MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhm2 Structured version   Visualization version   GIF version

Theorem islmhm2 20380
Description: A one-equation proof of linearity of a left module homomorphism, similar to df-lss 20274. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
islmhm2.b 𝐵 = (Base‘𝑆)
islmhm2.c 𝐶 = (Base‘𝑇)
islmhm2.k 𝐾 = (Scalar‘𝑆)
islmhm2.l 𝐿 = (Scalar‘𝑇)
islmhm2.e 𝐸 = (Base‘𝐾)
islmhm2.p + = (+g𝑆)
islmhm2.q = (+g𝑇)
islmhm2.m · = ( ·𝑠𝑆)
islmhm2.n × = ( ·𝑠𝑇)
Assertion
Ref Expression
islmhm2 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))))
Distinct variable groups:   𝑥,𝑦,𝑧,   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥, · ,𝑧   𝑥, × ,𝑧
Allowed substitution hints:   · (𝑦)   × (𝑦)

Proof of Theorem islmhm2
StepHypRef Expression
1 islmhm2.b . . . . 5 𝐵 = (Base‘𝑆)
2 islmhm2.c . . . . 5 𝐶 = (Base‘𝑇)
31, 2lmhmf 20376 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵𝐶)
4 islmhm2.k . . . . 5 𝐾 = (Scalar‘𝑆)
5 islmhm2.l . . . . 5 𝐿 = (Scalar‘𝑇)
64, 5lmhmsca 20372 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾)
7 lmghm 20373 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
87adantr 481 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
9 lmhmlmod1 20375 . . . . . . . . 9 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
109adantr 481 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → 𝑆 ∈ LMod)
11 simpr1 1193 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → 𝑥𝐸)
12 simpr2 1194 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
13 islmhm2.m . . . . . . . . 9 · = ( ·𝑠𝑆)
14 islmhm2.e . . . . . . . . 9 𝐸 = (Base‘𝐾)
151, 4, 13, 14lmodvscl 20220 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑥𝐸𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
1610, 11, 12, 15syl3anc 1370 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
17 simpr3 1195 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
18 islmhm2.p . . . . . . . 8 + = (+g𝑆)
19 islmhm2.q . . . . . . . 8 = (+g𝑇)
201, 18, 19ghmlin 18912 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 · 𝑦) ∈ 𝐵𝑧𝐵) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝐹‘(𝑥 · 𝑦)) (𝐹𝑧)))
218, 16, 17, 20syl3anc 1370 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝐹‘(𝑥 · 𝑦)) (𝐹𝑧)))
22 islmhm2.n . . . . . . . . 9 × = ( ·𝑠𝑇)
234, 14, 1, 13, 22lmhmlin 20377 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥𝐸𝑦𝐵) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
24233adant3r3 1183 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
2524oveq1d 7331 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → ((𝐹‘(𝑥 · 𝑦)) (𝐹𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))
2621, 25eqtrd 2776 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥𝐸𝑦𝐵𝑧𝐵)) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))
2726ralrimivvva 3196 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))
283, 6, 273jca 1127 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧))))
2928adantl 482 . 2 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧))))
30 lmodgrp 20210 . . . . . 6 (𝑆 ∈ LMod → 𝑆 ∈ Grp)
31 lmodgrp 20210 . . . . . 6 (𝑇 ∈ LMod → 𝑇 ∈ Grp)
3230, 31anim12i 613 . . . . 5 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
3332adantr 481 . . . 4 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
34 simpr1 1193 . . . . 5 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → 𝐹:𝐵𝐶)
354lmodring 20211 . . . . . . . . . 10 (𝑆 ∈ LMod → 𝐾 ∈ Ring)
3635ad2antrr 723 . . . . . . . . 9 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) → 𝐾 ∈ Ring)
37 eqid 2736 . . . . . . . . . 10 (1r𝐾) = (1r𝐾)
3814, 37ringidcl 19879 . . . . . . . . 9 (𝐾 ∈ Ring → (1r𝐾) ∈ 𝐸)
39 oveq1 7323 . . . . . . . . . . . . 13 (𝑥 = (1r𝐾) → (𝑥 · 𝑦) = ((1r𝐾) · 𝑦))
4039fvoveq1d 7338 . . . . . . . . . . . 12 (𝑥 = (1r𝐾) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)))
41 oveq1 7323 . . . . . . . . . . . . 13 (𝑥 = (1r𝐾) → (𝑥 × (𝐹𝑦)) = ((1r𝐾) × (𝐹𝑦)))
4241oveq1d 7331 . . . . . . . . . . . 12 (𝑥 = (1r𝐾) → ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧)))
4340, 42eqeq12d 2752 . . . . . . . . . . 11 (𝑥 = (1r𝐾) → ((𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) ↔ (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧))))
44432ralbidv 3208 . . . . . . . . . 10 (𝑥 = (1r𝐾) → (∀𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧))))
4544rspcv 3565 . . . . . . . . 9 ((1r𝐾) ∈ 𝐸 → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ∀𝑦𝐵𝑧𝐵 (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧))))
4636, 38, 453syl 18 . . . . . . . 8 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ∀𝑦𝐵𝑧𝐵 (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧))))
