Proof of Theorem islmhm2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | islmhm2.b | . . . . 5
⊢ 𝐵 = (Base‘𝑆) | 
| 2 |  | islmhm2.c | . . . . 5
⊢ 𝐶 = (Base‘𝑇) | 
| 3 | 1, 2 | lmhmf 21034 | . . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶𝐶) | 
| 4 |  | islmhm2.k | . . . . 5
⊢ 𝐾 = (Scalar‘𝑆) | 
| 5 |  | islmhm2.l | . . . . 5
⊢ 𝐿 = (Scalar‘𝑇) | 
| 6 | 4, 5 | lmhmsca 21030 | . . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾) | 
| 7 |  | lmghm 21031 | . . . . . . . 8
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | 
| 8 | 7 | adantr 480 | . . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | 
| 9 |  | lmhmlmod1 21033 | . . . . . . . . 9
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) | 
| 10 | 9 | adantr 480 | . . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑆 ∈ LMod) | 
| 11 |  | simpr1 1194 | . . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐸) | 
| 12 |  | simpr2 1195 | . . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | 
| 13 |  | islmhm2.m | . . . . . . . . 9
⊢  · = (
·𝑠 ‘𝑆) | 
| 14 |  | islmhm2.e | . . . . . . . . 9
⊢ 𝐸 = (Base‘𝐾) | 
| 15 | 1, 4, 13, 14 | lmodvscl 20877 | . . . . . . . 8
⊢ ((𝑆 ∈ LMod ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) | 
| 16 | 10, 11, 12, 15 | syl3anc 1372 | . . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) | 
| 17 |  | simpr3 1196 | . . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) | 
| 18 |  | islmhm2.p | . . . . . . . 8
⊢  + =
(+g‘𝑆) | 
| 19 |  | islmhm2.q | . . . . . . . 8
⊢  ⨣ =
(+g‘𝑇) | 
| 20 | 1, 18, 19 | ghmlin 19240 | . . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 · 𝑦) ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝐹‘(𝑥 · 𝑦)) ⨣ (𝐹‘𝑧))) | 
| 21 | 8, 16, 17, 20 | syl3anc 1372 | . . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝐹‘(𝑥 · 𝑦)) ⨣ (𝐹‘𝑧))) | 
| 22 |  | islmhm2.n | . . . . . . . . 9
⊢  × = (
·𝑠 ‘𝑇) | 
| 23 | 4, 14, 1, 13, 22 | lmhmlin 21035 | . . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) | 
| 24 | 23 | 3adant3r3 1184 | . . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) | 
| 25 | 24 | oveq1d 7447 | . . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝐹‘(𝑥 · 𝑦)) ⨣ (𝐹‘𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))) | 
| 26 | 21, 25 | eqtrd 2776 | . . . . 5
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))) | 
| 27 | 26 | ralrimivvva 3204 | . . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))) | 
| 28 | 3, 6, 27 | 3jca 1128 | . . 3
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) | 
| 29 | 28 | adantl 481 | . 2
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) | 
| 30 |  | lmodgrp 20866 | . . . . . 6
⊢ (𝑆 ∈ LMod → 𝑆 ∈ Grp) | 
| 31 |  | lmodgrp 20866 | . . . . . 6
⊢ (𝑇 ∈ LMod → 𝑇 ∈ Grp) | 
| 32 | 30, 31 | anim12i 613 | . . . . 5
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) | 
| 33 | 32 | adantr 480 | . . . 4
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) | 
| 34 |  | simpr1 1194 | . . . . 5
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → 𝐹:𝐵⟶𝐶) | 
| 35 | 4 | lmodring 20867 | . . . . . . . . . 10
⊢ (𝑆 ∈ LMod → 𝐾 ∈ Ring) | 
| 36 | 35 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) → 𝐾 ∈ Ring) | 
| 37 |  | eqid 2736 | . . . . . . . . . 10
⊢
(1r‘𝐾) = (1r‘𝐾) | 
| 38 | 14, 37 | ringidcl 20263 | . . . . . . . . 9
⊢ (𝐾 ∈ Ring →
(1r‘𝐾)
∈ 𝐸) | 
| 39 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑥 = (1r‘𝐾) → (𝑥 · 𝑦) = ((1r‘𝐾) · 𝑦)) | 
| 40 | 39 | fvoveq1d 7454 | . . . . . . . . . . . 12
⊢ (𝑥 = (1r‘𝐾) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧))) | 
| 41 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑥 = (1r‘𝐾) → (𝑥 × (𝐹‘𝑦)) = ((1r‘𝐾) × (𝐹‘𝑦))) | 
| 42 | 41 | oveq1d 7447 | . . . . . . . . . . . 12
⊢ (𝑥 = (1r‘𝐾) → ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))) | 
| 43 | 40, 42 | eqeq12d 2752 | . . . . . . . . . . 11
⊢ (𝑥 = (1r‘𝐾) → ((𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) | 
| 44 | 43 | 2ralbidv 3220 | . . . . . . . . . 10
⊢ (𝑥 = (1r‘𝐾) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) | 
| 45 | 44 | rspcv 3617 | . . . . . . . . 9
⊢
((1r‘𝐾) ∈ 𝐸 → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) | 
