 |
. . . . . . . . . 10
⊢ (𝑆 ∈ Grp →
(0g‘𝑆)
∈ 𝐵) |
78 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (0g‘𝑆) → ((𝑥 · 𝑦) + 𝑧) = ((𝑥 · 𝑦) + (0g‘𝑆))) |
79 | 78 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑧 = (0g‘𝑆) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆)))) |
80 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (0g‘𝑆) → (𝐹‘𝑧) = (𝐹‘(0g‘𝑆))) |
81 | 80 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑧 = (0g‘𝑆) → ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆)))) |
82 | 79, 81 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑧 = (0g‘𝑆) → ((𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))))) |
83 | 82 | rspcv 3557 |
. . . . . . . . . 10
⊢
((0g‘𝑆) ∈ 𝐵 → (∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))))) |
84 | 76, 77, 83 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))))) |
85 | | simplll 772 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ LMod) |
86 | | simprl 768 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐸) |
87 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
88 | 85, 86, 87, 15 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) |
89 | 1, 18, 72 | grprid 18610 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Grp ∧ (𝑥 · 𝑦) ∈ 𝐵) → ((𝑥 · 𝑦) + (0g‘𝑆)) = (𝑥 · 𝑦)) |
90 | 76, 88, 89 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 · 𝑦) + (0g‘𝑆)) = (𝑥 · 𝑦)) |
91 | 90 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = (𝐹‘(𝑥 · 𝑦))) |
92 | | simplr3 1216 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
93 | 92 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣
(0g‘𝑇))) |
94 | | simpllr 773 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑇 ∈ LMod) |
95 | 94, 31 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑇 ∈ Grp) |
96 | | simplr2 1215 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝐿 = 𝐾) |
97 | 96 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (Base‘𝐿) = (Base‘𝐾)) |
98 | 97, 14 | eqtr4di 2796 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (Base‘𝐿) = 𝐸) |
99 | 86, 98 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝐿)) |
100 | | simplr1 1214 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝐹:𝐵⟶𝐶) |
101 | 100, 87 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑦) ∈ 𝐶) |
102 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐿) =
(Base‘𝐿) |
103 | 2, 5, 22, 102 | lmodvscl 20140 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐿) ∧ (𝐹‘𝑦) ∈ 𝐶) → (𝑥 × (𝐹‘𝑦)) ∈ 𝐶) |
104 | 94, 99, 101, 103 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝑥 × (𝐹‘𝑦)) ∈ 𝐶) |
105 | 2, 19, 73 | grprid 18610 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ Grp ∧ (𝑥 × (𝐹‘𝑦)) ∈ 𝐶) → ((𝑥 × (𝐹‘𝑦)) ⨣
(0g‘𝑇)) =
(𝑥 × (𝐹‘𝑦))) |
106 | 95, 104, 105 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 × (𝐹‘𝑦)) ⨣
(0g‘𝑇)) =
(𝑥 × (𝐹‘𝑦))) |
107 | 93, 106 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))) = (𝑥 × (𝐹‘𝑦))) |
108 | 91, 107 | eqeq12d 2754 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))) ↔ (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
109 | 84, 108 | sylibd 238 |
. . . . . . . 8
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
110 | 109 | ralimdvva 3126 |
. . . . . . 7
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
111 | 110 | 3exp2 1353 |
. . . . . 6
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵⟶𝐶 → (𝐿 = 𝐾 → ((𝐹‘(0g‘𝑆)) = (0g‘𝑇) → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))))) |
112 | 111 | com45 97 |
. . . . 5
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵⟶𝐶 → (𝐿 = 𝐾 → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ((𝐹‘(0g‘𝑆)) = (0g‘𝑇) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))))) |
113 | 112 | 3imp2 1348 |
. . . 4
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → ((𝐹‘(0g‘𝑆)) = (0g‘𝑇) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
114 | 75, 113 | mpd 15 |
. . 3
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
115 | 4, 5, 14, 1, 13, 22 | islmhm3 20290 |
. . . 4
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
116 | 115 | adantr 481 |
. . 3
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
117 | 70, 71, 114, 116 | mpbir3and 1341 |
. 2
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
118 | 29, 117 | impbida 798 |
1
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))))) |