47 simplll 772 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → 𝑆 ∈ LMod)
48 simprl 768 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
491, 4, 13, 37lmodvs1 20231 . . . . . . . . . . . 12 ((𝑆 ∈ LMod ∧ 𝑦𝐵) → ((1r𝐾) · 𝑦) = 𝑦)
5047, 48, 49syl2anc 584 . . . . . . . . . . 11 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → ((1r𝐾) · 𝑦) = 𝑦)
5150fvoveq1d 7338 . . . . . . . . . 10 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (𝐹‘(𝑦 + 𝑧)))
52 simplrr 775 . . . . . . . . . . . . . 14 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → 𝐿 = 𝐾)
5352fveq2d 6815 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → (1r𝐿) = (1r𝐾))
5453oveq1d 7331 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → ((1r𝐿) × (𝐹𝑦)) = ((1r𝐾) × (𝐹𝑦)))
55 simpllr 773 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → 𝑇 ∈ LMod)
56 simplrl 774 . . . . . . . . . . . . . 14 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → 𝐹:𝐵𝐶)
5756, 48ffvelcdmd 7001 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → (𝐹𝑦) ∈ 𝐶)
58 eqid 2736 . . . . . . . . . . . . . 14 (1r𝐿) = (1r𝐿)
592, 5, 22, 58lmodvs1 20231 . . . . . . . . . . . . 13 ((𝑇 ∈ LMod ∧ (𝐹𝑦) ∈ 𝐶) → ((1r𝐿) × (𝐹𝑦)) = (𝐹𝑦))
6055, 57, 59syl2anc 584 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → ((1r𝐿) × (𝐹𝑦)) = (𝐹𝑦))
6154, 60eqtr3d 2778 . . . . . . . . . . 11 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → ((1r𝐾) × (𝐹𝑦)) = (𝐹𝑦))
6261oveq1d 7331 . . . . . . . . . 10 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧)) = ((𝐹𝑦) (𝐹𝑧)))
6351, 62eqeq12d 2752 . . . . . . . . 9 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) ∧ (𝑦𝐵𝑧𝐵)) → ((𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧)) ↔ (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧))))
64632ralbidva 3206 . . . . . . . 8 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) → (∀𝑦𝐵𝑧𝐵 (𝐹‘(((1r𝐾) · 𝑦) + 𝑧)) = (((1r𝐾) × (𝐹𝑦)) (𝐹𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧))))
6546, 64sylibd 238 . . . . . . 7 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾)) → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ∀𝑦𝐵𝑧𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧))))
6665exp32 421 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵𝐶 → (𝐿 = 𝐾 → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ∀𝑦𝐵𝑧𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧))))))
67663imp2 1348 . . . . 5 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → ∀𝑦𝐵𝑧𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧)))
6834, 67jca 512 . . . 4 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → (𝐹:𝐵𝐶 ∧ ∀𝑦𝐵𝑧𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧))))
691, 2, 18, 19isghm 18907 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑦𝐵𝑧𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) (𝐹𝑧)))))
7033, 68, 69sylanbrc 583 . . 3 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
71 simpr2 1194 . . 3 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → 𝐿 = 𝐾)
72 eqid 2736 . . . . . 6 (0g𝑆) = (0g𝑆)
73 eqid 2736 . . . . . 6 (0g𝑇) = (0g𝑇)
7472, 73ghmid 18913 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
7570, 74syl 17 . . . 4 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → (𝐹‘(0g𝑆)) = (0g𝑇))
7630ad3antrrr 727 . . . . . . . . . 10 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑆 ∈ Grp)
771, 72grpidcl 18680 . . . . . . . . . 10 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝐵)
78 oveq2 7324 . . . . . . . . . . . . 13 (𝑧 = (0g𝑆) → ((𝑥 · 𝑦) + 𝑧) = ((𝑥 · 𝑦) + (0g𝑆)))
7978fveq2d 6815 . . . . . . . . . . . 12 (𝑧 = (0g𝑆) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = (𝐹‘((𝑥 · 𝑦) + (0g𝑆))))
80 fveq2 6811 . . . . . . . . . . . . 13 (𝑧 = (0g𝑆) → (𝐹𝑧) = (𝐹‘(0g𝑆)))
8180oveq2d 7332 . . . . . . . . . . . 12 (𝑧 = (0g𝑆) → ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆))))
8279, 81eqeq12d 2752 . . . . . . . . . . 11 (𝑧 = (0g𝑆) → ((𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) ↔ (𝐹‘((𝑥 · 𝑦) + (0g𝑆))) = ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆)))))
8382rspcv 3565 . . . . . . . . . 10 ((0g𝑆) ∈ 𝐵 → (∀𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → (𝐹‘((𝑥 · 𝑦) + (0g𝑆))) = ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆)))))
8476, 77, 833syl 18 . . . . . . . . 9 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (∀𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → (𝐹‘((𝑥 · 𝑦) + (0g𝑆))) = ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆)))))
85 simplll 772 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑆 ∈ LMod)
86 simprl 768 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑥𝐸)
87 simprr 770 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑦𝐵)
8885, 86, 87, 15syl3anc 1370 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (𝑥 · 𝑦) ∈ 𝐵)
891, 18, 72grprid 18683 . . . . . . . . . . . 12 ((𝑆 ∈ Grp ∧ (𝑥 · 𝑦) ∈ 𝐵) → ((𝑥 · 𝑦) + (0g𝑆)) = (𝑥 · 𝑦))
9076, 88, 89syl2anc 584 . . . . . . . . . . 11 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → ((𝑥 · 𝑦) + (0g𝑆)) = (𝑥 · 𝑦))
9190fveq2d 6815 . . . . . . . . . 10 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (𝐹‘((𝑥 · 𝑦) + (0g𝑆))) = (𝐹‘(𝑥 · 𝑦)))
92 simplr3 1216 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (𝐹‘(0g𝑆)) = (0g𝑇))
9392oveq2d 7332 . . . . . . . . . . 11 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆))) = ((𝑥 × (𝐹𝑦)) (0g𝑇)))
94 simpllr 773 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑇 ∈ LMod)
9594, 31syl 17 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑇 ∈ Grp)
96 simplr2 1215 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝐿 = 𝐾)
9796fveq2d 6815 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (Base‘𝐿) = (Base‘𝐾))
9897, 14eqtr4di 2794 . . . . . . . . . . . . . 14 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (Base‘𝐿) = 𝐸)
9986, 98eleqtrrd 2840 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝑥 ∈ (Base‘𝐿))
100 simplr1 1214 . . . . . . . . . . . . . 14 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → 𝐹:𝐵𝐶)
101100, 87ffvelcdmd 7001 . . . . . . . . . . . . 13 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (𝐹𝑦) ∈ 𝐶)
102 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝐿) = (Base‘𝐿)
1032, 5, 22, 102lmodvscl 20220 . . . . . . . . . . . . 13 ((𝑇 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐿) ∧ (𝐹𝑦) ∈ 𝐶) → (𝑥 × (𝐹𝑦)) ∈ 𝐶)
10494, 99, 101, 103syl3anc 1370 . . . . . . . . . . . 12 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (𝑥 × (𝐹𝑦)) ∈ 𝐶)
1052, 19, 73grprid 18683 . . . . . . . . . . . 12 ((𝑇 ∈ Grp ∧ (𝑥 × (𝐹𝑦)) ∈ 𝐶) → ((𝑥 × (𝐹𝑦)) (0g𝑇)) = (𝑥 × (𝐹𝑦)))
10695, 104, 105syl2anc 584 . . . . . . . . . . 11 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → ((𝑥 × (𝐹𝑦)) (0g𝑇)) = (𝑥 × (𝐹𝑦)))
10793, 106eqtrd 2776 . . . . . . . . . 10 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆))) = (𝑥 × (𝐹𝑦)))
10891, 107eqeq12d 2752 . . . . . . . . 9 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → ((𝐹‘((𝑥 · 𝑦) + (0g𝑆))) = ((𝑥 × (𝐹𝑦)) (𝐹‘(0g𝑆))) ↔ (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
10984, 108sylibd 238 . . . . . . . 8 ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) ∧ (𝑥𝐸𝑦𝐵)) → (∀𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
110109ralimdvva 3197 . . . . . . 7 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ (𝐹‘(0g𝑆)) = (0g𝑇))) → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
1111103exp2 1353 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵𝐶 → (𝐿 = 𝐾 → ((𝐹‘(0g𝑆)) = (0g𝑇) → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))))
112111com45 97 . . . . 5 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵𝐶 → (𝐿 = 𝐾 → (∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)) → ((𝐹‘(0g𝑆)) = (0g𝑇) → ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))))
1131123imp2 1348 . . . 4 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → ((𝐹‘(0g𝑆)) = (0g𝑇) → ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
11475, 113mpd 15 . . 3 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
1154, 5, 14, 1, 13, 22islmhm3 20370 . . . 4 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
116115adantr 481 . . 3 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
11770, 71, 114, 116mpbir3and 1341 . 2 (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
11829, 117impbida 798 1 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹:𝐵𝐶𝐿 = 𝐾 ∧ ∀𝑥𝐸𝑦𝐵𝑧𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹𝑦)) (𝐹𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  wf 6461  cfv 6465  (class class class)co 7316  Basecbs 16986  +gcplusg 17036  Scalarcsca 17039   ·𝑠 cvsca 17040  0gc0g 17224  Grpcgrp 18650   GrpHom cghm 18904  1rcur 19809  Ringcrg 19855  LModclmod 20203   LMHom clmhm 20361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-2 12115  df-sets 16939  df-slot 16957  df-ndx 16969  df-base 16987  df-plusg 17049  df-0g 17226  df-mgm 18400  df-sgrp 18449  df-mnd 18460  df-grp 18653  df-ghm 18905  df-mgp 19793  df-ur 19810  df-ring 19857  df-lmod 20205  df-lmhm 20364
This theorem is referenced by:  isphld  20939
  Copyright terms: Public domain W3C validator