| 46 | 36, 38, 45 | 3syl 18 | . . . . . . . 8
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) | 
| 47 |  | simplll 774 | . . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑆 ∈ LMod) | 
| 48 |  | simprl 770 | . . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | 
| 49 | 1, 4, 13, 37 | lmodvs1 20889 | . . . . . . . . . . . 12
⊢ ((𝑆 ∈ LMod ∧ 𝑦 ∈ 𝐵) → ((1r‘𝐾) · 𝑦) = 𝑦) | 
| 50 | 47, 48, 49 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((1r‘𝐾) · 𝑦) = 𝑦) | 
| 51 | 50 | fvoveq1d 7454 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (𝐹‘(𝑦 + 𝑧))) | 
| 52 |  | simplrr 777 | . . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐿 = 𝐾) | 
| 53 | 52 | fveq2d 6909 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (1r‘𝐿) = (1r‘𝐾)) | 
| 54 | 53 | oveq1d 7447 | . . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((1r‘𝐿) × (𝐹‘𝑦)) = ((1r‘𝐾) × (𝐹‘𝑦))) | 
| 55 |  | simpllr 775 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑇 ∈ LMod) | 
| 56 |  | simplrl 776 | . . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐹:𝐵⟶𝐶) | 
| 57 | 56, 48 | ffvelcdmd 7104 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐹‘𝑦) ∈ 𝐶) | 
| 58 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(1r‘𝐿) = (1r‘𝐿) | 
| 59 | 2, 5, 22, 58 | lmodvs1 20889 | . . . . . . . . . . . . 13
⊢ ((𝑇 ∈ LMod ∧ (𝐹‘𝑦) ∈ 𝐶) → ((1r‘𝐿) × (𝐹‘𝑦)) = (𝐹‘𝑦)) | 
| 60 | 55, 57, 59 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((1r‘𝐿) × (𝐹‘𝑦)) = (𝐹‘𝑦)) | 
| 61 | 54, 60 | eqtr3d 2778 | . . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((1r‘𝐾) × (𝐹‘𝑦)) = (𝐹‘𝑦)) | 
| 62 | 61 | oveq1d 7447 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧))) | 
| 63 | 51, 62 | eqeq12d 2752 | . . . . . . . . 9
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))) | 
| 64 | 63 | 2ralbidva 3218 | . . . . . . . 8
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(((1r‘𝐾) · 𝑦) + 𝑧)) = (((1r‘𝐾) × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))) | 
| 65 | 46, 64 | sylibd 239 | . . . . . . 7
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾)) → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))) | 
| 66 | 65 | exp32 420 | . . . . . 6
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵⟶𝐶 → (𝐿 = 𝐾 → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))))) | 
| 67 | 66 | 3imp2 1349 | . . . . 5
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧))) | 
| 68 | 34, 67 | jca 511 | . . . 4
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧)))) | 
| 69 | 1, 2, 18, 19 | isghm 19234 | . . . 4
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) ⨣ (𝐹‘𝑧))))) | 
| 70 | 33, 68, 69 | sylanbrc 583 | . . 3
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | 
| 71 |  | simpr2 1195 | . . 3
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → 𝐿 = 𝐾) | 
| 72 |  | eqid 2736 | . . . . . 6
⊢
(0g‘𝑆) = (0g‘𝑆) | 
| 73 |  | eqid 2736 | . . . . . 6
⊢
(0g‘𝑇) = (0g‘𝑇) | 
| 74 | 72, 73 | ghmid 19241 | . . . . 5
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) | 
| 75 | 70, 74 | syl 17 | . . . 4
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) | 
| 76 | 30 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ Grp) | 
| 77 | 1, 72 | grpidcl 18984 | . . . . . . . . . 10
⊢ (𝑆 ∈ Grp →
(0g‘𝑆)
∈ 𝐵) | 
| 78 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑧 = (0g‘𝑆) → ((𝑥 · 𝑦) + 𝑧) = ((𝑥 · 𝑦) + (0g‘𝑆))) | 
| 79 | 78 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑧 = (0g‘𝑆) → (𝐹‘((𝑥 · 𝑦) + 𝑧)) = (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆)))) | 
| 80 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑧 = (0g‘𝑆) → (𝐹‘𝑧) = (𝐹‘(0g‘𝑆))) | 
| 81 | 80 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ (𝑧 = (0g‘𝑆) → ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆)))) | 
| 82 | 79, 81 | eqeq12d 2752 | . . . . . . . . . . 11
⊢ (𝑧 = (0g‘𝑆) → ((𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) ↔ (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))))) | 
| 83 | 82 | rspcv 3617 | . . . . . . . . . 10
⊢
((0g‘𝑆) ∈ 𝐵 → (∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))))) | 
| 84 | 76, 77, 83 | 3syl 18 | . . . . . . . . 9
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))))) | 
| 85 |  | simplll 774 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑆 ∈ LMod) | 
| 86 |  | simprl 770 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐸) | 
| 87 |  | simprr 772 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | 
| 88 | 85, 86, 87, 15 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝑥 · 𝑦) ∈ 𝐵) | 
| 89 | 1, 18, 72 | grprid 18987 | . . . . . . . . . . . 12
⊢ ((𝑆 ∈ Grp ∧ (𝑥 · 𝑦) ∈ 𝐵) → ((𝑥 · 𝑦) + (0g‘𝑆)) = (𝑥 · 𝑦)) | 
| 90 | 76, 88, 89 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 · 𝑦) + (0g‘𝑆)) = (𝑥 · 𝑦)) | 
| 91 | 90 | fveq2d 6909 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = (𝐹‘(𝑥 · 𝑦))) | 
| 92 |  | simplr3 1217 | . . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) | 
| 93 | 92 | oveq2d 7448 | . . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣
(0g‘𝑇))) | 
| 94 |  | simpllr 775 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑇 ∈ LMod) | 
| 95 | 94, 31 | syl 17 | . . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑇 ∈ Grp) | 
| 96 |  | simplr2 1216 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝐿 = 𝐾) | 
| 97 | 96 | fveq2d 6909 | . . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (Base‘𝐿) = (Base‘𝐾)) | 
| 98 | 97, 14 | eqtr4di 2794 | . . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (Base‘𝐿) = 𝐸) | 
| 99 | 86, 98 | eleqtrrd 2843 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝐿)) | 
| 100 |  | simplr1 1215 | . . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → 𝐹:𝐵⟶𝐶) | 
| 101 | 100, 87 | ffvelcdmd 7104 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑦) ∈ 𝐶) | 
| 102 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(Base‘𝐿) =
(Base‘𝐿) | 
| 103 | 2, 5, 22, 102 | lmodvscl 20877 | . . . . . . . . . . . . 13
⊢ ((𝑇 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐿) ∧ (𝐹‘𝑦) ∈ 𝐶) → (𝑥 × (𝐹‘𝑦)) ∈ 𝐶) | 
| 104 | 94, 99, 101, 103 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (𝑥 × (𝐹‘𝑦)) ∈ 𝐶) | 
| 105 | 2, 19, 73 | grprid 18987 | . . . . . . . . . . . 12
⊢ ((𝑇 ∈ Grp ∧ (𝑥 × (𝐹‘𝑦)) ∈ 𝐶) → ((𝑥 × (𝐹‘𝑦)) ⨣
(0g‘𝑇)) =
(𝑥 × (𝐹‘𝑦))) | 
| 106 | 95, 104, 105 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 × (𝐹‘𝑦)) ⨣
(0g‘𝑇)) =
(𝑥 × (𝐹‘𝑦))) | 
| 107 | 93, 106 | eqtrd 2776 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))) = (𝑥 × (𝐹‘𝑦))) | 
| 108 | 91, 107 | eqeq12d 2752 | . . . . . . . . 9
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘((𝑥 · 𝑦) + (0g‘𝑆))) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘(0g‘𝑆))) ↔ (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) | 
| 109 | 84, 108 | sylibd 239 | . . . . . . . 8
⊢ ((((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) ∧ (𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵)) → (∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) | 
| 110 | 109 | ralimdvva 3205 | . . . . . . 7
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) | 
| 111 | 110 | 3exp2 1354 | . . . . . 6
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵⟶𝐶 → (𝐿 = 𝐾 → ((𝐹‘(0g‘𝑆)) = (0g‘𝑇) → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))))) | 
| 112 | 111 | com45 97 | . . . . 5
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹:𝐵⟶𝐶 → (𝐿 = 𝐾 → (∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)) → ((𝐹‘(0g‘𝑆)) = (0g‘𝑇) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))))) | 
| 113 | 112 | 3imp2 1349 | . . . 4
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → ((𝐹‘(0g‘𝑆)) = (0g‘𝑇) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) | 
| 114 | 75, 113 | mpd 15 | . . 3
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) | 
| 115 | 4, 5, 14, 1, 13, 22 | islmhm3 21028 | . . . 4
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) | 
| 116 | 115 | adantr 480 | . . 3
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) | 
| 117 | 70, 71, 114, 116 | mpbir3and 1342 | . 2
⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧)))) → 𝐹 ∈ (𝑆 LMHom 𝑇)) | 
| 118 | 29, 117 | impbida 800 | 1
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹:𝐵⟶𝐶 ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝐹‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 × (𝐹‘𝑦)) ⨣ (𝐹‘𝑧))))) |